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Abstract: Many signaling pathways regulate seed size through the development of endosperm and
maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed
size can be determined through the development of zygotic tissues (endosperm and embryo) and
maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk
growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal
ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of
growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the
major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the
reproductive part to control seed size. There is a need to increase the size of seeds without affecting
the number of seeds in plants through conventional breeding programs to improve grain yield. In
the past decades, many important genetic factors affecting seed size and yield have been identified
and studied. These important factors constitute dynamic regulatory networks governing the seed
size in response to environmental stimuli. In this review, we summarized recent advances regarding
the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on
strategies to comprehend crops’ genetic and molecular aspects in balancing seed size and yield.

Keywords: seed-specific transcription factors; signaling pathways; seed size; seed development

1. Introduction

The seed-producing crops are essential sources of foodstuffs, fodder, and fuel world-
wide. The number and size of seeds are very imperative with respect to the evolution of
various plant species for their preservation [1]. In addition, the seeds could be used to
produce biofuels, which are becoming more popular as an alternative to fossil fuels [2,3].
Seeds fulfill almost 70% of the world’s food demand. Environmental factors significantly
affect plant development, consequently reducing seed production. Higher yields are possi-
ble with the entire primary and secondary branches, as well as the size and pod number
on every plant, flowering time, seeds number per pod, seed weight, and sometimes plant
height [4,5]. The seed development in angiosperm plants begins by merging only a single
sperm with a single egg cell or beside two polar nuclei, resulting in a diploid embryo or a
triploid endosperm, respectively [6]. An endosperm’s single layer envelops the embryo in
the mature seed of the Arabidopsis, and the seed coat encloses the endosperm, which is
designed by many layers of particular maternal tissues that provide safety, enhance latency,
and sprouting [7]. The development of zygotic tissues including embryo and endosperm as
well as maternal components (e.g., eggs) determines seed size. Thus, the development of
the embryo, endosperm, and seed envelope are the major constituents in crops, determining
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the seed size and weight [8]. The seed development process is divided into two phases:
the morphogenesis phase, which includes cell division, endosperm and embryo devel-
opment, and cotyledon differentiation; and the maturing phase, which includes embryo
development at the expense of endosperm, seed dehydration, and source collection [9].
Arabidopsis seed development programs are similar to those of dicotyledon types of seed
crops, i.e., canola and soybean. Moreover, early phases of seed development are identical
in monocots and dicots but vary in later stages [10]. To inhabit various types of habitations,
seed plants produce an enormous range of growth farms and many deviations in seed size,
accompanied by seed travel ways. Moreover, after a long evolution time, plants exhibit
most of the seed sizes, starting from the dust-like seeds of orchids to the 20 kg of the double
coconut [11]. Seed size in flowering plants is very important from an evolutionary point of
view, as well as essential for crops [12], but the molecular mechanism of seed size is not
clear. Seed size is the main component in determining plant fitness and seed yield [11–13].
In plants, variation in seed size is an interesting phenomenon in developmental biology.
Seed size is controlled by the inherent inner material regarding maternal tissues and zygotic
materials [11], while the progress of the seed is affected by environmental and climatic
aspects. Given the significance of seeds as the primary food source, many efforts have been
made to understand seed development, size regulation, and total yield in crops. Many
crop genomes have been sequenced, and genetic factors have been identified to dissect the
network controlling seed growth and development [14,15].

Genetic screening is a powerful strategy widely used to identify the regulators of seed
size. The advances in genome-wide association studies (GWAS) and RNA sequencing
technology have been extensively applied to investigate the fundamentals of the seed size
variation [16]. Plants have the good factor of huge genetic variations occurring naturally, as
well as being extensively studied in many species [17]. Seed size is among the most complex
characteristics, elaborately controlled by multiple positive and negative factors, constituting
a well-balanced network to regulate seed size by modulating biological processes. Genes
with a higher population and more density markers and several quantitative trait loci
(QTLs) with a novel QTL for grain length, qGL11, were recognized in seven panicle
and grain-related traits [18]. In the present review, we summarized recent advances in
dissecting the regulatory network that controls seed size and yields to an extent, including
the genetic factors and signaling pathways that regulate seed size in Arabidopsis and other
various crops.

2. Genetic Factors Controlling Seed Size

Controlling seed size and weight is determined via the genetic composition of zygotic
and maternal tissues. In recent times, many scientific studies have been reported to identify
genetic factors with plant responses to control seed size and weight (Table 1).

Table 1. List of reported genes that control seed size and yield in different plants.

Species Genes or Mutants Function References

Arabidopsis IKU1, IKU2, and MINI3 Early cellularization of endosperm produces smaller seeds [19,20]

Arabidopsis TFL1 Timely endosperm cellularization enhances seed size [21]

Arabidopsis SHB1 Up-regulates the functions of IKU2 and MINI 3 and postpones
endosperm cellularization, producing larger seeds [22,23]

Arabidopsis TTG2 Identifies integument cell elongation and endosperm growth as the
primary regulators of seed size [24]

Arabidopsis TOP1α and UPF1 The molecular interplay among these three genes explains their
biparental gametophytic effect on seed size regulation [25]

Arabidopsis LuLEA1 Negatively regulates seed size and yield [26]

Arabidopsis AN3-YDA Disrupts normal sucrose and glucose contents and alters seed size
regulation in an3 or yda mutants [27]
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Table 1. Cont.

Species Genes or Mutants Function References

Arabidopsis EIN3-YDA Both are integral to a sugar-mediated metabolism cascade that
regulates seed mass by maternally controlling embryo size [28]

Arabidopsis DME Enhances DNA de-methylation activity and endosperm chromatin
composition [29]

Arabidopsis CYCB1;4
Overexpressed in transgenic plants to show increased seed size in
response to faster cell cycle progression to increase grain size and

yield
[30]

Arabidopsis FIS2, FIS3, FIE, MEA, and
MSI1 Control endosperm development [31]

Arabidopsis AGL62 Regulates endosperm development by the FIX [32]

Arabidopsis PHE1 Controls seed abortion by mea mutant [33]

Arabidopsis CDKs and CYC Control cell cycle development [34]

Arabidopsis RBR Decreases the cell proliferation in the integuments and stops further
development of seed coat [35]

Arabidopsis AtENO2 Decreases the size of seed and mass with the declined concentration
of cytokinin [36]

Arabidopsis MET1 and DDM1 DNA methylation of maternal and paternal genome regulates seed
size [37]

Arabidopsis FIS2, FWA, and MPC Regulate parental imprinting by DNA methylation [38–40]

Arabidopsis MEA It plays the role as a maternal buffer of paternal effects on seed
development [41]

Arabidopsis PRC2 Controls turgor pressure during seed development [42]

Arabidopsis AtSOB3 Produces heavy and larger seeds with long hypocotyl [43]

Arabidopsis p4-siRNAs Expressions are observed in maternal gametophytes and continue
until endosperm development [44]

Arabidopsis CEPR1 Promotes reproductive parts including seed size and yield [45]

Arabidopsis CYCD3:1 and CYCD7:1 Promote early endosperm and embryo development [46,47]

Arabidopsis AtbZIP75 Regulates seed development [36]

Rice OsEMF2a Delayed cellularization and autonomic endosperm development [48]

Rice GLW7 Controls grain size and yield [49]

Rice OsGW2 Regulates grain size and reduces rice yield [50]

Rice GS3 Regulates grain length [51]

Rice OML4 Negatively regulates seed size by terminating cell expansion [52]

Rice qGL7 Could display a single mendelian characteristic, suggested as
producing diverse seed shapes [53]

Rice qGL11 Regulates rice grain weight and length [18]

Rice MIS2 Controls grain size by coordinately regulating epidermal cell size
and cell number [54]

Rice MADS78 and MADS79 Regulate endosperm cellularization and early seed formation in rice [55]

Maize miRNAs Control embryogenesis via transcriptional regulation [56]

Maize GSI, qZmGW2-CHR4,
zMgs3, and qZmGW2-CHR5 Control kernel size and grain production [57–59]

Maize ZmBZR1
It attaches to the promoter region of GRACE and KRP6 to control

their expression and regulate seed size [60]

Wheat TaGW2 Controls grain weight [61]

Cotton MicroRNA160 Regulates smaller seed size [62]

Bean SL9.1 GA Controls seed length [63]

Rapeseed BnaEOD3 Negatively regulates the seed growth and development [64]
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Table 1. Cont.

Species Genes or Mutants Function References

Soybean GmSWEET10a and
GmSWEET10b Change seed size, oil quantity, and protein contents [15]

Soybean qSL-13-3zy, -13-4zy, and
qSW-13-4zy

Control seed size and yield [65]

Soybean GmKIX8-1 Increases cell proliferation and size of aerial plant organs such as
leaves and seeds with high expression of CYCLIN D3;1-10 [66]

Peanut SNE and SAP Regulate seed and fruit size [67]

In Arabidopsis, early endosperm cellularization induces diploids to pollinate tetraploids,
ultimately producing smaller seeds. By contrast, late or failed endosperm cellularization
causes highly abortive seeds [68,69]. The endosperm cellularization time also regulates
seed size, though embryo development covers the seed cavity afterward by replacing
the endosperm space. The mutant genes of the IKU-pathway, including haiku (iku1),
iku2, and miniseed3 (mini3), developed smaller seeds due to precocious cellularization
of the endosperm [19,20,70,71], while the SHORT HYPOCOTYL UNDER BLUEI (SHB1)
gain-of-function mutants postponed endosperm cellularization, ultimately producing
larger seeds [19,22,23]. Transcriptional co-activators, such as SHB1 linked with IKU2 and
MINI3 promoters and stimulate their expression in Arabidopsis [22,23]. Furthermore,
adjacent tissues influence endosperm development; for instance, a mutation of maternal
sporophytic in TRANSPARENT TESTA GLABRA2 (TTG2) limits integument enlargement
and the origins of advanced endosperm cellularization [24]. The IKU pathway interacts
with TTG2 genetically by way of double mutants ttg2 and iku2, showing stronger seed
phenotypes than single mutants [24]. Furthermore, a DNA topoisomerase, TOPOISO-
MERASE Iα (TOP1α), and an ATP-dependent RNA helicase, UP-FRAMESHIFT SUPPRES-
SOR 1 (UPF1), biparentally regulate the seed size (regulating TTG2). Loss of function of
UPF1 or TOP1α or induces the ectopic appearance of TTG2 in antipodal cells. Genetic
analysis has consistently shown TOP1α and UPF1 function upstream of TTG2. TTG2 is
directly suppressed by TOP1 and UPF1 by causing a chromatin disruption [25]. Further, it
has been suggested that comparative TTG2 quantity in antipodal cells to gametes regulates
seed size, indicating the role of the maternal and paternal dose-dependent molecular frame-
work. The late embryogenesis abundant (LEA) protein family named LuLEA is expressed
at later stages of seed development [26]. LuLEA1 negatively regulates seed size and yield
as its higher expression reduces seed size and fatty acid content in Arabidopsis. Recently, it
was reported that Arabidopsis TERMINAL FLOWER1 (TFL1) acts as a mobile controller
produced in the chalazal endosperm and promotes endosperm cellularization on time
when moving to the syncytial peripheral endosperm, and enhances seed size by stabilizing
ABA insensitive 5 (ABI5) genes [21]. Most recently, in rice, mutations in the EMBRYONIC
FLOWER2a (OsEMF2a) gene resulted in delayed cellularization and autonomic endosperm
development [48].

Another research group hypothesized that the seed size and length of the hypocotyl
might be regulated by AtSOB3, which belongs to the SUPPRESSOR OF PHYTOCHROME B.
They tested this hypothesis and demonstrated that AtSOB3-D produced lighter seeds with
a shorter hypocotyl compared to WT, while a dominant-negative mutation, AtSOB3-6-OX,
produced heavy and larger seeds with a longer hypocotyl in Arabidopsis [43]. Researchers
have reported that the impact of accumulated soluble sugar on the seed size is controlled
by the ANGUSTIFOLIA3-YODA (AN3-YDA) gene cascade as well as the addition of
environmental and/or metabolic factors by sugar and ethylene metabolism to regulate
seed mass in Arabidopsis by interacting with ETHYLENE INSENSITIVE 3 (EIN3) [28]
and AN3 [27]. The ENHANCER3 OF DA1 (EOD3) exists in the sporophytic tissues of the
mother plant, encodes many cytochrome P450/CYP78A6, and stimulates seed growth in
plants. Overexpression of EOD3 has been shown to drastically increase the size of the seed,
whereas loss-of eod3-ko function mutants produce smaller seeds. Mutants of the BnaEOD3
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gene were competently produced with stable changes by the stable transformation of the
CRISPR/Cas9. These mutations were steadily transferred into the T1 and T2 generations,
resulting in an accumulation of homozygous mutants with a combined loss of function
alleles. The T1 line contains smaller siliques and seeds, but the higher number of seeds
per silique suggests that BnaEOD3 negatively regulates seed growth and development in
rapeseed [64].

Rice is one of the most essential crops, feeding a significant amount of the world’s
population. Many years of studies have focused on identifying QTLs that control the
grain size of rice [72]. For example, GLW7 is a major QTL that has been identified as
controlling grain size and yield [49]. However, the investigation of the genetic variability
of Arabidopsis has significant potential to provide insight into commercially essential
traits in crops. Ren et al. (2019) identified new factors responsible for controlling seed
size; CYCB1;4 is a cell cycle-related gene that encodes a cyclin protein. Growing regions
are enriched in CYCB1;4 and may control the cell cycle that is positive in maternal and
zygotic parts, thereby increasing seed and other organ sizes, implying that CYCB1;4 is an
essential component in Arabidopsis for regulating seed size. They reported comprehensive
information on GWAS in Arabidopsis related to seed size, with 38 important linked loci,
and one locus interlinked with CYCB1;4. A higher level of CYCB1;4 was noted in transgenic
plants, which increased seed size and grain yield in response to faster cell cycle progression,
while the CYCB1;4 mutant produced smaller seeds. In short, CYCB1;4 may potentially
target yield improvement in plants as the temporal and spatial expression pattern may
inform functioning in both maternal and paternal tissues that are involved in absolutely
organizing seed size [30]. Another study reported that overexpression of OsGW2, a QTL
on chromosome 2, changes grain size and reduces Indica rice yield. The downregulation
of OsGW2 using RNAi technology resulted in larger and plump kernels by regulating cell
expansion and cell proliferation in the spikelet hull [50].

Genomic imprinting regulation is very complicated and may include non-coding
RNAs, DNA methylation, and histone adaptations. Many scientific studies have evaluated
that the endosperm plays an essential role in divergent plant tissues, with imprinted gene
expression and a unique DNA methylation [73]. The increased time for the development of
endosperm between different seed parts was considered to be under the epigenetic regula-
tor. Nevertheless, it was shown that the maternally expressed in embryo 1 (mee1) gene is
imprinted in the embryo and endosperm of the maize plant [74]. Genome-wide methods
relating to RNA-seq of mutual crosses in Arabidopsis [75], rice [76], and maize [77], have
indicated the occurrence of numerous tentative imprints [74], and the genetic makeup of
embryos. Parental imprinting of genes is caused by distinctive DNA methylations at spe-
cific loci produced by DEMETER demethylase (DME) in the maternal gametes [78], DNA
Methyltransferase 1 (MET1) in the paternal gametophyte, and POLYCOMB REPRESSIVE
COMPLEX 2 (PRC2)-facilitated suppression of transcription [29]. Though DNA methy-
lation is not primarily responsible for embryo-specific imprinting, allele-definite siRNAs
may induce parent-of-origin and precise genetic expression occupied by the embryo. Hypo-
methylated regions in the endosperm generate maternal-specific siRNAs, which monitor
ROS1-mediated DNA de-methylation of the particular area after moving into the embryo.
Sequence-specific siRNAs distinguishing maternal alleles individually could result in allele
specificity [79].

CURLY LEAF (CLF), which encodes a histone methyltransferase of PRC2 coordi-
nated in tri-methylation of histone H3 Lys 27 (H3K27me3), controls a group of genes that
interact with each other during embryo development [80]. Several PcG proteins such
as FERTILIZATION INDEPENDENT SEED 2 (FIS2), FIS3, FERTILIZATION INDEPEN-
DENT ENDOSPERM (FIE), FIS1/MEDEA (MEA), and MULTI COPY SUPPRESSOR OF
IRA1 (MSI1) control the development of the endosperm [31]. By way of methylation of
chromatin histones, repressive complexes are formed by these PcG proteins that inhibit
the expression of involved genes controlling developmental processes. Numerous PcG
constituents can be imprinted, and the functions of FIS complexes in plants are mani-
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fested after pollination. Moreover, fis mutants decrease endosperm cellularization and,
ultimately, the size of seeds. The function of FIS is mediated by AGL62, which belongs to
the agamous-like MADS-box proteins, whereas in fis mutants, AGL62 expression is sup-
pressed, leading to endosperm cellularization failure [32]. Regarding the FIS gene family,
FLOWERING WAGENINGEN (FWA), MEA, and MEA genes are maternally expressed;
however, MADS-box I like PHERES1 (PHE1) and a FIS PcG complex are presumed to be
paternally expressed. Seed growth is terminated due to peak propagation of the endosperm
without embryo development in medea (mea) mutants [81]. The FIS proteins, including MEA,
FIE, and FIS2, strongly regulate the MADS-box gene PHE1 expression. PHE1 expression
was normal after fertilization in wild-type plants (WT), whereas fis mutants showed higher
expression until seed abortion, indicating that FIS-class proteins deregulate PHE1 expres-
sion after fertilization to prevent seed abortion [33]. Recently, using CRISPR/Cas9-based
genome editing, it was found that the MADS-box TF genes MADS78 and MADS79 are very
important for regulating endosperm cellularization and early seed formation in rice [55]. A
single MADS78 or MADS79 knockout mutant displayed early endosperm cellularization,
while double mutants hindered seed development and produced no viable seeds [55].

DNA methylation plays a significant role in seed development as it may help increase
seed size and weight [82]. It also plays an important part in plant genome stability and de-
velopmental processes [83]. Chinese super hybrid rice LYP9 (Liangyou Peijiu) is a successful
hybrid rice variety with high heterosis [84]. This indicates that DNA methylation in hybrid
rice seeds plays a key function in the initiation and maintenance of heterosis [85]. Xiao et al.
(2006) showed that methylation of FIS2 and MEA is facilitated by MET1 containing DNA
methylase, methylating CpG islands, and a genomic cytosine base. A met1 mutation in
the maternal genome increases seed size due to maternal hypomethylation and delays
endosperm cellularization [37]. By contrast, met1 mutations in the paternal genome lead
to early cellularization of the endosperm and decreased seed size, thus confirming ex-
clusive maternal control of MEA expression, which provides insights into the evolution
of imprinting in plants. Similar findings were also obtained in reciprocal crosses with
parents with mutations in ddm1. FIS2 [38], FWA [39], and MPC [40], which are imprinted
genes that regulate parental imprinting by DNA methylation [86]. However, the effects
of paternal imprinting are minor or non-existent. Another study in Arabidopsis revealed
that a deviation in the paternal alleles regulates the growth of seeds, and these deviations
occur in seeds when mutants with the maternal mea allele showed loss of function of this
gene, indicating that paternal MEA may compensate maternal MEA deficiency during
seed development [41]. During the developmental phase of rice seeds, genome-wide
DNA methylome analyses showed higher frequencies of DNA methylation in embryos
than in the endosperm, and non-transposable element regions were more variable than
transposable ones during endosperm and embryo development [87]. Many epigenetic
regulatory mechanisms participate in seed development; however, the regulatory mecha-
nisms underlying major genome imprinting processes are not yet clear. Thus, integrated
exploration of genome-related DNA methylome differences, histone amendment, transcrip-
tomics, and cleavage positions of miRNA in developing seeds through current genomic
approaches, including degradome and bisulfite sequencing, is required for a better under-
standing of epigenetic mechanisms underlying seed development. The turgor pressure of
the endosperm drives seed expansion during the early seed development [88], whereas
later, turgor pressure decreases during endosperm cellularization, which is controlled by
POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) [42].

MicroRNAs (miRNAs) have become an important part of the basic molecular net-
work of important agronomic seed traits in various plant species. The loss of the specific
gene functions that control miRNA biogenesis results in defects in seed development [89].
MicroRNA160 targeting auxin response factors in cotton and suppression of miR160 re-
sulted in a smaller seed size in cotton [62]. Another study examined the potential role of
miR156a in linseed flax (Linum usitatissimum L.) by decreasing seed oil content in trans-
genic lines compared to WT plants [90]. In addition, miRNAs also control embryogenesis
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by regulating transcription in maize [56]. Recently, 72 existing miRNAs and 39 recently
identified miRNAs were discovered to be expressed in the growing seeds of legumes
(Phaseolus vulgaris L.), and their involvement was more prominent throughout late embryo-
genesis and desiccation. Numerous TF families have been identified as known miRNA
targets, including ARF, HD-ZIP, NF-Y, and SPL, and a majority of new miRNA targets
were anticipated to be expressed as functional proteins [91]. In addition, small interfer-
ing RNA (siRNAs) can also induce transcriptional gene silencing, which may be associ-
ated with epigenetic control of seed expansion. Plant-specific RNA polymerase named
RNA polymerase IV (Pol IV) is involved in the production of siRNAs [92]. Genome-related
monotonous elements are used to produce p4-siRNAs, and some are interlinked with
exclusive regions, comprising numerous characterized imprinted loci that may have a
significant function in the initiation or continuation of imprinted gene expression [93].
Pol IV-base p4-siRNAs are produced from transposon elements present in the genome and
are expressed exclusively in the endosperm tissues [44].

Quantitative trait locus analysis is useful for providing information on seed size control
and other traits which may be relevant in plant breeding. Recently, 39 QTLs were identified
on different chromosomes in common beans, and one major QTL, SL9.1 GA, was found
to control seed length [63]. Three epistatic QTLs (qSL-13-3zy, qSL-13-4zy, and qSW-13-4zy)
were found to regulate soybean seed size and yield [65], and many well-categorized QTLs
have been recognized in different plants, including GS3, qSW5, and qGL7 in rice [51,53], GSI,
qZmGW2-CHR4, zMgs3, and qZmGW2-CHR5 in maize [57–59] and TaGW2 in wheat [61].

Moreover, many QTLs involved in seed size control have been detected in other
crops, although their functions have not been categorized [94–96]. Genes with higher
abundance and density markers and 43 QTLs were recognized to be linked with seven
panicle- and grain-related characteristics. For example, the new locus qGL11 enhances
rice grain weight and length, and it occurs in a chromosome segment substitution line
(CSSL) obtained through segregation of the population; moreover, it mapped exceptionally
well onto a 25-kb sequence that comprises the IAA-amido-synthetase gene OsGH3.13 [18].
A recent study investigated QTL regions at the 168.37 kb chromosome fragment with
regard to the SNPs Aradu_A07_1148327 and Aradu_07_1316694. Twenty-two genes were
predicted in this region, with two genes of interest, Aradu.RLZ61 and Aradu.DN3DB,
encoding a transcriptional regulator, an F-box SNEEZY (SNE), and STERILE APETALA-
like (SAP), respectively. These genes play a critical role in regulating seed and fruit size [67].
Moreover, MINI SEED 2 (MIS2) regulates grain size by coordinately controlling epidermal
cell number and cell size, and microscopic analysis showed that mis2 mutant rice revealed
reduced cell size of spikelet epidermis but higher cell numbers [54]. The MIS2 encodes
CRINKLY4 (CR4), the receptor-like kinase through Map-based cloning, which exhibited
the strongest expression during panicle development [97].

In rice, the LARGE1 gene encodes the MEI2-LIKE PROTEIN4 (OML4) and negatively
regulates seed size through terminating cell enlargement in spikelet hulls. Over-expression
of OML4 results in smaller and lighter seeds, whereas loss of function of OML4 leads to
larger and heavier grains [52]. In eukaryotes, cyclin-dependent kinases (CDKs) and their
governing subunit cyclin (CYC) control the cell cycle progression [34]. CDK inhibitors
(CDKIs) are inhibitors of CDK/CYC complex action and were thus the principal cell
cycle controllers. In plants, two types of CKIs have been discovered and categorized:
SIAMESE/SIAMESE-RELATED (SIM)-related suppressors and INHIBITOR OF CDC2
KINASE/KIP-RELATED (ICK/KPR) [98]. Central-cell rbr mutants have superfluous nuclei,
indicating failed cell cycle arrest [99]. Moreover, irregularities in rbr1 maternal gametes
decrease cell propagation in the integument and stop further development of the seed
envelope [47]. Furthermore, a complex of MUTICOPY SUPPRESSOR OF IRAI (MSII)
RBR1, which stops the expression of MET1, is responsible for activating imprinted genes
present in germ cells throughout megagametophyte development [35]. Seed termination
was observed in the tri-mutant cycd3-1:2:3 (CYCD3 belongs to the CYCD gene family),
because of late cell propagation during embryo development. However, cell division
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stimulated by the trans-activation of CYCD3:1 or CYCD7:1 in the endosperm and embryo
results in fatal embryo deficiencies [100]. Directed upregulation of CYCD7:1 in the en-
dosperm and in the central cell, which resulted in escape from the cell cycle in the central
cell, and enhanced endosperm propagation at the syncytial stage, resulting in a larger
seed. Nevertheless, death occurred in a few larger seeds, indicating an incomplete seed
termination [46]. The ENO gene is strongly expressed in plants encoding glycolytic metal-
loenzyme enolase (ENO2) that boosts the dehydration of 2-phospho-D-glycerate (2-PGA) to
phosphoenolpyruvate (PEP) [101]. Three ENO genes have been identified in Arabidopsis,
including At1g74030 (ENO1), At2g36530 (ENO2), and At2g29560 (ENO3) [102]. Sub-cellular
occurrence of isoforms of enolase showed that ENO1 and ENO3 are situated in the chloro-
plast and cytoplasm, while ENO2 has been detected in the nucleus and cytosol [103]. In
addition, mutations in AtENO2 decreased the size and mass of seeds with a reduced
concentration of cytokinin. Carbohydrate data analyses and RNA sequencing showed
that metabolism pathways, particularly regarding the secondary metabolism, occurred
in AtENO2 T-DNA mutants [36]. Furthermore, AtENO2 cooperated with Arabidopsis
basic-leucine zipper 75 (AtbZIP75) as a substitute for AtMBP-1 [36]. Therefore, AtbZIP75
may contribute to seed development. This study clarified the novel function of AtENO2 in
seed growth and improvement and proposed a good target gene for gene manipulation
for the purpose of plant breeding. Recently, two SWEET homologs, i.e., GmSWEET10a
and GmSWEET10b, were found to simultaneously affect seed size, oil quantity, and protein
content in soybean, suggesting that seed size and oil constituents can be controlled by
adjusting the combination of both alleles [15]. A different study demonstrated that the re-
productive functions of this plant, including fertility, seed size, and yield, can be controlled
by C-TERMINALLY ENCODED PEPTIDE RECEPTOR1 (CEPR1) [45]. The authors showed
that two cepr1 knockdown mutants produced smaller seeds and reduced yield (by 88–98%).
In Arabidopsis, BZR1 controls organ size via the BR signaling pathway. Recently, studies
have shown that overexpression of ZmBZR1 in Arabidopsis causes increased organ and
seed size. Moreover, ZmBZR1 is attached to the promoter of GRACE and KRP6 to control
their expression and regulate seed size [60].

3. The Role of Signaling Pathways in Seed Size Regulation
3.1. The Ubiquitin-26s Proteasome Pathway

The ubiquitin–26S pathway regulates the size and development of seeds; the genes reg-
ulating the ubiquitin–proteasome pathway are shown in Figure 1A. Ubiquitination and/or
protein degradation processes by the proteasome 26S pathway are an important post-
translational protein turnover mechanism in plants [104–106]. The ubiquitin–proteasome
system, which is highly controlled, is involved in the regulation of all aspects of plant life
and governs numerous developmental and stress-related activities mediated by hormone
signals [107]. Ubiquitin (Ub) is a protein of 76 amino acids that affect the target cellular
proteins via a multistep reaction including three enzymes, E1 enzyme (Ub-activating),
E2 enzyme (Ub-conjugating), and E3 enzyme (Ub ligases), in the ubiquitin–proteasome
system (UPS) [108]. Ubiquitination specificity is largely regulated by E3 ligases, which
recognize specific substrates and catalyze the bond between the Ub and substrates [108].
E3 ligases are important regulatory components in the ubiquitin-dependent pathway be-
cause they mediate substrate specificity [109]. The ubiquitination pathway participates in
seed size regulation; ubiquitin receptor, E3 Ubiquitin ligase, ubiquitin-specific protease,
26S proteasome, plant-specific APC/C regulatory factors, and ubiquitination pathway
interaction proteins, etc., all play a central function in regulating seed size and devel-
opment [13,110,111]. In Arabidopsis, ubiquitin receptors such as DA1 and DA1-related
protein (DAR1) regulate the size of seeds by restraining cell propagation in the maternal
integument [112]. The DA2, E3 Ub-ligases, and BIG BROTHER (BB)/ENHANCER OF
DA1 (EOD1) function together with DA1 to limit seed size and the development of other
plant parts [110,113], indicating that E3 ubiquitin ligases and DA1 may function in the
same complex or have mutual downstream targets. Supporting this concept, DA1 strongly
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co-operates with DA2 in vitro as well as in vivo [110]. E3 ubiquitin ligase shows specific
substrate relationships between DA1 and DA2, and it may help to identify the precise
substrates of DA1 with regard to degradation. Genetic studies have revealed that BB/EOD1
and DA2 function in diverse ways [110], indicating that variant substrates may be tar-
geted by them for degradation. In rice, grain width and weight 2 (GW2) shows sequence
resemblance with DA2, encoded by a QTL regulating seed size [13]. GW2 negatively
affects the size of grains by controlling cell propagation in spikelet casings. Homologs
of GW2 are also associated with seed size regulation in maize and wheat crops [58,61],
suggesting that GW2 retains preserved functions of seed size regulation. In Arabidopsis,
SUPPRESSOR OF DA1 (SOD2) encoding UBIQUITIN-SPECIFIC PROTEASE 15 (UBP15) is
maternally responsible for enhancing seed development. Plants with sod2/ubp15 mutations
show reduced seed size and other organs because of the reduction in cell propagation
and epistatic effects on DA-1 [114,115]. In Arabidopsis, DA1 interacts physically with
UBP15 and modifies its durability, suggesting that UBP15 is the downstream target of DA1.
Further study showed that UBP15 individually affects EOD1 and DA2 to regulate grain size,
specifying that other unidentified E3 ubiquitin ligases may ubiquitinate UBP15. Moreover,
in Arabidopsis, the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase
and the 26S proteasome, along with many other factors such as RPT2 and SAMBA, affect
seed development [116–118]. SAMBA mutations, a negative regulator of APC/C, result in a
larger seed size [117]. The mutation in SAMBA markedly increases seed size and structure
in eod1-2 da1-1 phenotypes [119], implying that SAMBA may exert substantial effects or
act as a complex identical to EOD1 and DA1 regarding grain size regulation. The important
QTL qSW5/GW5 is responsible for seed thickness; it is located on chromosome 5 and
controls the size of grains by suppressing cell propagation in spikelet casings in rice [120].
GW5 reacts to ubiquitin in vitro, signifying that it may act as a ubiquitin–proteasome path-
way [121]. In rice, GW5 may function separately from GW2 to regulate grain width [122].
Histone ubiquitylation controls the transcription of DA1/DA2, which affect seed size.
OTU1 de-ubiquitinase de-ubiquitylates DA1/DA2 chromatin and acts as an epigenetic
transcriptional suppressor of the DA1/DA2 genes. OTU1 is nucleocytoplasmic and plays
a role in nuclear and cytoplasmic functions [123]. SMALL LEAF AND BUSHY1 (SLB1)
encodes the F-box protein, a fragment of the SKP1/Cillin/F-box E3 Ub-ligase complex.
SLB1 regulates the growth of plant organs and secondary branches by regulating the
stability of BIG SEEDS1 (BS1), leading to increased leaf and seed size in soybean and
Medicago truncatula [124]. A different study reported that the regulatory complex GW2–
WG1–OsbZIP47 regulates grain size in rice [27]. GW2, WG1, and OsbZIP47 work together
to control grain width and length through the GW2–WG1–OsbZIP47 regulatory module.
Specifically, WG1 encodes a glutaredoxin protein and promotes cell proliferation, leading
to enhanced grain growth. WG1 acts as a co-repressor with ASP1 and interacts with the
transcription factor (TF) OsbZIP47 to terminate its transcription. OsbZIP47 suppresses
seed growth by reducing cell proliferation [28]. Moreover, the E3 Ub-ligase TaPUB1 re-
duces the seedlings’ sensitivity to the abscisic acid (ABA) by interacting with TaPYL4 and
TaPY15 (involved in ABA signal transduction and inducing their degradation), resulting
in smaller grain size and yield; this suggests that TaPUB1 is a negative regulator of seed
development [125].



Int. J. Mol. Sci. 2022, 23, 13256 10 of 35

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 35 
 

acts as an epigenetic transcriptional suppressor of the DA1/DA2 genes. OTU1 is nucleo-

cytoplasmic and plays a role in nuclear and cytoplasmic functions [123]. SMALL LEAF 

AND BUSHY1 (SLB1) encodes the F-box protein, a fragment of the SKP1/Cillin/F-box E3 

Ub-ligase complex. SLB1 regulates the growth of plant organs and secondary branches by 

regulating the stability of BIG SEEDS1 (BS1), leading to increased leaf and seed size in 

soybean and Medicago truncatula [124]. A different study reported that the regulatory com-

plex GW2–WG1–OsbZIP47 regulates grain size in rice [27]. GW2, WG1, and OsbZIP47 

work together to control grain width and length through the GW2–WG1–OsbZIP47 regu-

latory module. Specifically, WG1 encodes a glutaredoxin protein and promotes cell pro-

liferation, leading to enhanced grain growth. WG1 acts as a co-repressor with ASP1 and 

interacts with the transcription factor (TF) OsbZIP47 to terminate its transcription. 

OsbZIP47 suppresses seed growth by reducing cell proliferation [28]. Moreover, the E3 

Ub-ligase TaPUB1 reduces the seedlings’ sensitivity to the abscisic acid (ABA) by interact-

ing with TaPYL4 and TaPY15 (involved in ABA signal transduction and inducing their 

degradation), resulting in smaller grain size and yield; this suggests that TaPUB1 is a neg-

ative regulator of seed development [125]. 

 

Figure 1. Signaling pathways and their correlated molecules involved in seed size regulation. (A) 

Ubiquitin–26s proteasome pathway (B) MAPK signaling pathway (C) IKU pathway (D) G-protein 

signaling pathway (E) Transcription regulatory factors. 

3.2. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Plants 

MAPK is responsible for many transduction pathways, including hormone signaling 

and stress responses [126–128]. The genes regulating the MAPK signaling pathway are 

shown in Figure 1B. A MAPK cascade comprises three kinases: MAPK, MAPK kinase 

Figure 1. Signaling pathways and their correlated molecules involved in seed size regulation.
(A) Ubiquitin–26s proteasome pathway (B) MAPK signaling pathway (C) IKU pathway (D) G-protein
signaling pathway (E) Transcription regulatory factors.

3.2. The Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Plants

MAPK is responsible for many transduction pathways, including hormone signal-
ing and stress responses [126–128]. The genes regulating the MAPK signaling pathway
are shown in Figure 1B. A MAPK cascade comprises three kinases: MAPK, MAPK ki-
nase (MAPKK), and MAPKK kinase (MAPKKK). MAPKKKs activate and phosphorylate
MAPKKs in response to an external stimulus signal, and then the activated MAPKs phos-
phorylate a variable number of downstream target substrates, including transcription
factors, chromatin remodeling factors, kinases, or different enzymes, resulting in transcrip-
tome and proteome reprogramming in the entire cell. The successive phosphorylation of
MAPK proteins and their substrates is critical for MAPK cascade-mediated interactions
and signal transduction [129]. Several components of the MITOGEN-ACTIVATED PRO-
TEIN KINASE (MAPK) cascade have previously been identified as key regulators of seed
development [130]. The small grain 1 (smg1) encoding MAPKK4 mutants generate short
grains in rice because of reduced cell proliferation in spikelet exteriors [131]. In addition,
a previous study suggested that alterations in OsMAPK6 result in short grains, which
resemble those produced by smg1 mutants [132]. Furthermore, loss of function mutations
in OsMKP1 produce larger grains, while OsMKP1 overexpression generates smaller grains.
OsMKP1 regulates rice grain size by limiting cell proliferation in grain hulls. OsMKP1
directly interacts with and deactivates OsMAPK6 [133]. Moreover, OsMKK4 is physically
co-related with OsMAPK6 [132]. Therefore, the OsMKK4–OsMAPK6-controlling module
plays an essential role in controlling seed size in rice. It is difficult to investigate the up-
stream OsMAPKKKs of OsMKK4 and downstream substrates of OsMAPK6 regarding the
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control of grain size. Furthermore, OsMKK4 and OsMAPK6 affect brassinosteroid (BR)
reactions and many BR-related genes’ expression [131,132], suggesting a link between the
MAPK pathways and BRs with respect to seed development. Guo et al., 2018 demonstrated
that GSN1 functions as a negative regulator of the OsMKK10–OsMKK4–OsMPK60 cascade
by inducing precise dephosphorylation of OsMPK6 to coordinate the trade-off between
grain size and grain number per panicle [134].

The leucine-rich repeat (LRP)-receptor kinases ER, ERL1, and ERL2 stimulate fruit
growth through signaling pathways regulated by EPFL9 in the carpel wall. EPFL2 expres-
sion controls the spacing of ovules in the wall of the carpel, and in inter-ovule spaces, this
is controlled by ERL1 and ERL2, which may facilitate equal distribution of resources [135].
This may provide an understanding of trade-offs in rice panicle expansion and constitute a
basis for increasing crop yield. The novel AGC protein kinase AGC1-4, belonging to the
subfamily of AGC VIIIa, encodes a serine–threonine kinase and regulates seed size. Seeds
with higher expression of AGC1-4 are smaller, whereas agc1-4 mutant seeds were signifi-
cantly larger [136]. A recent study reported that OsINV3 is a positive seed size regulator in
rice [137]. They showed that overexpression of OsINV3 increased grain size, while loss of
its function reduced grain size, in comparison with WT plants. OsINV2 is a homolog of
OsINV3 and has no function in seed size regulation by itself; however, both OsINV2 and
OsINV3 play roles in sucrose metabolism in sink organs and increase seed size [137]. In
Arabidopsis, the function of the novel gene ZmRLK7, which belongs to the LRP receptor-
like protein kinases (LRR-RLKs) isolated from maize, was investigated through ectopic
expression to examine its effects on plant development [138]. Most recently, in Arabidopsis,
the lectin receptor-like kinase LecRK-VIII.2 has been found to regulate seed production by
organizing seed size, seed number, and silique. Lecrk-VIII.2 mutants produce fewer seeds
but more seeds and siliques, resulting in a higher yield. On the other hand, overexpressing
of LecRK-VIII.2 produces larger seeds but fewer seeds and siliques, resulting in yields
comparable to wild-type plants [139]. MPK3 and MPK6 double mutants are toxic to the
embryo, but single MPK6 mutants exhibit a variety of abnormal phenotypes related to
seeds, similar to those seen in mutants of the kinases MAPK KINASE 4 (MKK4) and MKK5,
which function upstream of MPK3 and MPK6, respectively. Given the importance of MPKs
in seed development and their function in RLK signaling. (Xiao et al., 2021) investigated
whether MPK3 and MPK6 could act downstream of LecRK-VIII.2 [139]. All these find-
ings suggested that the phosphorylation of MPK6 and not MPK3 corresponds with the
expression levels of LecRK-VIII.2 in the seed. According to (Xiao et al., 2021), LecRK-VIII.2
promotes growth throughout development. Furthermore, this important receptor positively
promotes seed growth from maternal sporophytic tissues during seed development by
activating expansions, and possibly through the MAPK cascade and MPK6. This discovery
adds to the body of evidence supporting the importance of LecRKs in developmental
processes and opens up new paths for advanced research, such as investigating the signal
that LecRK-VIII.2 perceives. Understanding the mechanism behind the greater yield in
LecRK-VIII.2 KO plants, despite an overall loss in plant growth, will be fascinating. Is it
feasible that a plant with lower vegetative biomass has more available resources for seed
production before it reaches senescence? Is it possible to manipulate this signaling pathway
to generate crops with larger seeds, stronger plants, and higher yields?

3.3. The IKU Pathway

Seed size controlled through an IKU signaling pathway loss-of-function mutation in
the VQ motif protein HAI-KU1 (IKU1), receptor kinase IKU2, WRKY TF MINI-SEED 3 (MINI3),
and the leucine-rich repeat (LRR) decreased seed sizes due to advanced endosperm cel-
lularization. The genes regulating the IKU pathway are shown in Figure 1C. The embryo
and endosperm genome, instead of maternal genetic factors, determine the size of the
seed phenotype in these mutants [20,22]. Transcriptional co-activators such as SHORT
HYPOCOTYL UNDER BLUE 1 (SHB1) have been shown to link with IKU2 and MINI3 pro-
moters and stimulate their expression in Arabidopsis [22,23]. Seed size is regulated by
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endosperm growth through the signaling pathways of IKU1, IKU2, SHB1, and MINI3 [140].
MINI3, which is associated with the cytokinin oxidase (CKX2) promoter stimulates the
initiation of CKX2 expression and is responsible for controlling endosperm growth [110].
Higher expression of CKX2 enhances seed size in iku2 seeds, confirming the role of cy-
tokines in down-regulating the IKU pathway with regard to seed size regulation [110].
ABSCISIC ACID-INSENSITIVE 5 (AB15) is a TF that directly attaches to the upstream
region of SHB1 and inhibits its expression [141]. ABA controls the development of seeds by
ABI5-facilitated transcription and is regulated by SHB1 in the endosperm; thus, the mutants
abi5 and ABA-deficient 2 (aba2) abi5 produce the larger size of seeds [141]. In combination
with cytokinin and ABA signaling, the IKU pathway affects endosperm growth to control
seed size in Arabidopsis and other plants. In Arabidopsis, the function of the new gene
ZmRLK7, which belongs to the LRP receptor-like protein kinases (LRR-RLKs) isolated from
maize, was investigated using ectopic expression [138]. The roles of WRKY10/MINI3 and
MAPK10 in endosperm development were examined, and they appeared to function in
opposite patterns. Furthermore, mapk10 mutants consistently produce larger seeds, and
seed size is positively regulated by WRKY10/MINI3 [142].

3.4. The G-Protein Signaling Pathway

In plants and animals, G-protein signaling regulates many functions related to growth
and development. Molecules regulating G-protein signaling are shown in Figure 1D.
Many cell surface G-protein-related receptors are connected to intracellular effectors by
the G-protein complex. Ligands activate receptors, and effectors control different cellular
responses [143]. G-protein complexes comprise Ga, Gb, and Gg subunits, and G-protein-
coupled pathways transfer signals through membrane-bearing receptors and heterotrimeric
compounds to downstream effectors. Thus, mutations in Ga (GPA1) or Gb (AGB1) result
in small leaves and flowers in Arabidopsis [144,145]. Over-expression of the Arabidopsis
atypical Gg (AGG3) stimulates the growth of seeds and organs by enhancing cell propa-
gation, and loss-of-function mutations in AGG3 lead to short seeds and organs [146,147].
AGG3 overexpression in Camelina sativa resulted in increased seed size, confirming the func-
tion of AGG3 in the regulation of seed size [148]. Likewise, loss of function or functional
suppression of rice Ga (RGA1) or Gb (RGB1) reduces rice grain size [149–151]. Similarly, the
knockdown of the RGB1 gene in rice delayed seed development, and lowered seed weight
and starch accumulation [152]. Two QTLs affecting the size of grains and panicles are Rice
GRAIN SIZE 3 (GS3) and DENSE AND ERECT PANICLE 1 (DEP1), respectively [146,147].
However, long seeds are produced after the loss of function due to increased cell propa-
gation, whereas short grains are produced in response to GS3 or DEP1 gain-of-function
alleles [153–155]. It may be possible that AGG3 in Arabidopsis and GS3 and DEP1 in
rice have various cofactors or effectors, suggesting differential effects on seed size. A
minor QTL, Small grain 3 (SG3) encoding an R2R3 MYB protein is associated with a ma-
jor QTL grain size 3 (GS3) and negatively controls rice grain length. The γ subunit of
a G protein encoded by GS3 competitively interacts with Gβ, leading to reduced grain
length [156,157]. DEP1 also encodes a γ subunit of a G protein, and GS3 appears to act as a
cofactor of OsMADS1 in the control of grain size through the regulation of common target
genes [158]. Recently, a study introduced a serine–threonine protein kinase AGC1-4 be-
longing to the subfamily of AGC VIIIa [136]. AGC1-4 overexpression causes a reduction in
seeds, whereas agc1-4 mutants produce significantly larger seeds compared with WT plants.
AGC1-4 regulates seed size by regulating the number of embryonic cells [136]. Recently,
heterotrimeric G-protein mutants of rice were produced using CRISPR/Cas9 gene editing.
The gs3 and dep1 mutants produced more favorable agronomic traits than WT plants,
whereas the rga1 mutation resulted in a dwarf phenotype, leading to an extreme reduction
in grain yield. The heterotrimeric G-protein β subunit, RGB1, plays a significant role in
plant development, and rgb1 mutants show suppressed growth and development of the
embryo [159]. Most recently, the E3 ligase gene Chang Li Geng 1 (CLG1) has been shown
to negatively regulate grain length by targeting the Gγ protein GS3, and thus control grain
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size. CLG1 overexpression increased grain length, and CLG1 mutations with variations in
three essential amino acids decreased grain length. CLG1 directly interacts with and ubiq-
uitinates GS3, which is then destroyed via the endosome degradation pathway, resulting
in improved grain size [160]. More studies are required to comprehensively elucidate the
functions of G-protein signaling in seed size regulation.

3.5. Transcriptional Regulation

Particular transcription factors, i.e., TRANSPARENT TESTA GLABRAA2 (TTG2) and
APETALA 2 (AP2), affect seed development in Arabidopsis [24,161–164]. Genes regulating
transcription factors are shown in Figure 1E. The transcriptional repressor NGATHA-like
(NGAL-2)/SUPPRESSOR-OF-DA1 (SOD7) and its homolog NGLA3/DEVELOPMENTAL-
RELATED-TARGET-IN-THE-APEX 4 (DPA4) have been predicted to strongly limit Ara-
bidopsis seed development [165], and sod7-2 dpa4-3 mutants showed enhanced cell prolifer-
ation in the maternal integument, resulting in big seeds [165]. The Arabidopsis AINTEGU-
MENTA (ANT) gene is associated with integument and organ growth regulation [166,167],
and it encodes APETALA2-like TF ant mutants that exhibit smaller leaves, reduced flow-
ering, imperfections in integument origination, and development of ovules. However,
Arabidopsis and tobacco plants with higher expression of ANT showed higher production
of leaves and flowers because of stimulated cell proliferation, and consequently, they pro-
duced larger seeds. An-1 encodes a basic helix–loop–helix protein, which regulates cell
division. Transgenic studies have confirmed that An-1 positively regulates awn elongation,
but negatively regulates grain number per panicle [168]. APETALA2 is a member of the
AP2/EREBP (ethylene-responsive element binding protein) group belonging to the family
of TFs that plays a significant role in the specification of floral organs in Arabidopsis [169],
and it is responsible for seed size regulation [161,163]. The production of seeds is higher
in Arabidopsis ap2 mutants than in WT plants, regardless of the genotype of the pollen
donor, signifying that AP2 is a maternal factor controlling seed size [161]. Tissue-specific
epigenetic mechanisms control gene expression and transcriptional regulators at specific
stages, and epigenetic processes allow genomic imprinting; thus, the allele’s expression
after pollination depends on the parent of origin. The “parental conflict theory can de-
scribe the importance of biological imprinting”. A substantial barrier prevents resource
distribution from mothers to offspring, and the main function of the paternal genome is to
quickly deliver maternal resources to embryos harboring the paternal genome. However,
the maternal genome attempts to distribute resources equally between offspring by down-
regulating the effects of the paternal genome [170]. Further, ap2-10 (+/–) seeds generated
by an ap2 mutant are bigger than WT seeds, even in flowers pollinated with WT pollen,
but seeds are smaller compared to ap2-10 (–/) seeds of mutant flowers pollinated with
ap2 pollen [163], indicating that AP2 functions maternally and zygotically to regulate seed
size. In support of this concept, seeds yielded by cross-pollination of 35S:AP2 antisense
transgene mutants with WT flowers were bigger than WT seeds and smaller than ap2 mu-
tant seeds [163]. For instance, SMOS1 (SMALL ORGAN SIZE 1) encodes an auxin-regulated
APETAL2-type transcription factor and is positively regulated by OsARF1 in rice [171]. The
loss of function of SMOS1 causes pleiotropic developmental phenotypes, including small
seed size [171,172], suggesting a crucial role for SMOS1 in seed size regulation.

In transparent testa glabra2 (ttg2) mutants, yellow seeds are produced due to insufficient
proanthocyanidin production and deposition of mucilage in the seed coat by the mutant [24].
The ttg2 mutants’ seeds are round and small, causing reduced cell length in the integument,
in contrast to WT seeds. Reciprocal crossing trials showed the effects of ttg2 on seed size
in a strongly maternal sporophyte. The ttg2 mutation also induced advanced endosperm
cellularization, resulting in endosperm size reduction. TTG2 encodes a WRKY family TF
which regulates many steps of tannin synthesis [162], and, as several products of the tannin
synthesis pathway may affect the cell wall and its capability to increase, mutations in TTG2
may reduce the elongation ability of the cell wall [24]. The ALM1 gene encodes Golden
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2-like (GLK) a member of the GARP subfamily of Myb TFs, and alm1.g and alm1.a mutants
revealed a decrease in 100-grain weight by 15.8% and 23.1%, respectively [173,174].

Several genes, including GROWTH-REGULATING FACTOR (GRF) genes, encode
DNA binding transcription factors that interact with and form a functional transcriptional
complex with the transcription cofactor GRF-INTERACTING FACTOR (GIF) [175]. In
this functional unit, GIF operates to recruit SWI/SNF chromatin remodeling complexes to
their target genes so that they can be transcriptionally activated or inhibited by GRF. GRF
expression is post-transcriptionally inhibited by microRNA (miR396) [175].

It is precisely the miR396–GRF/GIF module that influences a wide range of essential
plant growth and development traits that could have agricultural implications. How-
ever, the most convincing results demonstrating the agronomical values of the miR396–
GRF/GIF system come from a set of many studies that independently identified a rare
naturally occurring allele of OsGRF4 from Oryza sativa landraces with larger grain size in
various genetic backgrounds [176–181]. Overexpression of OsGIF1 also improved grain
size [179,180,182–184]. Likewise, the expression of a mimic transgene that binds and inacti-
vates miR396 in rice, a strategy also used in Arabidopsis and other species, can increase
the yield. Together with the fact that effects similar to those were artificially introduced in
Arabidopsis, these findings demonstrate the transferability of knowledge from models like
A. thaliana to crops, and the general importance of the miR396–GRF/GIF module in other
plant species.

The NACs are transcription factors (TFs) that are specific to plants and are involved
in many developmental processes [185]. For example, NAC-like TF EjNACL47 might
be linked with the larger organ size in triploid loquat. Furthermore, ectopic expression
of EjNACL47 results in larger organs i.e., leaves, flowers, and siliques in Arabidopsis,
implying a positive role in organ enlargement [186]. In rice, the ONAC020, ONAC026, and
ONAC023 genes encoding NAC TFs express specifically during seed development. They
have a strong relationship with seed size or weight as sequence changes in the upstream
regulatory region [187]. The KIX–PPD complex regulates maternal integument growth
and, consequently, regulates seed size through cell propagation and development. In
Arabidopsis, the transcription factor MYC3/4 reacts with PPD1/2 and KIX8/9 to form
the KIX–PPD–MYC product. The KIX–PPD–MYC product suppresses the expression of
the GIFI promoter when interacting with the G-box region located in the GIFI promoter,
and controls seed size [188]. Promoters of the grain filling-specific TF gene Opaque2 (O2),
which regulates the factors known as B3 domain TF and ZmABI19, directly fuse with the
O2 promoter for trans-activation and affect the developmental process of the endosperm
and embryo, resulting in smaller seeds [189].

The KIX domain-containing protein family acts as a negative regulator of cell propaga-
tion in plants [190]. Loss of function in GmKIX8-1 mutants significantly increases the size
of above-ground organs, including leaves and seeds, with increased cell propagation and
CYCLIN D3;1-10 expression. In addition, molecular analysis of soybean germplasms
showed that increased expression of the qSw17-1 QTL with a large seed phenotype is caused
by decreased expression of GmKIX8-1 [66]. A different study reported that a regulatory
complex, GW2–WG1–OsbZIP47, regulates rice grain size. GW2, WG1, and OsbZIP47 to-
gether regulate grain width and length through the GW2–WG1–OsbZIP47 regulatory
module. Specifically, WG1 encodes a glutaredoxin protein and promotes cell proliferation,
leading to enhanced grain growth. WG1 acts as a co-repressor with ASP1 and interacts with
the transcriptional factor OsbZIP47 to terminate its transcription. OsbZIP47 suppresses
seed development by reducing cell proliferation [28]. During development, the shape of
the grain is controlled by many genes that interact with one another. GW8 is a member of
the SBP transcription factor family. When it is overexpressed, it promotes cell growth and
grain filling, which leads to wider grains and higher yields. In addition, GW8 also interacts
with the GL7/GW7 promoter, inhibiting transcription and regulating cell proliferation in
spikelet glumes [191,192]. Furthermore, GLW7 and GW8 both positively control grain hull
cell size, increasing grain length and yield. Small and round seed 5 (SRS5) with a single
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amino acid mutation (p.Arg308Leu) decreases rice grain length by inhibiting cell elonga-
tion. Although GLW7 can interact with SRS5 to regulate grain size, the exact mechanism
remains unclear. Furthermore, the novel gene OrMKK3 affects morphology and grain size,
suggesting a relationship between MAPK and BR-responsive pathways with regard to
grain development [193]. Moreover, LARGE2, encoding the HECT E3 UB-ligase OsUPL2,
controls the rice panicle size and grain numbers, and large2 mutants showed increased
panicle size and number of seeds per panicle [194].

4. Seed Size Regulation by Phytohormones

Phytohormones control a vast range of developmental and physiological functions in
plants. Furthermore, phytohormone levels fluctuate at various stages in different tissues
during seed development, playing a significant role in the processes involved [195]. Multi-
hormonal regulation, mediated via auxins, cytokinins, brassinolides, and jasmonic acid,
plays an important role in endosperm propagation and embryo growth. Phytohormones
and related molecules are schematized in Figure 2.
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4.1. Auxins

Auxin, a plant hormone, has been linked to a wide range of characteristics of plant
growth, including seed production [196]. The key auxin in all plants is indole-3-acetic acid
(IAA). It is biosynthesized from the tryptophan (Trp) amino acid in a two-step mechanism
which is highly conserved throughout plants [197,198]. First, the amino group is removed
from Trp in the first phase, which is catalyzed by transaminases from the TRYPTOPHAN
AMINOTRANSFERASE OF the ARABIDOPSIS (TAA/TAR) family, resulting in indole-3-
pyruvate (IPA). YUCCA is known to upregulate the auxin biosynthesis pathway and the
indole-3-pyruvic acid (IPA) pathway. Previously, 11 members of YUC genes have been
reported in Arabidopsis and are involved in the development of the basal body during
embryogenesis [199]. Throughout embryogenesis, YUCI and YUC4 are expressed in a
variety of cell types, and their expression coincides with that of YUC10 and YUC11 in de-
veloping seeds [199]. LEAFY COTYLEDON (LEC), BABY BOOM (BBM), and PLETHORA
(PLT) transcription factors are known to bind or control auxin-associated genes under
normal conditions, which stimulate somatic embryo development. In addition, ectopic
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expression of LEC2 promotes YUC2 and YUC4 expression early in the seedling somatic
embryo development [200], whereas LEC1 ectopic expression promotes YUC gene expres-
sion during 2,4-D-induced somatic embryogenesis from immature zygotic embryos (YUC1,
YUC4, and YUC10) and seedlings (YUC10) [201,202]. Auxin response factors (ARFs) control
auxin-responsive genes’ expressions in plants [203]. ARFs are B3-like transcription factors
that directly bind to the auxin-responsive element (AuxRE) and activate or repress auxin-
responsive genes in plants. In Arabidopsis, twenty-three ARF proteins, including ARF2
and ARF8, have been suggested as funneling auxin signals, to control seed size by reducing
cell division [204,205]. In Arabidopsis, twenty-three ARF proteins, including ARF2 and
ARF8, have been suggested as funneling auxin signals, to control seed size via reducing
cell division [204,205]. ARF3/ETTIN mutations cause significant polarity abnormalities
in the gynoecium, including apical tissue over-proliferation and ovary development [206].
ARF6, ARF7, and ARF8 promote cell growth, and hypocotyl elongation [207]. NtARF8
is involved in NtTTG2-regulated seed development in tobacco (Nicotiana tabacum L.) and
supports seed quantity in collaboration with NtARF17 and NtARF19 [55]. Another study
identified a B3 transcriptional factor, Arabidopsis maternal effect embryo arrest 45 (MEE45),
a downstream regulator of auxin biosynthesis in the ovule, which controls seed size ma-
ternally and regulates cell proliferation via the transcriptional activation of aintegumenta
(ANT). In this case, the largest seed size was observed for MEE45 expression, whereas the
mee45 mutant expression resulted in reduced seed size [208]. Auxin also regulates the
growth of siliques, which is noteworthy. Overexpression of BnaA9.CYP78A9, a member of
the P450 monooxygenase gene family, stimulates the elongation of Brassica napus siliques
by causing a significant increase in auxin [209]. However, most recently the modified
expression of TaCYP78A5 has been shown to increase grain weight and yield per wheat
plant by accumulating auxin [210]. Hence, the aforementioned studies based on transgenic
and mutant studies imply that the auxin biosynthesis pathway, signaling, and transporter
genes are essential in regulating the auxin levels during seed development, controlling
embryogenesis, endosperm development, and seed coat development.

4.2. Cytokinins

Cytokinins (CKs) are phytohormones involved in the modulation of cytokinesis-
related enzyme activity and CK-mediated signaling. Additionally, CKs are important
for initial endosperm cellularization [211]. The discovery of CK-catabolizing genes, in
addition to their distinctive genetic and biochemical properties, has introduced the role of
CKX enzymes in CK regulation [212], as well as multi-gene families synthesizing CKX en-
zymes. Various studies have aimed to determine the role of CKX family members (GFMs)
in improving grain yield in many crops, including barley [213,214], rice [159,215], and
wheat [216,217]. A transcription factor basic helix–loop–helix, cytokinin growth regulators
(CKG) promote CK-mediated regulation of cell expansion and cell cycle development in
Arabidopsis. CKG expression has been noted to enhance the size of cotyledons during
the reproductive stage, whereas expression of ckg mutants has been noted to mediate the
opposite effect [218]. Another study elucidated that CK activity is primarily regulated by
the transcription factor receptors ARR1 and AHK3. Similarly, increased levels of CK in the
external layer of reproductive tissues and the placenta lead to larger siliques and increased
ovule formation, thereby increasing the number of seeds and resulting in higher seed
yield [219]. CKs have also been observed as methylthiolated derivatives (MET); however,
details of the function of this group of compounds are scarce [220]. The level of CKs during
seed development is controlled by balancing the activities of isopentenyl transferase (IPT)
and CK oxidase/dehydrogenase (CKX), which play an important role in the biosynthesis
and degradation of CKs, respectively. AtIPT4 and AtIPT8 are expressed at higher levels
during seed development in the chalazal endosperm area, during morphogenesis [221,222].
Furthermore, Song et al., 2015 suggested that silique and growing seeds have the ability to
synthesize CK [223]. The endosperm-specific expression of IPT increases the levels of CK
to grow seeds and seed mass without causing any morphological aberrations in transgenic
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tobacco plants [224]. Numerous studies have reported that higher CK levels occur during
development, upon external application, and that ectopic exposure of IPT is linked with
increased CK degradation resulting from increased CKX gene expression [225,226]. Fur-
thermore, the expression of the CKX and IPT GFMs suggests a positive correlation between
the two in wheat [227] and Brassica napus [223].

CKs have a role in transcription control, and different genes in Arabidopsis influence
the activation of its receptor histidine protein kinases (AHKs). AHKs activate AHPs, which
are histidine phosphotransferase proteins, in response to CKs, and AHPs stimulate Ara-
bidopsis response regulators (ARRs), thereby inducing the expression of all genes. Triple
mutants, ahk-1,2,3 and ahp-1,2,3, have been observed to enlarge the embryo and seeds [221];
moreover, the same study concluded that cytokinin independent 1 (CKI1) expression plays
an important function in CK signaling. CKI1 contains a histidine kinase-deficient CK per-
ception domain of AHK. The cki mutants’ expression results in fewer seeds that are larger
in size, thereby suggesting CKI1 as playing a function in determining seed number and size
during seed development [228]. Moreover, Li et al., 2013, elucidated that the expression of
cytokinin oxidase 2 (CKX2), which encodes a protein that induces CK degradation, controls
endosperm development [89] and up-regulates the CKX2 expression, is controlled by IKU2
and H3K27m3 [86]. These experimental findings explain that CK expression controls seed
development phases through members of the CK signaling pathway and other epigenetic
approaches [229]. Another study identified 17 GmCKX GFMs in soybean, and natural alter-
ations were probed among cultivars with different yields. A total of 5 out of 17 CKX genes
were noted to be responsible for the regulation of CK content during the grain-filling stage,
as indicated by the results of introducing single nucleotide polymorphisms (SNPs) in them.
GmCKX7-1 was discovered to contain a non-synonymous mutation (H105Q) on histidine
105, one of the amino acid residues in the active site, during the critical grain filling period,
to preserve structural reliability of the enzyme, consequently enhancing seed yield [66].

4.3. Brassinosteroids

Brassinosteroids (BRs) are a recently documented class of phytohormones that play
significant roles in plant growth and development, such as cell elongation and divi-
sion [230–232]. BRs mainly take part in regulating the yield determination of agriculture
traits, including seed size regulation [233]. In Arabidopsis and rice, molecular analysis of
BR-defective mutants permitted the identification of very important genes involved in the
BR-mediated regulation of seed development. The DEP1 promoter has been revealed to
increase rice grain size and yield by optimizing the expression of BR-like genes [234,235].
Three steps are involved in the synthesis of BR from campesterol: (1) formation of campes-
tanol from campesterol; (2) two concurrent routes from campestanol to castasterone (CS);
and (3) B-ring lactonization of CS to 24-epibrassinolide (BL). OsDWARF (OsBR6ox) is
a crucial gene in the biosynthesis of BR. The OsDWARF product catalyzes a late stage
in bioactive BR formation via combining the early and late C-6 oxidation pathways and
encodes BR-6-oxidase, which can convert 6-deoxotyphasterol (TY) and 6-deoxoCS to TY
and CS, respectively [236,237]. The OsDWARF loss of function produces a decrease in TY
and CS, resulting in the BR-deficient phenotype. Further, dwarf mutant shrink1-D (shk1-D)
exhibited a lower level of BRs, which caused reduced seed length in Arabidopsis. In the
case of shk1-D mutants, CYP72C1 overexpression and hydroxylation of BRs resulted in low
endogenous BR levels and decreased seed size [235]. Furthermore, putative brassinolide
receptor brassinosteroid in-sensitive1, a defective mutant, also caused lower seed produc-
tion [226]. Presumably, this receptor activated the expression of genes encoding BRs that act
as positive regulators of seed size (HAI-KU2. MINI3 and SHB1) and inhibited that of genes
encoding negative regulators of seed size (ARF2 and AP2) through the TF brassinazole re-
sistant 1 (BZR1) [238]. Higher expression of BR synthesis-related gene OsD11, or that of BR
signaling factor OsBZR1 induced an increased sugar-accumulation rate in developing seeds
and increased grain yield in rice. By contrast, the knockdown of these genes cleared the im-
perfect pollen, seed size, and weight reduction compared with the control [239]. In the BR
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signaling pathway, cytochrome P450 mutant key enzyme D2 (D11) [234,240], BR-deficient
dwarf 1 (BRD1) [236], DWARF 2 (D2) [241], and other genes related to BR biosynthesis,
including BRD2 [242], all have very close phenotypes, such as decreased plant height,
shoot length, spikelet length, and grain size. Furthermore, GW5 also interacts with and
suppresses the activity of glycogen synthase kinase 2 (GSK2), a crucial kinase involved
in BR signaling. The BZR1 and DLT transcription factors, downstream of GSK2, enter
the nucleus in an un-phosphorylated state to modulate BR signaling-responsive genes,
thereby affecting grain size in rice [120,226]. Moreover, GW5 and GW5-related proteins
physically bind to the important components of the BR signaling pathway, GSK2, and BIN2,
resulting in the accumulation of un-phosphorylated DLT and OsBZR1 [243]. Additionally,
GSK2 binds to and phosphorylates members of the OVATE family protein 8 (OFP8) [244].
Furthermore, OFP8, OFP14, and the transcriptional activator GS9 interact with one another.
OFP14 inhibits GS9 transcriptional activity, and GS9 overexpression causes circular grain
shapes with BR-defective phenotypes. As a result, GS9 appears to negatively regulate the
BR signaling [245]. In yeast two-hybrid screens, OFP3 binds to both GSK2 and DLT and
negatively regulates the BR response, in addition to OFP8 and OFP14 [246]. Plants with
the dss1 mutation were dwarf and showed erect leaves and smaller seeds. Similar results
were observed in BR-deficient mutants [247]. In addition, SERK2 has been reported as a
BR signaling element for many agronomic traits, especially yield and stress-related traits.
Moreover, SERK2 knockdown mutants showed enhanced rice grain size [248].

4.4. Jasmonic Acid

Jasmonic acid (JA), a phytohormone produced by free α–linolenic acid, is similar
to animal prostaglandins [249,250] and serves a variety of functions in plant response to
biotic and abiotic stressors as well as development [226,251,252]. JA influences pollen
formation or pollen shedding [253], embryo and seed development [254,255], spikelet
formation [256], and maize sex determination [257–259], during inflorescence development.
Linolenic acid is the substrate of JA biosynthesis, which is then metabolized to produce the
bioactive isoleucine conjugate, JA-Ile [250]. The interaction of JA-Ile with the COI1 receptor
(CORONATINE INSENSITIVE1) activates JA signaling, resulting in the proteasomal degra-
dation of JAZ (JASMONATE ZIM-DOMAIN) transcriptional repressor proteins [260,261].
JAZ repressor degradation releases a number of transcription factors, especially MYCs,
which interact with MED25/PFT1 to negatively regulate seed size [262]. The eg1 (ex-
tra glume 1) JA biosynthetic mutant displayed aberrant spikelet formation. The gene EG1
encodes a plastid-targeted class I lipase, which is required for the production of JA pre-
cursors. Furthermore, eg2-1D showed disrupted floral identity as well as impairment in
floral meristem determination [256]. Map-based cloning showed that EG2 encodes for
OsJAZ1, a JAZ repressor. Another comprehensive investigation revealed that the spikelet
defects in eg2-1D are caused by the inhibited function of the OsMYC2-controlled E-class
gene, OsMADS1. In addition, OsJAZ11 regulates the width and weight of rice seeds. When
compared to wild-type, transgenic rice lines overexpressing OsJAZ11 showed up to a 14%
increase in seed width and a 30% increase in seed weight. The constitutive expression of
OsJAZ11 had a significant impact on spikelet development, resulting in additional glume-
like structures, an open hull, and an abnormal number of floral organs. Also, transgenic
lines accrued increased JA levels in spikelets and developing seeds. Overexpression lines
exhibited altered expression of JA signaling and MADS-box genes when compared to
WT [263]. According to yeast two-hybrid and pull-down experiments, OsJAZ11 interacts
with Os-MADS29 and OsMADS68. Surprisingly, in overexpression lines, the expression
of OsGW7, an important negative regulator of grain size, was dramatically decreased.
Furthermore, multi-seeded 3 (msd3) sorghum mutants that can quadruple grain number
per panicle by expanding panicle size and modifying floral development such that all
spikelets are viable and set grain, in turn, decreased the JA levels [263].
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5. Possible Strategies Used to Maintain Seed Size

Increasing grain yield is always an important goal in plant breeding programs, espe-
cially in the case of domesticated crops. Additionally, increasing seed size without affecting
seed number via conventional plant breeding programs has allowed only limited progress
because of the trade-off between these two yield components [264]. Many researchers
have indicated that modern technology, including transgenic technology, genome edit-
ing, marker-assisted selection (MAS), and genomic selection (GS), has major challenges
regarding the disruption of grain yield in different crops. The use of molecular markers
for plant breeding selection has resulted in major advancements in efficiency and the
successive announcement of many new varieties in the last 30 years [265,266]. MAS is
often more effectual than traditional methods, resulting in improved accuracy, charge, or
time savings, or the ability to screen for diseases that would otherwise be impossible to
detect using standard phenotyping methods [267]. One of the major benefits of markers
is that homozygosity can quickly be detected. In the private sector, molecular breeding
programs have been widely adopted, with reports indicating increasing rates of genetic
gain [268,269]. Numerous reports of marker-assisted variety improvement have emerged as
a result of the widespread use of MAS in major crop breeding programs [270]. Backcrossing
with DNA markers significantly improves selection efficiency. In essence, marker-assisted
backcrossing (MABC) allows for very effective detection of the most important genes
of interest or QTLs while preserving the recipient variety’s original important features,
allowing the original variety to be “upgraded” [265]. Whole-genome-based molecular
breeding methodologies have been developed as a result of advances in rice genomics.
Genomic selection (GS) is a new approach that has recently evolved [271]. Genomic se-
lection, like MAS, is based on making predictions on a genomic scale from many DNA
markers rather than focusing on individual genes or QTL [272,273]. Over the last ten
years, pilot research in rice, wheat, and maize has yielded promising results in reducing
breeding cycles and speeding up variety creation. Genomic selection provides a lot of
potential for accurate selection of complicated variables such as yield and shortening
the breeding cycle to improve genetic gain [274]. Recently, it has been reported that the
GW6 gene is better for increasing grain length and width than Baodali, which was trans-
ferred into the recurrent parent 9311 indica cultivar and Zhonghua 11 cultivar japonica via
MAS. Near isogenic lines (NILs) of these two cultivars displayed improved grain weight
and grain production [275]. In addition, most studies have suggested that the pyramiding
of grain size is a convenient method for QTLs to boost grain production in different plant
species. For example, a study found that the pyramid of grain size and weight was better
through QTLs and the involvement of the NILs NIL-qGL3, NIL-qGW2a, and NIL-qGS5.
Similarly, the implementation of NILs in the genetic study of Zhenshan 97 using MAS and
conventional back-crossing has been reported. The combination of three major QTLs for
grain size showed improved effects on grain weight without any type of interaction [276].
A similar study reported that NILGS3/qgl3 has been established via crossing NIL-GS3
with NILqgl3 by the MAS approach. The GS3 and qGL3 combined effects on grain length
were compared among NILs. Furthermore, primary panicle transcription analysis in NILs
showed that the gene expression regulated by GS3 and qGL3 did not overlap [277].

Fine-mapping and cloning for crop production, particularly grain weight, have made
significant improvements in the last two decades. To date, 20 QTLs have been cloned
for grain size and weight, including GL7/GW7 and GS9, which have opposite allelic
directions of additive effects on grain length and weight, controlling grain size but hav-
ing little effect on grain weight [192,278,279]. GSA1 and GW6a have similar results on
grain length and weight with similar directions, implying that they significantly impact
grain weight [13,280]. The remaining 16 QTLs have an impact on both grain size and
grain weight. GW2 [281], TGW2 [282], GS5 [283], qSW5/GW5 [120,121], GW6 [284],
and GW8 [191], are six that largely control grain width and weight, while the other ten
QTLs containing GS2/GL2 [177,178], OsLG3 [285], qLGY3/OsLG3b [158,286], GS3 [153],
GL3.1/qGL322 [287], TGW3/GL3.3 [288,289], GL4 [290], TGW6 [291], GL6 [292] and
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GLW7 [49] largely control grain length and weight. All these QTLs characterizations have
greatly aided our understanding of the genetic regulation of rice grain size and weight,
but further research is required to further improve our understanding of the regulatory
mechanism for these important agronomic traits [111].

Numerous studies have reported that alterations in the regulatory genes of quantita-
tive traits, such as oil accumulation in the seed, showed a significantly increasing trend
in intrinsic yields [293–295]. Selective genes that have played a vital role in seed develop-
ment at different developmental phases require expression data of different developmental
stage-specific tissues [296]. Furthermore, in polyploid species, the selection of target genes
involved in seed size engineering may require specific tissue- and different stage-specific
expression outlines of separate GFMs [297]. New technologies in functional genomics have
been introduced for the development of seeds, and genetic engineering approaches provide
greater scope for engineering to control seed size. Furthermore, increasing evidence shows
that a thorough molecular knowledge of seed formation could yield opportunities for
controlling seed size in plants [14,234,298]. For example, in a field study, the downregu-
lation of BnDA1 in B. napus, the AtDA1 ortholog (a harmful regulator of seed formation),
improved seed weight and seed yield by 21% and 13%, respectively [14]. In Arabidopsis,
the two genes, AtSHB1 and AtKLUH, involved in the seed development were introduced
in Brassica juncea and improved seed weight by 40% [299]. AtSHB1 overexpression in
B. napus increased seed size 1.6-fold [300]. The loss of ARF18 function mutant in B. napus
showed an approximately 8% increase in seed size compared to WT plants [301].

Grain size and yield increase in rice crops through the response to auxins by big grain 1
(BG1), encoding a membrane-connected protein (increased by about 15.2% in length and
17.0% in width, respectively). Furthermore, RNAi suppression of BG1 led to a decrease in
rice grain size and yield relative to WT plants [301]. Downregulation of big seed 1 (BS1) and
BS2 genes in soybean and Medicago resulted in significant enhancement of seed size [302].
Engineering techniques that are better for achieving larger seed size involve the overex-
pression of important regulators for the development of seeds in Arabidopsis [14,303] and
other respective species [298] or the silencing of orthologs that are harmful regulators of
seed growth [302]. Genetic material regulating biosynthesis, metabolism, and signaling is
useful for gene manipulation, altering hormonal regulation, and producing larger seeds.
For example, BZR1, a BR-responsive TF expressing most of the positive regulators, SHB1
and IKU2, while AP2 and ARF2 are harmful regulators [238], may be modified in a spa-
tiotemporal manner. Epigenomes are used as a genome editing technique in locus-specific
ways and via methylation or de-methylation. Furthermore, several target genes that control
the organized growth of maternal and zygotic tissues could be manipulated to increase
seed size and crop yield. For example, KLUH and SHB1 regulate the development of
seed coat and endosperm, and embryo formation, in a specific spatiotemporal manner,
respectively. Moreover, control of cell cycle core gene expression is an alternative approach
to increase seed size and yield. For example, target-specific up-regulation of the core cell
cycle component CYCD7;1 in the endosperm helps overcome incomplete seed termination
interlinked with ectopic expression [104]. Furthermore, genetic manipulation of genes that
govern seed traits may reduce the negative relationship between the number and seed size.
In Arabidopsis, FATA2, BZR1, LecRK-VIII.2, and CKX2 expression controls seed number,
and expression of many other genes increases seed size and yield.

Genome editing technology, especially the CRISPR/Cas9 editing system, has widely
been used in many plant species to knockout an individual gene, the key objective of its
editing and repair mechanisms (Figure 3). The widely employed CRISPR/Cas9 and various
CRISPR/Cas systems often generate a double-strand break (DSB) by cutting the double-
stranded DNA. The double-strand break will often be repaired using non-homologous end
joining (NHEJ). Because one or more nucleotide deletions or insertions may inhibit targeted
gene expression due to frame shifting in the coding region, genome editing typically
results in either gene knockout or silencing. CRISPR/Cas-induced gene silencing has
many advantages over T-DNA mutagenesis. The main advantage of CRISPR/Cas-based
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editing is its specificity; it may be used to target a particular gene without having any
negative effects. Agrobacterium-mediated gene transformation has largely been used to
overexpress a specific gene in a plant cell via T-DNA implantation, which includes the
foreign DNA sequences. Even so, the haphazard insertion of a specified gene into a genome
always has numerous adverse effects, such as the silencing of other useful genes. The
CRISPR/Cas system may cleave the DNA sequence at a specified location, and homolog-
directed repair (HDR) will then insert a targeted gene sequence into such a cleavage position.
As a result, CRISPR/Cas may be used to accurately insert a gene of interest into a particular
site inside a genome, avoiding interfering with neighboring genes or preventing position
effects. Base editing (BE) is also a new technology that can specifically and proficiently
implant point mutations at target positions without the use of DSB formation and donor
DNA templates [304]. The cytosine base editor (CBE) and adenine base editor (ABE) are
common examples of base editing technology, which has been applied in various plant
species to interrogate gene function for crop trait improvement [305,306].
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Figure 3. Application diversity of the CRISPR/Cas system for functional genomic research and crop
improvement. CRISPR may directly generate gene knockout (silencing) via deletion or addition with
a number of bases and repair through NHEJ depending on the DNA double-strand break mechanism.
Alternatively, genome editing may replace an undesirable gene and/or overexpress (knock-in) a
single gene when homolog-directed repair occurs with a DNA donor. In addition, CRISPR/Cas may
also be employed for base editing, and epigenome editing by deactivating the Cas9 enzyme while
using transcription effectors or other enzymes coupled with the dCas9.

In gene replacement for gene mutations, as in the assembly of HDR, any sequence
may be inserted and replace the existing genomic sequence surrounding the DSB locations.
Thus, if the nucleotide sequences have mutations, including point mutations or other
undesired sequences, we may replace them with suitable nucleotide sequences that have
homologous arms with the existing sequences. It was recently reported that transcript-
template HDR was employed to completely replace the rice aceto-lactate synthase gene
(ALS) by transport of such a DNA-free ribonucleoprotein complex [307]. Prime editing
(PE) is a new DSB-independent precise genome editing technology that can introduce any
base conversion, small indels, or a combination thereof, at target positions [304]. The prime
editing approach was initially established in the animal system but rapidly utilized in
plants to edit a precise gene. Prime editing is now being used to effectively replace genes in
numerous key plant species, such as Arabidopsis, tobacco [308], rice [309–312], wheat [313],
maize [314], tomato [315], and potato [316].

A CRISPR/dCas9 interference (CRISPRi) system was developed based on the appli-
cation of the CRISPR/dCas9 system to disrupt transcriptional activities and to be used
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as a gene knockdown strategy for controlling gene expression [317,318]. CRISPRi could
be used to inhibit the expression of genes by restricting transcription start and/or elon-
gation depending on where the CRISPR/dCas system interacts. When the Cas system
connects to the upstream area, it will impede TF and RNA polymerase (RNAP) binding
and restrict transcription initiation. However, when it attaches to the coding region, it will
prevent RNAP interaction and restrict transcription elongation [318]. Regulating a gene’s
methylation and demethylation can be an effective strategy to influence the expression and,
ultimately, trait regulation. As a result, since the CRISPR/Cas system was successfully
permitted as an effective genome editing system, research efforts have focused on tweaking
it to alter DNA methylation.

CRISPR/Cas9 has great potential for specifically targeting desired genes [319]; thus, it
could be used to develop crops with the desired seed size by knocking out specific genes
without altering other traits [320]. However, in some cases, seed size may be linked with
other important traits. For example, CRISPR-Cas9 genome editing of the TaIPK1 gene in
wheat enhanced nutritional value and increased seed size simultaneously [321]. Recently,
using CRISPR/Cas9-based genome editing, it was found that the MADS-box TF genes
MADS78 and MADS79 are very important for regulating endosperm cellularization and
early seed formation in rice [76]. A single MADS78 or MADS79 knockout mutant dis-
played early endosperm cellularization, while double mutants hindered seed development
and produced no viable seeds [76]. Most recently, genome editing of cis-regulatory ele-
ments (CREs) has been found to result in both gain- and loss-of-function alleles, which
is proving very useful for broadening the phenotypic range of traits related to yield and
architecture [322,323].

6. Conclusions and Future Recommendations

Seed size and seed weight regulated by seed development are critical determinants
of crop yields. Seed size can be determined through the development of zygotic embryos
and endosperm as well as maternal tissues. Many signaling pathways that may determine
seed size by the development of endosperm and maternal tissues, such as the IKU pathway,
MAPK signaling, G-protein signaling, ubiquitin–protease signaling, etc., induce significant
effects on entire features of the growth and development of plants, as well as regulating
seed size. Transcription factors are responsible for enhancing cell growth in the maternal
ovule and affect seed size. Therefore, there is a need to increase seed size with no effect on
seed number through convention breeding programs to improve crop yield.

Many researchers have indicated that modern types of molecular approaches i.e., MAS,
GS, and CRISPR/Cas system-based editing and transgenic technology have limitations to
their disruption of seed yield hurdles in different plant species. In this review, we summa-
rized many factors regulating seed sizes, such as genetic factors, signaling pathways, and
transcriptional factor regulators in Arabidopsis and other crops, followed by engineering
seed size by using recently evolved novel transgenic and breeding techniques, and ending
with a brief discussion on recent studies, and those conducted over the last decade, which
aimed to comprehend the genetic and molecular aspects controlling seed size. However,
more research studies are required to understand the seed development pathways via
molecular and genetic factors. Moreover, there is a need to introduce more strategies for
genetic modifications to improve grain size and yield.
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