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Abstract Hundreds of long non-coding RNAs (lncRNAs) have been identified as potential

regulators of gene expression, but their functions remain largely unknown. To study the role of

lncRNAs during vertebrate development, we selected 25 zebrafish lncRNAs based on their

conservation, expression profile or proximity to developmental regulators, and used CRISPR-Cas9

to generate 32 deletion alleles. We observed altered transcription of neighboring genes in some

mutants, but none of the lncRNAs were required for embryogenesis, viability or fertility. Even

RNAs with previously proposed non-coding functions (cyrano and squint) and other conserved

lncRNAs (gas5 and lnc-setd1ba) were dispensable. In one case (lnc-phox2bb), absence of putative

DNA regulatory-elements, but not of the lncRNA transcript itself, resulted in abnormal

development. LncRNAs might have redundant, subtle, or context-dependent roles, but

extrapolation from our results suggests that the majority of individual zebrafish lncRNAs have no

overt roles in embryogenesis, viability and fertility.

DOI: https://doi.org/10.7554/eLife.40815.001

Introduction
Long non-coding RNAs (lncRNAs) comprise a heterogeneous group of transcripts longer than 200

nucleotides that do not encode proteins. LncRNAs have been proposed to affect the expression of

neighboring or distant genes by acting as signaling, guiding, sequestering or scaffolding molecules

(St Laurent et al., 2015; Rinn and Chang, 2012; Nagalakshmi et al., 2008; Carninci et al., 2005;

Kapranov et al., 2007). The functions of specific lcnRNAs in dosage compensation (xist

(Brockdorff et al., 1991; Marahrens et al., 1997), tsix (Lee et al., 1999), jpx (Johnston et al.,

2002)) and imprinting (Airn (Wutz et al., 1997; Latos et al., 2012), MEG3 (Miyoshi et al.,

2000; Kobayashi et al., 2000), H19 (Bartolomei et al., 1991; Feil et al., 1994)) are well established,

and mutant studies in mouse have suggested that fendrr, peril, mdget, linc-brn1b, linc-pint

(Sauvageau et al., 2013), and upperhand (Anderson et al., 2016) are essential for normal develop-

ment. However, other studies have questioned the developmental relevance of several mouse

lncRNAs, including Hotair (Amândio et al., 2016), MIAT/Gumafu (Ip et al., 2016), Evx1-as

(Bell et al., 2016), upperhand, braveheart and haunt (Han et al., 2018). In zebrafish, morpholinos

targeting the evolutionarily conserved lncRNAs megamind (TUNA (Lin et al., 2014)) and cyrano

resulted in embryonic defects (Ulitsky et al., 2011). However, a mutant study found no function for

megamind and revealed that a megamind morpholino induced non-specific defects (Kok et al.,

2015). These conflicting results have led to a controversy about the importance of lncRNAs for ver-

tebrate development (Sauvageau et al., 2013), (Han et al., 2018). We therefore decided to mutate
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a group of selected zebrafish lncRNAs using CRISPR-Cas9, and assay their roles in embryogenesis,

viability and fertility.

Transcriptomic studies of early embryonic development (Ulitsky et al., 2011; Pauli et al., 2012)

and five adult tissues (Kaushik et al., 2013) have identified over 2000 lncRNAs in zebrafish

(Dhiman et al., 2015), of which 727 have been confirmed as non-coding based on ribosome occu-

pancy patterns (Chew et al., 2013). For our mutant analysis we selected 24 bona fide lncRNAs

based on synteny (conserved relative position on at least one other vertebrate genome), sequence

conservation, expression dynamics (expression levels, onset and pattern) and proximity to develop-

mental regulatory genes (see Table 1). These criteria were chosen to increase the likelihood of

potential functional requirements of the selected lncRNAs. In addition, we selected a protein-coding

RNA with a proposed non-coding function (squint).

Results and discussion
The genomic location of selected lncRNAs are depicted in Figure 1. The neighbor-relationship, and

expression levels of the selected lncRNAs and their neighboring genes are shown in Figure 1—fig-

ure supplement 1–1, Figure 1—figure supplement 1–2, respectively.

Using CRISPR-Cas9 (Figure 1—figure supplement 1–3) we generated 32 knockout-alleles. 24

alleles removed regions containing transcription start sites (TSS-deletion; 244 bp to 736 bp), and

eight alleles fully or partially removed the gene (1 kb to 203 kb) (Table 1). qRT-PCR analysis demon-

strated effective reduction in the levels of the targeted lncRNA transcripts (average reduction of 94

± 6%; Table 1), which was further tested and confirmed for a subset of lncRNAs by in situ RNA

hybridization (Figures 2B, 3B, C, 4D, 5B and 6D).

Previous observations in mammalian cell culture systems suggested that lncRNA promoters can

affect the expression of nearby genes (Engreitz et al., 2016). To test if these results hold true in

vivo, we measured the changes in the expression of neighboring genes (a 200 kb window centered

on each lncRNA) in lncRNA mutants. Several mutants displayed changes in the expression of neigh-

boring genes (Figure 1—figure supplement 1–4). In particular, 10 out of 40 neighboring genes

showed more than two-fold changes in expression, lending in vivo support to observations in cell

culture systems (Engreitz et al., 2016).

To determine the developmental roles of our selected lncRNAs, we generated maternal-zygotic

mutant embryos (lacking both maternal and zygotic lncRNA activity) and analyzed morphology from

gastrulation to larval stages, when all major organs have formed. Previous large-scale screens

(Driever et al., 1996; Haffter et al., 1996) have shown that the visual assessment of live embryos

and larvae is a powerful and efficient approach to identify mutant phenotypes, ranging from gastru-

lation movements and axis formation to the formation of brain, spinal cord, floor plate, notochord,

somites, eyes, ears, heart, blood, pigmentation, vessels, kidney, pharyngeal arches, head skeleton,

liver, and gut. No notable abnormalities were detected in 31/32 mutants. Moreover, these 31

mutants survived to adulthood, indicating functional organ physiology, and were fertile (Table 1). In

the following section, we describe the results for five specific lncRNAs and put them in the context

of previous studies.

Cyrano
cyrano is evolutionarily conserved lncRNA and based on morpholino studies, has been suggested to

have essential functions during zebrafish embryogenesis (Ulitsky et al., 2011) and brain morphogen-

esis (Sarangdhar et al., 2018). cyrano has also been suggested to act as a sponge (decoy-factor) for

HuR during neuronal proliferation (Kim et al., 2016a), regulate miR-7 mediated embryonic stem cell

differentiation (Smith et al., 2017), and control the level of miR-7 in the adult mouse brain

(Kleaveland et al., 2018). We generated two mutant alleles that removed the TSS (cyranoa171) or

the gene (cyranoa172), including the highly conserved miR-7 binding-site (Figure 2A,B). The expres-

sion level of the nearby gene (oip5) was not affected in either of these mutants (Figure 1—figure

supplement 1–4). In contrast to previous morpholino studies in zebrafish (Ulitsky et al., 2011) but

in support of recent findings in mouse (Kleaveland et al., 2018), cyrano mutants developed nor-

mally and were viable and fertile.

The difference between morphant (Ulitsky et al., 2011) and mutant phenotypes might be caused

by compensation in the mutants (Rossi et al., 2015; El-Brolosy and Stainier, 2017). To test this
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Table 1. Summary of lncRNA features and mutant phenotypes lncRNA names are shown in the first column.

lncRNAs were named using the last four digits of their corresponding ENSEMBL Transcript ID or their chromosome number if no tran-

script ID was available (e.g. lnc-1200 is located on chromosome 12). The second column represents ribosomal occupancy pattern along

the length of lncRNAs in comparison to the 5’UTR, coding and 3’UTR of typical protein-coding transcripts (Chew et al., 2013). The

third column shows the transcript ID for the investigated lncRNA or its genomic coordinate in GRCz10. Column Four shows the dele-

tion size. Fifth column represent the percentage decrease in the level of lncRNA in comparison to wild type from three biological repli-

cates (qRT-PCR). The six and seven columns show the presence of embryonic phenotypes, viability and fertility (at least 15 adult pairs

per allele) of homozygous mutant fish. Eighth and ninth column show the upstream and downstream neighboring genes in a 200 kb

window centered around the lncRNA’s TSS. The last column provides the selection criteria for each lncRNA.

lncRNA
mutant,
deletion
type

Ribosome
Profiling,
class

lncRNA
transcript ID

Deletion
size

Percent
reduction

Embryonic
phenotype

Viability and
fertility

Neighboring
genes

Selection
criteria

Up 100
Kb

Down 100
Kb

cyranoa171,
TSS-del.

Trailerlike ENSDART0
0000139872

326 bp 98% No Yes tmem39b oip5 Syntenic and sequence
conservation,
Reported phenotype

cyranoa172,
gene del.

Trailerlike ENSDART0
0000139872

4374 bp 94% No Yes tmem39b oip5 Syntenic and sequence
conservation,
Reported phenotype

gas5a173,
TSS-del.

Leaderlike ENSDART0
0000156268

296 bp 100% No Yes osbpl9 tor3a Syntenic conservation,
well studied lncRNA,
host of several snoRNA

lnc-
setd1baa174,
gene del.

Leaderlike ENSDART0
0000141500

3137 bp 100% No Yes setd1ba rhoF Syntenic and sequence
conservation,
Proximity to developmental
regulatory genes

squinta175,
gene del.

Coding ENSDART0
0000079692

1032 bp 95% No Yes htr1ab eif4ebp1 Evolutionary conservation,
Reported phenotype,
putative cncRNA

lnc-
phox2bba176,
TSS-del.

Leaderlike ENSDART0
0000158002

652 bp 99% No Yes smntl1 phox2bb Syntenic conservation

lnc-
phox2bba177,
gene del.

Leaderlike ENSDART00
000158002

9361 bp 87% Yes No smntl1 phox2bb Syntenic conservation

lnc-3852a178,
TSS-del.

Leaderlike ENSDART00
000153852

447 bp 100% No Yes lima1a hoxc1a Maternal expression,
Proximity to developmental
regulatory genes

lnc-1562a179,
TSS-del.

Leaderlike ENSDART00
000131562

409 bp 90% No Yes * fgf10a Maternal expression,
Proximity to developmental
regulatory genes

lnc-3982a180,
TSS-del.

Leaderlike ENSDART00
000153982

352 bp 97% No Yes * bmp2b Maternal expression,
Proximity to developmental
regulatory genes

lnc-6269a181,
TSS-del.

Leaderlike ENSDART00
000156269

535 bp 99% No Yes tbx1 * Maternal expression,
Proximity to developmental
regulatory genes

lnc-2154a182,
TSS-del.

Trailerlike ENSDART00
000132154

546 bp 100% No Yes rpz nr2f5 Maternal expression,
Proximity to developmental
regulatory genes

lnc-1200a183,
TSS-del.

Leaderlike Chr12:1708389-
1925779:1

590 bp 95% No Yes * zip11 Maternal expression,
Longest
selected lncRNA

lnc-1200a184,
gene del.

Leaderlike Chr12:1708389-
1925779:1

203.8 kb 84% No Yes * zip11 Maternal expression,
Longest selected lncRNA

lnc-2646a185,
TSS-del.

Leaderlike ENSDART00
000152646

240 bp 97% No Yes * dkk1b Proximity to developmental
regulatory genes

lnc-4468a186,
TSS-del.

Leaderlike ENSDART00
000154468

306 bp 100% No Yes fam169ab lhx5 Proximity to developmental
regulatory genes,
Low expression level

Table 1 continued on next page
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possibility, we injected the previously used morpholinos targeting the first exon-intron boundary

(e1i1) or the conserved miR-7 binding site (CMiBS) into wild type and homozygous deletion mutants.

The TSS-mutant allele lacked the e1i1 morpholino-binding site and the gene deletion allele lacked

the CMiBS morpholino-binding site (Figure 2A). The previously reported phenotypes, including

Table 1 continued

lncRNA
mutant,
deletion
type

Ribosome
Profiling,
class

lncRNA
transcript ID

Deletion
size

Percent
reduction

Embryonic
phenotype

Viability and
fertility

Neighboring
genes

Selection
criteria

Up 100
Kb

Down 100
Kb

lnc-0600a187,
TSS-del.

Trailerlike Chr6:59414652
-59443141:1

244 bp 95% No Yes * gli1 Proximity to developmental
regulatory
genes,
Low expression level

lnc-0900a188,
TSS-del.

Leaderlike Chr9:6684669-
6691350:1

377 bp 83% No Yes pou3f3a * Syntenic conservation,
Low expression
level

lnc-8507a189,
mTSS-del.

Leaderlike ENSDART0
0000158507

323 bp 81% No Yes npvf hoxa1a Proximity to Hox genes,
Maternal and Zygotic
promoters

lnc-8507a190,
mzTSS-del.

Leaderlike ENSDART00
000158507

9773 bp 95% No Yes npvf hoxa1a Proximity to Hox genes,
Maternal and Zygotic
promoters

lnc-7620a191,
TSS-del.

Trailerlike ENSDART00
000137620

668 bp 99% No Yes gal3st1b srsf9 Syntenic and sequence
conservation,
Implicated in adult fish
and mouse behavior.
Bitetti, A., et al. (2018)

lnc-1300a192,
TSS-del.

Leaderlike Chr13:4535992-
4538275:1

367 bp 92% No Yes c1d pla2g12b Syntenic and sequence
conservation,
High expression
level

lnc-7118a193,
TSS-del.

Trailerlike ENSDART0
0000157118

438 bp 82% No Yes mrps9 pou3f3b Syntenic conservation

lnc-5888a194,
TSS-del.

Leaderlike ENSDART00
000155888

606 bp 96% No Yes glrx5 zgc:100997 Syntenic conservation,
scaRNA13 host gene,
shortest selected lncRNA

lnc-6913a195,
TSS-del.

Leaderlike ENSDART00
000156913

333 bp 72% No Yes usp20 ptges Proximity
to developmental regulatory
genes

lnc-6913a196,
gene del.

Leaderlike ENSDART00
000156913

5568 bp 93% No Yes usp20 ptges Proximity
to developmental regulatory
genes

lnc-1666a197,
TSS-del.

Leaderlike ENSDART00
000141666

544 bp 96% No Yes ptf1a * Proximity to developmental
regulatory genes, Restricted
late expression

lnc-6490a198,
TSS-del.

Leaderlike ENSDART0
0000146490

607 bp 99% No Yes nr2f2 * Syntenic conservation,
Restricted late expression

lnc-6490a199,
gene del.

Leaderlike ENSDART0
0000146490

8378 bp 100% No Yes nr2f2 * Syntenic conservation,
Restricted
late expression

lnc-0464a200,
TSS-del.

Trailerlike ENSDART00
000140464

597 bp 96% No Yes nr2f1a * Restricted late expression
pattern

lnc-4149a201,
TSS-del.

Leaderlike ENSDART
00000154149

491 bp 98% No Yes bhlhe22 * Proximity to developmental
regulatory genes

lnc-4149a202,
gene del.

Leaderlike ENSDART00
000154149

35.11 kb 100% No Yes bhlhe22 * Proximity to developmental
regulatory genes

DOI: https://doi.org/10.7554/eLife.40815.002

Goudarzi et al. eLife 2019;8:e40815. DOI: https://doi.org/10.7554/eLife.40815 4 of 17

Research article Chromosomes and Gene Expression Developmental Biology

https://doi.org/10.7554/eLife.40815.002
https://doi.org/10.7554/eLife.40815


small heads and eyes, heart edema, and kinked tails were found in both wild type and mutants

(Figure 2C), demonstrating that the morpholino-induced phenotypes were non-specific. These

results reveal that cyrano transcripts or their evolutionarily conserved miR-7-binding site, are not

required for embryogenesis, viability or fertility.

Figure 1. Genomic location of selected lncRNAs. The chromosomal positions of selected lncRNAs are depicted. lncRNAs discussed in the text are

underlined. The corresponding genomic coordinates for all lncRNAs are provided in the supplementary file 2.

DOI: https://doi.org/10.7554/eLife.40815.003

The following figure supplements are available for figure 1:

Figure supplement 1. Size, relative distance and orientation of selected lncRNAs and their neighboring genes

DOI: https://doi.org/10.7554/eLife.40815.004

Figure supplement 2. Expression levels of selected lncRNAs and their neighboring protein-coding genes.

DOI: https://doi.org/10.7554/eLife.40815.005

Figure supplement 3. Cas9-mediated deletion approach for generating lncRNA knockouts 6 gRNAs (three at either side of the TSS) were used to

remove TSS.

DOI: https://doi.org/10.7554/eLife.40815.006

Figure supplement 4. Summary of qRT-PCR analysis for lncRNA and their neighboring genes.

DOI: https://doi.org/10.7554/eLife.40815.007
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gas5
gas5 is an evolutionarily conserved lncRNA (growth-arrest specific 5) (Coccia et al., 1992) that is

highly expressed in early development (Figure 3B) and hosts several snoRNAs implicated in zebra-

fish development (Higa-Nakamine et al., 2012). Knockdown and knockout studies in cell culture

(Ma et al., 2016) have indicated that gas5 might act as a tumor suppressor (Pickard and Williams,

2015) and exert effects at distant genomic sites (Schneider et al., 1988). However, the role of this

lncRNA in development has not been studied in any vertebrate. Our gas5a173 mutant allele removed

the sequences containing the TSS (�169 to +127) (Figure 3A) and resulted in complete elimination

of its expression (Figure 3B and D). Expression of the neighboring gene osbpl9, encoding a lipid-

Figure 2. Normal embryogenesis of cyrano mutants. (A) The positions of TSS-deletion allele and gene deletion allele are marked by dashed red

lines. Green box represents the conserved element in cyrano which is complementary to miR-7. Solid red lines indicate the position of the first exon-

intron boundary (e1i1) morpholino and conserved microRNA binding site (CMiBS) morpholinos. Arrows flanking black dotted line mark the primer

binding sites for qRT-PCR product. (B) Representative images of in situ hybridization for cyrano in wild type (15/15) and both homozygous TSS-deletion

(21/22) and gene deletion (18/18) 1-dpf. (C) At 2-dpf gene deletion mutants (lower-left), (and TSS-deletion mutants, not shown) were not different from

the wild-type embryos (upper-left). Morpholino injected wild-type embryos (upper-middle and upper-left) reproduced observed phenotype in Ulitsky et.

al (Kok et al., 2015). Morpholino injected deletion-mutants, lacking the corresponding binding sites for morpholinos, (lower-middle and lower-left)

were comparable to morpholino injected wild types.

DOI: https://doi.org/10.7554/eLife.40815.008
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binding protein, was increased by 50% (Figure 3D). Previous studies have shown that gas5 lncRNA

can act in trans to affect pten expression (ptena and ptenb in zebrafish) by sequestering specific

microRNAs (Li et al., 2017; Zhang et al., 2018; Liu et al., 2018). Additionally, gas5 transcript can

mimic Glucocorticoid Response Element and act as a decoy factor (riborepressor) for the Glucocorti-

coid Receptor (nr3c1)-mediated transcription (Kino et al., 2010). We analyzed the expression level

changes of these genes in MZgas5a173 embryos (at 1-dpf) and found significant upregulation for

ptena in MZgas5a173 mutants (Figure 3E). Despite these changes in gene expression, gas5a173

mutants were indistinguishable from wild type (Figure 3C), reached adulthood and were fertile.

Figure 3. Normal embryogenesis of gas5 mutants. (A) Position of the TSS-deletion allele in gas5 is marked by dashed red line. Arrows flanking black

dotted lines mark the primer binding sites for 5’-qPCR and 3’-qPCR products. (B) Representative in situ hybridization images for gas5 in wild type (11/

11) and homozygous TSS-deletion mutants (11/11). (C) Maternal and Zygotic gas5 (MZgas5) mutant embryos at 1-dpf were indistinguishable from the

wild-type embryos at the same developmental stage (not shown). (D) Expression level of gas5 and osbpl9 measured by qRT-PCR. Tor3A, the other

neighboring gene, was not expressed at the investigated time-point. (E) Expression level of gas5, its trans targets ptena, ptenb and nr3c1 measured by

qRT-PCR. The statistical significance of the observed changes was determined using t-test analysis and represented by star marks (*, **, ***, and ****

respectively mark p-values<0.05,<0.01,<0.001 and<0.0001).

DOI: https://doi.org/10.7554/eLife.40815.009
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Lnc-setd1ba
Lnc-setd1ba is the zebrafish orthologue of human LIMT (Sas-Chen et al., 2016) (LncRNA Inhibiting

Metastasis), which has been implicated in basal-like breast cancers. It is expressed from a shared

promoter region that also drives the expression of the histone methyltransferase setd1ba in opposite

direction (Figure 4A). Evolutionary conservation in vertebrates and proximity to setd1ba, whose

mouse homolog is essential for embryonic development (Eymery et al., 2016; Kim et al., 2016b)

prompted us to investigate the function of this lncRNA in zebrafish. We removed the gene of lnc-

setd1ba downstream of its TSS (3137 bp deletion) (lnc-setd1baa174). In situ hybridization and qRT-

PCR revealed absence of lncRNA expression (Figure 4C and E) and strong upregulation of setd1ba

(Figure 4D and E) during cleavage stages and slight upregulation of setd1ba and the other neigh-

boring gene rhoF at one-day post fertilization (1-dpf) (Figure 4E). Despite these changes, maternal-

Figure 4. Normal embryogenesis of lnc-setd1ba mutants. (A) The relative position of lnc-setd1ba and the protein-coding gene setd1ba. The gene

deletion region is marked by dashed red line. Arrows flanking black dotted line mark the primer-binding sites for qRT-PCR product. (B) Maternal and

zygotic lnc-setd1ba mutants were not different from wild-type embryos at 1-dpf. (C) Representative images of in situ hybridization for lnc-setd1ba at

four- to eight-cell stage mutant (18/18) and wild-type (25/25) embryos. (D) In situ hybridization for the protein-coding mRNA, setd1ba (9/11) in lnc-

setd1ba mutants compared to the wild-type embryos (15/15). (E) qRT-PCR at 1 cell stage and 1-dpf for the lncRNA and its neighboring genes rhoF and

setd1ba. The statistical significance of the observed changes was determined using t-test analysis and represented by star marks (ns, *, **, ***, and ****

respectively mark p-values�0.05,<0.05,<0.01,<0.001 and<0.0001).

DOI: https://doi.org/10.7554/eLife.40815.010
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zygotic lnc-setd1baa174 mutants were indistinguishable from wild type (Figure 4B), reached adult-

hood and produced normal progeny.

Squint
Squint encodes a Nodal ligand involved in mesendoderm specification (Pei et al., 2007;

Heisenberg and Nüsslein-Volhard, 1997). The previously studied squint insertion mutant alleles

(squintHi975Tg 50 and squintcz35 51) lead to delayed mesendoderm specification and partially pene-

trant cyclopia (Dougan et al., 2003). Morpholino and misexpression studies have suggested an

additional, non-coding role for maternally provided squint, wherein the squint 3’UTR mediates dorsal

Figure 5. No non-coding function for squint 3’UTR. (A) The position of untranslated regions (brown), coding region (green), putative Dorsal Localization

Element- DLE (blue) and the gene deletion (red dashed line) in the squint genomic locus. Arrows flanking black dotted line mark the primer binding

sites for qRT-PCR product. (B) In situ hybridization for squint at 8-cell stage on wild-type (18/20) and MZsquinta175(17/17) embryos. (C) qRT-PCR for

squint and eif4ebp1 on wild-type and MZsquinta175 embryos at 1-cell stage. (D) Two representative MZsquinta175 embryos. (E) MZsquinta175 embryonic

phenotype (N = 4 independent crosses, n = 360 embryos). The statistical significance of the observed changes was determined using t-test analysis and

represented by star marks (ns, *, **, ***, and **** respectively mark p-values�0.05,<0.05,<0.01,<0.001 and<0.0001).

DOI: https://doi.org/10.7554/eLife.40815.011

The following figure supplement is available for figure 5:

Figure supplement 1. Dorsalization induced by Overexpression of squint mRNA but not its non-protein coding version.

DOI: https://doi.org/10.7554/eLife.40815.012
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localization of squint mRNA, induces the expression of dorsal mesoderm genes, and is required for

the development of dorsal structures (Gore et al., 2005; Lim et al., 2012). This mode of activity

assigns squint to the cncRNA family - RNAs with both protein-coding and non-coding roles

(Sampath and Ephrussi, 2016). To investigate the non-coding roles of squint mRNA we generated a

deletion allele (squinta175) that lacked most of the protein coding region and the 3’UTR, including

the Dorsal Localization Element (DLE) implicated in maternal squint RNA localization (Gilligan et al.,

2011) (Figure 5A). In this allele 525 bp (178 bp 5’UTR, 280 bp first exon and 67 bp of second exon)

out of the 1592bp-long mature transcript remain in the genome (Figure 5A). In situ hybridization

(Figure 5B) and qRT-PCR (Figure 5C) showed that the level of remaining squint transcript was

greatly reduced (~90%). MZsquint a175 embryos displayed partially penetrant cyclopia, similar to

existing protein-disrupting squint alleles (Figure 5D) (Pei et al., 2007; Heisenberg and Nüsslein-

Figure 6. Requirement for lnc-phox2bb genomic elements but not RNA. (A) The red dashed lines depict the respective positions of the lnc-phox2bb

TSS and gene deletion. Arrows flanking black dotted line mark the primer binding sites for qRT-PCR product. (B) Homozygous gene deletion mutants

but not the TSS-deletion mutants show embryonic defects in jaw formation (arrow head) and swim bladder inflation (asterisk) by 4-dpf. (C) Histone

marks (H3K4me1 and H3K27ac) associated with enhancer activity (Bogdanovic et al., 2012) and conserved noncoding elements (CNEs) (Hiller et al.,

2013) overlap with gene deletion. (D) phox2bb expression pattern in the TSS and gene deletions. (E) qRT-PCR analysis on MZ TSS-deletion and gene

deletion mutants. The statistical significance of the observed changes was determined using t-test analysis and represented by star marks (*, **, ***,

and **** respectively mark p-values<0.05,<0.01,<0.001 and<0.0001).

DOI: https://doi.org/10.7554/eLife.40815.013
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Volhard, 1997; Golling et al., 2002), but the defects proposed to be caused by interference with

squint non-coding activity (Gore et al., 2005) were not detected.

To further test whether squint mRNA might have non-coding roles, we injected wild-type and

MZsquint a175 embryos with either control RNA, full-length squint mRNA, a non-coding version of

squint mRNA, or the putative transcript produced in squint a175 (Figure 5—figure supplement 5–

S1). We found that in contrast to wild-type squint mRNA, control RNA, non-protein coding squint

RNA or squint a175 RNA did not cause any phenotypes and did not rescue MZsquint a175 mutants.

These results indicate that squint 3’UTR does not have the previously proposed non-coding functions

and that the squint transcript may not be a member of the cncRNA family.

Transcript-independent phenotype at lnc-phox2bb locus
Lnc-phox2bb neighbors phox2bb and smtnl1. Phox2bb is a transcription factor implicated in the

development of the sympathetic nervous system (Pei et al., 2013), (Moreira et al., 2016;

Tolbert et al., 2017), while smtnl1 has been implicated in smooth muscle contraction

(Borman et al., 2009). Whole-gene deletion of lnc-phox2bb (lnc-phox2bba177) (Figure 6A) led to

jaw deformation and failure to inflate the swim-bladder (Figure 6B), and no homozygous mutant fish

survived to adulthood. Like the whole-gene deletion allele, the TSS-deletion allele (lnc-phox2bba176)

lacked lnc-phox2bb RNA (Figure 6E), but in contrast to the whole-gene deletion mutants, TSS-dele-

tion mutants developed normally and gave rise to fertile adults. To determine the cause of this dif-

ference, we analyzed the expression level and pattern of neighboring genes. We found that the

anterior expression domain of phox2bb in the hindbrain was absent in the whole-gene deletion

allele (Figure 6D). This finding is consistent with the observation that the deleted region contains

enhancer elements for phox2bb (McGaughey et al., 2008), conserved non-coding elements (CNEs)

(Hiller et al., 2013) (Figure 6C), and histone marks related to enhancer regions (H3K4me1 and

H3K27Ac) (Bogdanovic et al., 2012). We also found that the expression level of smtnl1 increased in

gene deletion mutants relative to the TSS-deletion mutant and wild type (Figure 6E). These results

indicate that lnc-phox2bb RNA is not required for normal development but that the lnc-phox2bb

overlaps with regulatory elements required for proper expression of phox2bb and smtnl1

(Figure 6E).

In summary, our systematic mutant studies indicate that none of the 25 lncRNAs analyzed here

are essential for embryogenesis, viability or fertility, including the prominent lncRNAs cyrano, gas5,

and lnc-setd1ba. Additionally, they refute the proposed non-coding function of squint RNA. Our

phenotypic screen does not exclude more subtle phenotypes; for example in behavior or brain activ-

ity (Rihel et al., 2010; Randlett et al., 2015; Summer et al., 2018). This mutant collection can now

be analyzed for subtle, context specific or redundant functions, but extrapolation suggests that most

individual zebrafish lncRNAs are not required for embryogenesis, viability or fertility.

Materials and methods

Animal care
TL/AB zebrafish (Danio rerio) were used as wild-type fish in this study. Fish were maintained on daily

14 hr (light): 10 hr (dark) cycle at 28˚C. All animal works were performed at the facilities of Harvard

University, Faculty of Arts and Sciences (HU/FAS). This study was approved by the Harvard Univer-

sity/Faculty of Arts and Sciences Standing Committee on the Use of Animals in Research and Teach-

ing (IACUC; Protocol #25–08)

Cas9 mediated mutagenesis
Guide RNAs (gRNAs) were designed using CHOPCHOP (Montague et al., 2014) and synthesized in

pool for each candidate as previously described (Gagnon et al., 2014). (See supplementary file 1

for the gRNA sequences). gRNAs were combined with Cas9 protein (50 mM) and co-injected (~1 nL)

into the one-cell stage TL/AB wild-type embryos. Genomic DNA from 10 injected and 10 un-injected

siblings was extracted (Meeker et al., 2007) and screened for the difference in amplified band pat-

tern from the targeted region (See supplementary file 1 for the genotyping primer sequences). The

rest of injected embryos were raised to adulthood, crossed to wild-type fish and screened for pass-

ing the mutant allele to the next generation. Founder fish with desirable mutations were selected
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and confirmed by Sanger sequencing of the amplified mutant allele. Heterozygous mutants were

crossed together to generate homozygous mutants. At least 15 adult homozygous mutant pairs per

allele were crossed to test fertility of mutants and to generate maternal and zygotic mutants (MZ)

devoid of maternally and zygotic lncRNA activity.

Phenotype scoring procedure
Visual assessment of live embryos and larvae performed (Driever et al., 1996; Haffter et al., 1996)

to identify mutant phenotypes, ranging from gastrulation movements and axis formation to the for-

mation of brain, spinal cord, floor plate, notochord, somites, eyes, ears, heart, blood, pigmentation,

vessels, kidney, pharyngeal arches, head skeleton, liver, and gut.

At day 5, formation of swim bladder and overall appearance of the embryos were checked again

(at any stage 60–100 embryos were scored). Sixty to hundred fish from heterozygous mutant crosses

were grown to adulthood and genotyped to identify the viability of adult homozygous fish. Validated

homozygous mutant fish were further crossed together to test for potential fertility phenotypes or

putative maternal functions of candidate lncRNAs.

Antisense RNA synthesis and in situ hybridization
Antisense probes for in situ hybridization were transcribed using the DIG RNA labeling kit (Roche).

All RNAs were purified using EZNA Total RNA kits (Omega Biotek). Embryos were fixed in 4% form-

aldehyde overnight at 4˚C (embryos younger than 50% epiboly fixed for 2 days). In situ hybridiza-

tions were performed according to standard protocols (Thisse and Thisse, 2008). NBT/BCIP/

Alkaline phosphatase-stained embryos were dehydrated in methanol and imaged in benzyl benzo-

ate:benzyl alcohol (BBBA) using a Zeiss Axio Imager.Z1 microscope.

qRT-PCR
Total RNA was isolated from three individuals or sets of 10–20 embryos per condition using EZNA

Total RNA kits (Omega Biotek). cDNA was generated using iScript cDNA Synthesis kit (Bio-Rad).

qPCR was conducted using iTaq Universal SYBR Green Supermix (Bio-Rad) on a CFX96 (Bio-Rad).

Gene expression levels were calculated relative to a reference gene, ef1a. Three technical replicates

were used per condition. The qPCR primer sequences are listed in supplementary file 1.

Bright-field imaging
Embryos were anesthetized in Tricaine (Sigma) and mounted in 1% low melting temperature agarose

(Sigma) with Tricaine, then imaged using a Zeiss SteREO Discovery.V12 microscope or Zeiss Axio

Imager.Z1 microscope. Images were processed in FIJI/ImageJ (Schindelin et al., 2012). Brightness,

contrast and color balance was applied uniformly to images.

Sense RNA synthesis and injections
The sequences for the wild-type squint mRNA, non-protein coding squint transcript (One Adenine

base was added after eight in-frame ATG codons, and the 3’UTR sequence kept unchanged) and

the squinta175 transcript were synthesized as gBlocks (IDT) containing 5’ XhoI cut site and 3’ NotI

site. Fragments were digested and inserted the pCS2 plasmid. Positive colonies were selected, and

sanger sequenced to assure the accuracy of the gene synthesis process. Sequences of the constructs

are provided in supplementary file 1. mRNA was in vitro transcribed by mMessage mMachine

(Ambion) and purified by EZNA Total RNA kits (Omega Biotek). h2b-gfp was used as control mRNA.

Each injection mix contained 30 ng/ul of squint or control mRNA). 1 nl of mRNA mix was injected

into the yolk of one-cell stage embryos.

Morpholinos were ordered from Gene Tools and injected based on Ulitsky et al. (2011).
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