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Abstract: Early detection is important in glaucoma management. By using optical coherence to-
mography (OCT), the subtle structural changes caused by glaucoma can be detected. Though OCT
provided abundant parameters for comprehensive information, clinicians may be confused once
the results conflict. Machine learning classifiers (MLCs) are good tools for considering numerous
parameters and generating reliable diagnoses in glaucoma practice. Here we aim to compare differ-
ent MLCs based on Spectralis OCT parameters, including circumpapillary retinal nerve fiber layer
(cRNFL) thickness, Bruch’s membrane opening-minimum rim width (BMO-MRW), Early Treatment
Diabetes Retinopathy Study (ETDRS) macular thickness, and posterior pole asymmetry analysis
(PPAA), in discriminating normal from glaucomatous eyes. Five MLCs were proposed, namely
conditional inference trees (CIT), logistic model tree (LMT), C5.0 decision tree, random forest (RF),
and extreme gradient boosting (XGBoost). Logistic regression (LGR) was used as a benchmark for
comparison. RF was shown to be the best model. Ganglion cell layer measurements were the most
important predictors in early glaucoma detection and cRNFL measurements were more important as
the glaucoma severity increased. The global, temporal, inferior, superotemporal, and inferotemporal
sites were relatively influential locations among all parameters. Clinicians should cautiously integrate
the Spectralis OCT results into the entire clinical picture when diagnosing glaucoma.

Keywords: optical coherence tomography (OCT); machine learning; glaucoma

1. Introduction

Glaucoma is a potentially blinding disease, characterized by progressive degeneration
of the retinal ganglion cells, resulting in distinct changes of the optic nerve head and
corresponding visual field defect [1]. By observing the structural changes of the retinal
nerve fiber layer, neuroretinal rim, or inner layer of macula, it is possible to detect the
potential glaucoma patients [2].

Optical coherence tomography (OCT) is a non-invasive technology that enables high-
resolution cross-sectional images of ocular tissues and provides objective quantitative data
that have good reproducibility [3,4]. Through the various scan protocols provided by OCT,
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the subtle structural change caused by glaucoma can be detected earlier, even before the
visual field loss would appear [5].

Although the abundant OCT parameters can give the clinicians a comprehensive
understanding of the ocular structural changes, they may also cause confusion especially
when the classification results conflict, usually seen in early-stage glaucoma due to the
subtle structural changes [6]. There have been many studies investigating the diagnostic
accuracy of parameters between normal and glaucomatous eyes [7–13], but most of them
focused on individual parameters. However, in actual clinical situations, clinicians usually
make the final diagnosis after considering all the parameters.

Machine learning classifiers (MLCs) are well-established analytical methods especially
good at detecting the relationship between a huge amount of input parameters, eventually
facilitating the diagnosis of a condition [14]. In fact, some reports suggest that MLCs are as
good as [15,16], or even better [17–24] than, currently available techniques for glaucoma
diagnosis. However, what most people criticize MLCs for is the analysis process being a
“black box” [25–27], for it produces results based solely on the input data using an algorithm,
which prevents clinicians from understanding how variables are being combined to make
such a prediction. Through program analysis methods developed in recent years, we can
study and analyze the importance of the included parameters in specific models, and
ophthalmologists may obtain clinical insight from the explanation [24,25,28–30]. In this
study, we aim to build MLCs based on clinical OCT data provided by Heidelberg Spectralis
spectral-domain OCT (SD-OCT) to evaluate the diagnostic accuracy of MLCs and the
importance of OCT parameters in diagnosing glaucoma of varying severities.

2. Materials and Methods
2.1. Participants

This cross-sectional study included 470 eyes from 265 participants. The patients with
glaucoma were recruited from a group of patients who had received at least 6 months of
regular follow-up at the Glaucoma Service of the Department of Ophthalmology at Fu
Jen Catholic University Hospital (FJUH) between April 2019 to December 2021. Subjects
with normal eyes were recruited from the out-patient clinic and staff at the Fu Jen Catholic
University Hospital during the study period. This research adhered to the tenets of the Dec-
laration of Helsinki. Informed consent was obtained from each participant, and the study
was approved by the Institutional Review Board of FJUH (FJUH109020 and FJUH109021).

All the study subjects underwent complete ophthalmic examination, including slit-
lamp biomicroscopy, measurement of intraocular pressure (IOP), stereoscopic fundus
examination, and standard automated perimetry. Visual fields were carried out on a
Humphrey Visual Field Analyzer (model 750, Carl Zeiss Meditec, Dublin, CA, USA) with
a standard white-on-white 30-2 field with the standard full threshold program. Demo-
graphic and clinical information was recorded, including age, gender, best-corrected visual
acuity (BCVA), IOP, spherical equivalent (SE), mean deviation (MD), and pattern standard
deviation (PSD).

All participants were required to have a best-corrected visual acuity of 20/40 or
better and a spherical equivalent within the −6.0 diopter (D) to +3.0 D range. Patients
with significant ocular media opacity, coexisting retinal disease, or history of refractive or
vitreoretinal surgery were excluded from this study. In addition, for increasing the imaging
quality and accuracy, subjects with marked peripapillary atrophy were excluded to avoid
instrumentation problems in the algorithms used to find the layers.

Normal control eyes had normal findings on clinical examination, IOPs lower than
21 mmHg, no history of increased IOP, no family history of glaucoma, normal-looking optic
disc heads, and normal visual field results. A normal visual field result was defined as an
MD and PSD within 95% confidence limits and a glaucoma hemifield test result within
normal limits.

Eyes were defined as glaucomatous if there were glaucomatous optic neuropathy
(GON) and corresponding visual field loss. We defined GON as either inter-eye cup-
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disc ratio asymmetry > 0.2, rim thinning or notching, peripapillary hemorrhages, or
cup-disc ratio ≥ 0.2 [31,32]. Glaucomatous visual field defects were evaluated based on
the following criteria: ≥2 contiguous points with a pattern deviation sensitivity loss of
p-value < 0.01, ≥3 contiguous points with a sensitivity loss of p-value < 0.05 in the superior
or inferior arcuate areas, or a 10-decibels (dB) difference across the nasal horizontal midline
at ≥2 adjacent locations and an abnormal result on the glaucoma hemifield test [33]. Also,
visual field defects had to be reproducible on at least one occasion. A visual field was
considered reliable if there was <20% fixation loss, as well as <20% false-positive and
false-negative rates. Both eyes of each participant were included if they were glaucomatous.
All eyes with secondary glaucoma or evidence of visual field defects consistent with other
diseases were excluded.

Using the Hodapp–Parrish classification [34], glaucomatous eyes were stratified into
three groups for further analysis: early glaucoma (MD > −6 dB), moderate glaucoma
(−12 dB < MD ≤ −6 dB), and severe glaucoma (MD ≤ −12 dB).

2.2. Spectralis OCT Imaging

All participants were examined with Spectralis (Heidelberg Engineering Inc., Hei-
delberg, Germany) SD-OCT, and the Anatomic Positioning System (APS) was used in
the process. The APS creates an anatomic map using two fixed structural landmarks: the
center of the fovea and the center of the Bruch’s membrane opening. All scan protocols are
automatically oriented according to the patient’s anatomic map to obtain precise measure-
ments of relevant structures and ensure accurate comparisons with reference data. Optic
nerve head radial and circular (ONH-RC) scan protocol and the posterior pole horizontal
(PPoleH) scan protocol were used in the current study to get four groups of parameters:
circumpapillary retinal nerve fiber layer (cRNFL) thickness, Bruch’s membrane opening-
minimum rim width (BMO-MRW), macular Early Treatment Diabetic Retinopathy (ETDRS)
thickness map, and posterior pole asymmetry analysis (PPAA). The two scan protocols
can be obtained in the new Glaucoma Premium Module Edition (GPME) software. All
the above scans were performed by experienced technicians. No manual correction was
applied to the auto-segmented OCT output. Images that had a quality index of less than
20 or images with artifacts were excluded.

The ONH-RC scan protocol consisted of three circular scans with diameters of 3.5 mm,
4.1 mm, and 4.7 mm to acquire the cRNFL thickness, and 24 equally spaced radial B-scans
to get the BMO-MRW. Both of the circular and radial scans were centered on the optic nerve
head. The BMO-MRW measurements were obtained by calculating the shortest distance
between the BMO points and the internal limiting membrane, which was automatically
identified by the build-in software. The cRFNL and BMO-MRW measurements were
displayed in seven parts: global (G), temporal (T), superotemporal (TS), superonasal
(NS), nasal(N), inferonasal (NI), and inferotemporal (TI) area. Each part averaged the
corresponding measurements of the area. All of the seven BMO averages would be used to
build the MLCs, but only the seven cRNFL averages generated by the 3.5 mm diameter
circle would be included in the subsequent analysis.

The PPoleH scan protocol consists of 61 horizontal B-scans, centered on the fovea,
oriented to the fovea-disc axis, and symmetrically distributed in the upper and lower
hemispheres. It provides the automated segmented thickness map of each retinal layer,
including macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCP), inner
plexiform layer (IPL), inner nuclear layer, outer plexiform layer, outer nuclear layer, pho-
toreceptors layer, and retinal pigment epithelium. These measurements are displayed in
two modes: ETDRS mode and PPAA mode.

In the ETDRS mode, the thickness maps of total macular thickness and all eight retinal
layers are provided in nine subfields as defined by the ETDRS. The diameters of inner,
intermediate, and outer rings are 1, 3, and 6 mm separately. The average of all points with
the inner ring was defined as central thickness (C). The intermediate ring was divided
into four sectors designated as inner superior (S1), inner nasal (N1), inner inferior (I1),
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and inner temporal (T1) sector, and so was the outer ring, designated as outer superior
(S2), outer nasal (N2), outer inferior (I2) and outer temporal (T2) sector. The values of the
nine zones of total macular thickness, mRNFL, GCL, and IPL thickness were used in the
following analysis.

In the PPAA mode, the thickness of the full retina and each retinal layer are measured,
averaged and displayed in an 8 × 8 grid, corresponding to the central 24◦ area of the
posterior pole. We only included the 64 measurements of full retinal thickness, labeled
with the first number representing the order from top to bottom and the second number
representing the order from temporal to nasal site.

In total, 114 parameters (7 RNFL, 7 MRW, 36 ETDRS, 64 PPAA) were used for sub-
sequent MLC establishment (Supplemental Table S1). All the included subjects have no
missing value in these 114 measurements.

2.3. Machine Learning Classifiers

Five machine learning algorithms, namely conditional inference trees (CIT), logistic
model tree (LMT), C5.0 decision tree, random forest (RF), and extreme gradient boosting
(XGBoost), are used to build the early, moderate, and severe glaucoma classification models.
MLCs for normal and all glaucomatous eyes are also constructed. These machine learning
algorithms have been widely applied in various healthcare and/or medical informatics
applications and do not have a prior assumption about data distribution [35–38]. The
multivariate logistic regression (LGR) was used as a benchmark for comparison. The
114 Spectralis OCT parameters are used as independent variables for all used methods to
build glaucoma classification models.

The CIT uses recursive partitioning of dependent variables and embeds a permutation
test to discriminate between significant and insignificant improvements [39]. The LMT
combines decision tree and LGR where independent variables are splitting by a logistic
variant information gain, LGR models at all nodes are produced by the LogitBoost, and its
final decision tree is pruned by using the method of classification and regression trees [40].
The C5.0 decision tree is a successor of the C4.5 decision tree. The independent variables
are splitting based on the entropy. The final tree is pruned by the binomial confidence limit
method [41]. The RF is a bagging technique that builds a set of decision trees, that is, a
forest, by randomly selecting samples and independent variables. The prediction class of
RF is considered the majority vote [42]. The XGBoost is an extendible version of gradient
boosting machines that was developed for the pursuit of pushing the limits of prediction
performance and computational speed. In the boosting technique, boosted models are
added recursively to adjust the residuals made by existing models. The final prediction is
based on the majority votes [43].

In this study, all methods were implemented in R software version 3.6.2 (R core
team, Vienna, Austria). For modeling LGR, CIT, LMT, C5.0, RF, and XGBoost models,
the corresponding R packages “blorr” [44], “partykit” [45], “RWeka” [46], “C50” [47],
“randomForest” [48], and “xgboost” [49] are used in this study. The R package “caret” [50]
was used to tune the hyper-parameters of each machine learning method.

In building the predictive model, we first reorganized the dataset into three sub-
datasets, normal vs. early glaucoma, normal vs. moderate glaucoma, and normal vs.
severe glaucoma. Next, we randomly divided each sub-dataset with a specific percentage
several times. A split of 80–20 is used, where the training dataset gets 80% and the testing
dataset gets 20% of the total data.

During the training stage, we attempted to tune the hyper-parameters of each MLC
to find out a model whose prediction performance is relatively good. We conducted the
pipeline of a random search, 10-fold cross-validation, and a metric evaluation using “caret”
R package. Within the pipeline, the random search generated 50 sets of hyper-parameters
of each classifier that followed uniform distribution. For each hyper-parameter set, the
training dataset was further divided into 10 equal-sized folds. Of the 10 folds, 9 folds are
used as the real training dataset for training the classifier, whereas the remaining single
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fold is treated as the validation dataset for evaluating the performance by using the area
under the receiver operating characteristic curve (AUC). The 10-fold cross-validation was
repeated 10 times by changing the fold of the validation dataset and an average AUC of a
given set of hyper-parameters was produced. The higher the average AUC is, the better
the hyper-parameters of a classifier will be.

During the testing stage, the features were fed into the best model to get the predicted
classification result of each sample. Finally, all predicted results were compared with
their corresponding labels to generate a confusion matrix that can be used to calculate the
performance metrics of a classifier.

For each classifier, the above process was randomly repeated 100 times for bootstrap
samples of the data. The 100 recorded accuracy, sensitivity, specificity, and AUC of each
classifier were averaged separately as the performance metric of each MLC. The mean
rank aggregation method [30,51] was used to average the yielded 100 results of variable
importance ranking of a classifier to produce a combined variable importance ranking for
each MLC.

2.4. Statistical Analysis

All statistical analyses were carried out using the statistical programming language
R software of version 3.6.2 (R core team, Vienna, Austria). Demographics and clinical
characteristics of the study groups were compared using the Mann–Whitney U test for
quantitative variables and the Chi-square test for categorical variables.

3. Results

The demographics and clinical characteristics of the study groups are given in Table 1.
The age of the glaucoma groups was significantly older than the normal group (p < 0.001),
and the BCVA of the glaucoma groups was significantly worse than the normal group
(p < 0.001). No significant difference was observed in the IOP and spherical equivalent.
Visual field parameters including MD and PSD showed significant differences between the
two groups (p < 0.001).

Table 1. Demographics and clinical characteristics of the study groups.

Characteristics Normal Eye
(n = 224)

Glaucomatous Eye
(n = 246)

Mean ± SD Mean ± SD p *

Persons 114 151 -
Age (year) 53.9 ± 16.0 61.2 ± 12.3 <0.001

Gender
(male/female) 41/73 83/68 0.003

BCVA 0.96 ± 0.09 0.91 ± 0.11 <0.001
IOP 14.1 ± 3.3 14.5 ± 2.6 0.230

SE (D) −1.13 ± 2.17 −1.10 ± 2.16 0.801

Early Stage
(n = 114)

Moderate Stage
(n = 61)

Severe Stage
(n = 71)

Mean ± SD p * Mean ± SD p * Mean ± SD p *

BCVA 0.96 ± 0.09 0.91 ± 0.11 <0.001 0.90 ± 0.11 <0.001 0.91 ± 0.11 <0.001
IOP 14.1 ± 3.3 14.8 ± 2.6 0.066 13.8 ± 2.6 0.405 14.5 ± 2.5 0.279

SE (D) −1.13 ± 2.17 −1.17 ± 2.23 0.787 −1.16 ± 2.32 0.697 −0.72 ± 2.52 0.748
MD (dB) −0.82 ± 1.32 −3.79 ± 1.10 <0.001 −8.31 ± 1.61 <0.001 −19.01 ± 5.49 <0.001
PSD (dB) 2.20 ± 1.29 4.38 ± 2.08 <0.001 8.87 ± 3.43 <0.001 11.40 ± 2.97 <0.001

BCVA: best-corrected visual acuity; IOP: intraocular pressure; SE: spherical equivalent; D: diopters; MD: mean deviation; PSD: pattern
standard deviation. p *: level of statistical significance in comparison between groups using the Mann–Whitney U test (except for eye,
gender, Chi-square). Bold text indicates statistically significant results (p < 0.05).
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The LGR, CIT, LMT, C5.0, RF, and XGBoost methods were used to build classification
models for discriminating all glaucomatous eyes from normal eyes. They were also used
for distinguishing between early, moderate, and severe glaucoma from normal conditions.
The model performance, that is, the mean and the standard deviation (SD) of accuracy,
sensitivity, specificity, and AUC, of all models for all, early, moderate, and severe glaucoma
datasets are respectively presented in Tables 2–5. The receiver operating characteristic
(ROC) curves as well as 95% confidence interval (CI) of mean AUCs of all classifiers for all,
early, moderate, and severe glaucoma datasets are also demonstrated in Figure 1.

Table 2. Model performance of all methods for all glaucoma eyes.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

LGR 0.7418
(0.03)

0.7479
(0.05)

0.7363
(0.05)

0.7788
(0.03)

CIT 0.8208
(0.04)

0.8507
(0.07)

0.7939
(0.07)

0.8866
(0.04)

LMT 0.8491
(0.04)

0.8825
(0.05)

0.8192
(0.06)

0.9127
(0.03)

C5 0.8709
(0.03)

0.8979
(0.05)

0.8468
(0.06)

0.9403
(0.02)

RF 0.8818
(0.03)

0.9166
(0.04)

0.8507
(0.06)

0.9459
(0.02)

XGBOOST 0.8639
(0.03)

0.8982
(0.05)

0.8331
(0.06)

0.9275
(0.03)

LGR: logistic regression; CIT: conditional inference tree; LMT: logistic model tree; RF: random forest; XGBOOST:
extreme gradient boosting; AUC: area under the receiver operating characteristic (roc) curve.

Table 3. Model performance of all methods for early glaucoma eyes.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

LGR 0.6916
(0.05)

0.5859
(0.11)

0.7442
(0.07)

0.6860
(0.06)

CIT 0.7729
(0.05)

0.7286
(0.10)

0.7950
(0.08)

0.8156
(0.06)

LMT 0.8006
(0.05)

0.6990
(0.09)

0.8514
(0.06)

0.8116
(0.06)

C5 0.8408
(0.04)

0.7041
(0.09)

0.9091
(0.05)

0.8927
(0.04)

RF 0.8550
(0.04)

0.7272
(0.08)

0.9189
(0.04)

0.9073
(0.04)

XGBOOST 0.8433
(0.04)

0.7500
(0.10)

0.8901
(0.05)

0.8852
(0.04)

LGR: logistic regression; CIT: conditional inference tree; LMT: logistic model tree; RF: random forest; XGBOOST:
extreme gradient boosting; AUC: area under the receiver operating characteristic (roc) curve.

Table 4. Model performance of all methods for moderate glaucoma eyes.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

LGR 0.8287
(0.05)

0.6625
(0.12)

0.8748
(0.06)

0.8187
(0.07)

CIT 0.8861
(0.05)

0.8175
(0.11)

0.9047
(0.06)

0.9035
(0.05)

LMT 0.9225
(0.04)

0.8008
(0.13)

0.9557
(0.04)

0.9553
(0.04)

C5 0.9200
(0.03)

0.7809
(0.12)

0.9580
(0.03)

0.9529
(0.04)
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Table 4. Cont.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

RF 0.9327
(0.03)

0.8159
(0.12)

0.9646
(0.03)

0.9655
(0.03)

XGBOOST 0.9293
(0.03)

0.8392
(0.12)

0.9540
(0.03)

0.9549
(0.04)

LGR: logistic regression; CIT: conditional inference trees; LMT: logistic model tree); RF: random forest; XGBOOST:
extreme gradient boosting; AUC: area under the receiver operating characteristic (roc) curve.

Table 5. Model performance of all methods for severe glaucoma eyes.

Methods Accuracy
Mean (SD)

Sensitivity
Mean (SD)

Specificity
Mean (SD)

AUC
Mean (SD)

LGR 0.8714
(0.04)

0.7700
(0.11)

0.9031
(0.05)

0.9017
(0.05)

CIT 0.9219
(0.04)

0.8787
(0.09)

0.9358
(0.05)

0.9416
(0.05)

LMT 0.9367
(0.03)

0.8580
(0.09)

0.9619
(0.03)

0.9592
(0.04)

C5 0.9516
(0.03)

0.8687
(0.09)

0.9779
(0.03)

0.9757
(0.03)

RF 0.9536
(0.02)

0.8737
(0.08)

0.9791
(0.02)

0.9841
(0.02)

XGBOOST 0.9393
(0.03)

0.8651
(0.09)

0.9630
(0.03)

0.9742
(0.03)

LGR: logistic regression; CIT: conditional inference trees; LMT: logistic model tree); RF: random forest; XGBOOST:
extreme gradient boosting; AUC: area under the receiver operating characteristic (roc) curve.
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It can be observed from Table 2 and Figure 1a that all five MLCs can generate better
performance than the benchmark LGR method (mean AUC = 0.7788) in all the glaucoma
eyes datasets. RF provides the highest value of average accuracy (0.8818), average sensitiv-
ity (0.9166), average specificity (0.8507), and average AUC (0.9459). RF is the best predictive
model in all the glaucoma eyes datasets and its mean AUC and 95% CI is 0.9459 ± 0.0047.

Referring to Table 3 and Figure 1b, it can be found that that the model performance
of MLCs outperforms that of the benchmark LGR method (mean AUC = 0.6860) in the
early dataset. The model performance of CIT and LMT are lower than that of C5.0, RF, and
XGBoost algorithms. XGBoost receives the highest value of average sensitivity (0.7500) and
RF generates the highest values of average accuracy (0.8550), average specificity (0.9189),
and average AUC (0.9073). RF is the best predictive model in the early glaucoma dataset
and its mean AUC, and 95% CI is 0.9073 ± 0.0071.

According to Table 4 and Figure 1c, we can find that the model performance of MLCs
also outperforms that of LGR in the moderate dataset and all of the MLCs had excellent
diagnostic performance, each with a mean AUC value greater than 0.9. The model perfor-
mance of CIT is lower than other MLCs. XGBoost receives the highest value of average
sensitivity (0.8392) and RF generates the highest values of average accuracy (0.9327), aver-
age specificity (0.9646), and average AUC (0.9655). RF is still the best predictive model in
the moderate dataset and its mean AUC, and 95% CI is 0.9655 ± 0.0058.

Table 5 and Figure 1d show that the model performance of MLCs also outperforms
LGR in the severe dataset. There is not much difference in the model performance among
MLCs. CIT receives the highest value of average sensitivity (0.8787) and RF generates the
highest values of average accuracy (0.9536), average specificity (0.9797), and average AUC
(0.9841). RF is still the best predictive model for the severe glaucoma dataset and the mean
AUC, and 95% CI is 0.9841 ± 0.0044.

As the MLCs can generate promising classification performance for all three datasets
and outperform the LGR model, they can be used to identify important variables for
discriminating glaucomatous eyes from the normal eyes, and early, moderate, and severe
glaucoma from normal conditions by ranking the importance of each variable within
different classifiers. For each model, the most important variable was ranked first (i.e., 1).
On the contrary, the variable with the lowest importance was ranked as the last (i.e., 114).
Supplemental Tables S2–S5 show the importance ranking of each variable of each classifier
for all, early, moderate, and severe datasets, respectively. Taking Supplemental Table S2 as
an example, GCL_T2 is found to be the most important variable in the C5.0 model, followed
by MRW_TI and cRNFL_TS. For the ranking result of the RF model, the most important
area is also GCL_T2, but the second- and third-most important areas are cRNFL_G and
GCL_T1, respectively. It can be seen that different classifiers can generate different variable
importance ranking results at different severities of glaucoma.

In order to build a more robust variable importance ranking result by taking all
the results from the MLCs into account, we average the rank value of each variable in
all five MLCs. Table 6 lists the overall variable importance ranking of each variable for
early, moderate, severe, and all glaucoma eyes. The averages were regarded as the mean
importance of a single variable in the five MLCs. For distinguishing early glaucoma from
normal eyes, the top five important predictors in order of importance are GCL_T2, GCL_T1,
MRW_G, cRNFL_TS, and MRW_TI. For identifying moderate glaucoma from normal
eyes, the top five important predictors in order of importance are GCL_T2, cRNFL_G,
GCL_T1, MRW_G, and cRNFL_TS. For distinguishing severe glaucoma from normal eyes,
the top five important predictors in order of importance are MRW_TI, cRNFL_G, GCL_I1,
mRNFL_I2, and MRW_G. For discriminating all glaucoma eyes from normal eyes, the top
five important predictors in order of importance are GCL_T2, GCL_T1, cRNFL_G, MRW_G,
and MRW_TI.
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Table 6. Overall variable importance ranking for early, moderate, severe, and all glaucoma eyes (only the first 10 important
variables shown).

Early Moderate Severe All

Rank Variable
Name

Average
Rank

Variable
Name

Average
Rank

Variable
Name

Average
Rank

Variable
Name

Average
Rank

1 GCL_T2 1.0 GCL_T2 1.8 MRW_TI 2.0 GCL_T2 1.8
2 GCL_T1 3.4 cRNFL_G 2.0 cRNFL_G 3.0 GCL_T1 3.6
3 MRW_G 4.6 GCL_T1 3.0 GCL_I1 3.6 cRNFL_G 3.8
4 cRNFL_TS 4.8 MRW_G 5.6 mRNFL_I2 4.6 MRW_G 5.2
5 MRW_TI 5.6 cRNFL_TS 5.8 MRW_G 5.8 MRW_TI 5.2
6 cRNFL_G 5.8 GCL_I1 7.2 cRNFL_TI 8.0 GCL_I1 5.6
7 GCL_I1 7.4 cRNFL_TI 8.0 MRW_T 8.6 cRNFL_TS 5.6
8 IPL_T1 10.2 IPL_T2 9.8 MRW_TS 10.0 cRNFL_TI 10.6
9 MRW_N 12.8 mRNFL_I2 9.8 GCL_T1 10.6 MRW_NI 13.4
10 MRW_TS 13.0 MRW_N 11.8 cRNFL_TS 11.4 MRW_N 13.6

cRNFL: circumpapillary retinal nerve fiber layer; BMO-MRW: Bruch’s membrane opening opening-minimal rim width; mRNFL: macular
retinal nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; T: temporal; TI: inferotemporal; N: nasal; TS: superotemporal;
G: global; I: inferior. Note: These variables are colored according to the parameters to facilitate understanding of their changes (red: EDTRS
macular thickness map, green: cRNFL, blue: BMO-MRW).

4. Discussion

OCT has played an important role in glaucoma management, especially in early
glaucoma detection. Though OCT parameters in diagnosing moderate and advanced
glaucoma are of lower clinical importance, the role of OCT parameters in the evaluation
of glaucoma progression is meaningful. Several studies worked on the analysis of OCT
parameters in different severities of glaucoma. Mittal et al. surveyed which parameter of
Cirrus and RTVue OCT has the highest ability to discriminate between early, moderate, and
advanced glaucoma [52]. Ustaoglu et al. tried to determine the discriminating performance
of the macular GC-IPL parameters between all the consecutive stages of glaucoma and to
compare it with the discriminating performances of the RNFL and ONH parameters [53].
Chua et al. compared the diagnostic ability of macular intraretinal layer thickness with
cRNFL thickness for detection of early, moderate, and advanced glaucoma [13]. Similarly,
here, we tried to use machine learning methods to build reliable classifiers and study the
importance of different OCT parameters in glaucoma of varying severities.

RF was demonstrated as the best or better method in other studies with similar
study designs. Barella et al. analyzed cRNFL and optic nerve head parameters in SD-
OCT using 10 machine learning methods and reported that RF had the best diagnostic
performance among the MLCs to discriminate between normal and early to moderate
glaucoma eye with an AUC of 0.877 [16]. However, the AUC obtained with RF was not
significantly different from the AUC obtained with the best single OCT parameter in that
study. Yoshida et al. used the RF method to analyze cRNFL, mRNFL, and ganglion cell-
inner plexiform layer (GC-IPL) parameters in SD-OCT and reported that the RF method
significantly improved the diagnosis of glaucoma with an AUC of 0.985 compared with
using a single SD-OCT measurement [54]. Kim et al. compared four MLCs built with
clinical features, cRNFL, and visual field parameters for discriminating between healthy
and glaucomatous eyes, which showed that the RF classifier is the best one with an AUC
of 0.979 [55]. Seo et al. investigated the diagnostic accuracy of six MLCs using BMO-
MRW, cRNFL, and cRNFL color codes from SD-OCT to discriminate between early normal
tension glaucoma patients from glaucoma suspects. The RF classifier was the second-best
performing MLC with an AUC of 0.947, and the deep neural network model was the best
one with an AUC of 0.966 [23]. These studies suggest that RF is a powerful and reliable
machine learning method.

Since MLCs only use algorithms to derive prediction results from known input data,
even if the inferred results are accurate, it is difficult for clinicians to understand why
MLCs can produce such results. Therefore, in this study, we used the function of the
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“caret” package in R language to further understand how each parameter affected the
classification model and try to open the “black box”. Regarding how the program evaluates
the importance of the parameter, in short, if the changes of the parameter values will
affect the predicted result of the classifier more, then this parameter is considered to be
more important in the model’s decision. Similar methods have been used to analyze the
importance of parameters in MLCs in other studies [28,30,56].

For the importance of different parameters in our models, the GCL measurements
(GCL_T2, GCL_T1, GCL_I1)) in the macular ETDRS thickness map had the greatest influ-
ence in the diagnosis of early glaucoma, and BMO-MRW and cRNFL thickness were less
important. This result suggested that the structural changes of the GCL were important in
distinguishing early glaucoma from normal eyes in our model. Though in a previous study
by Pazos et al., compared with pRNFL parameters in Spectralis OCT, macular parameters
such as mRNFL, IPL, and GCL showed a lower diagnostic capacity to discriminate between
healthy subjects and early glaucoma patients when used individually [12], it should be
noted that when considering all the OCT parameters concurrently to build the prediction
model, it was not impossible that GCL measurements contributed more because of the
interaction between the parameters.

As the severity of glaucoma increased, GCL measurements (GCL_T2, GCL_T1, GCL_I1)
still had a certain influence in distinguishing moderate glaucoma from normal eyes, and
the ranking of cRNFL measurements (cRNFL_G, cRNFL_TS, cRNFL_TI) was significantly
moved forward. This could be explained by the significant changes in cRNFL thickness
compared to the normal eyes as glaucoma progressed to the moderate stage.

In the identification of severe glaucoma eye in our models, BMO-MRW, cRNFL, and
GCL measurements all had a certain degree of importance, which was probably because
of the obvious changes in all structures at the advanced stage of glaucoma. It was worth
noting that there seemed to be a trend where BMO-MRW affected the models more because
it had more values that fall into the top 10 important variables (MRW_TI, MRW_G, MRW_T,
MRW_TS). In terms of distinguishing between glaucomatous and normal eyes, the GCL,
BMO-MRW, and cRNFL were obvious key parameters for classification.

Neither mFT nor rFT measurements entered the top 10 in terms of importance. A possible
explanation is that the full thickness provided less information for diagnosing glaucoma.

For the importance of the location of parameters, the global, temporal, inferior, su-
perotemporal, inferotemporal sites were relatively influential locations for most of the
parameters. These findings were consistent with previous research showing that glaucoma
usually affects the superior and inferior temporal nerve fiber [57].

In varying severities of glaucoma, G, TS, and TI sites were all important locations of
cRNFL. The TS sector was more important in early glaucoma diagnosis, and the G site is
more important in advanced glaucoma. Interestingly, for BMO-MRW parameters, the G
site was the more important location in discriminating both early and moderate glaucoma
from normal eyes. While in the advanced stage, the importance of the TI, T, and TS sectors
increased, and the TI sector was the most important location in the advanced stage. This
result was consistent with previous findings proposed by McCann et al. where mean
global cRNFL and TI MRW-BMO were the best parameters among all in distinguishing
glaucomatous (average MD: −8.77 dB) from normal eyes [9].

For macular parameters such as GCP, IPL, and mRNFL in the ETDRS thickness map, T
and I quadrants were the most important quadrants. The T quadrant was more important
in the early and moderate stage, and I quadrant was more important in the advanced stage.
Our result is similar to the reports presented by Choi et al. that the inferior inner macular
layers were more vulnerable in advanced glaucoma [58].

Although MLCs had been proven to be excellent in helping glaucoma diagnosis
by using multiple SD-OCT parameters in many studies, to our knowledge, few studies
addressed how MLCs made the decisions. Yoshida et al. used the RF method, analyzing
cRNFL, mRNFL, and GC-IPL measurements concurrently and obtained better diagnostic
performance than that from using any single SD-OCT measurement [54]. The superior
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and inferotemporal mRNFL and GC-IPL measurements significantly contributed to the
RF classifier in the discrimination of early glaucoma eyes from normal eyes. In another
study by Oh et al., the extreme gradient boosting method was shown to be the best one for
the diagnosis of glaucoma among four methods using five features coming from clinical
data, visual field tests, and cRNFL parameters [28]. The mean MD of the glaucoma group
was −10.24 dB. The superior quadrant and inferior quadrant of cRNFL were reported to
have the strongest influence on the proposed XGboost model. Our results were similar to
these two studies where GCL measurements were the most contributing variables in early
glaucoma detection and the TS as well as TI sectors were the more important variables
among the cRNFL parameters in detecting moderate to severe glaucoma.

There are some strengths to our study. Our research proved that MLCs can be utilized
to identify glaucoma patients using OCT data with high accuracy. What is more valuable in
this study is that we used MLCs to simulate how the clinicians determine which parameters
are important and should be paid attention to when faced with such abundant parameters
as in Spectralis OCT. By observing the ranking changes of parameters in different glaucoma
stages, we may also better understand the pathophysiological mechanism of glaucoma.
Moreover, papers using OCT data from Asian populations for machine learning to detect
glaucoma patients are still limited. The emergence of our study can increase the diversities
of relevant research and is helpful for further cross-ethnicity comparison and analysis in
the future [59].

Though the results are meaningful, the present study had some limitations. First, age
was significantly different between glaucoma and control groups. As age was known to
be associated with RNFL loss [60], this may generate some bias in our study. Second, our
study population was not large enough, which might not represent the whole population.
A further larger sample is needed. Third, our research was based on the Taiwan Chinese
population, and the current results might not be able to apply to other ethnic groups.
Finally, the machine learning method generates models according to the input parameters
of Spectralis OCT. However, when using different OCT machines with different designs
or different scan protocols, the generated model is definitely different. Our models may
also not be able to generate accurate predictions when using data from subjects outside our
inclusion criteria. Further study by comparing different OCT machines is mandatory for
further exploring this important issue in the future.

5. Conclusions

In conclusion, to our knowledge, this is one of the few studies that combine RNFL,
neuroretinal rim, and macular parameters concurrently to build reliable MLCs for glaucoma
diagnosis and to analyze the importance of the included parameters. Although the results
are meaningful, clinicians should cautiously integrate the Spectralis OCT results into the
entire clinical picture when diagnosing glaucoma.
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10.3390/diagnostics11091718/s1, Table S1: All variables used in the machine learning classifiers,
Table S2: Variable importance ranking using the five machine learning classifiers for all glaucoma
eyes, Table S3: Variable importance ranking using the five machine learning classifiers for early
glaucoma eyes, Table S4: Variable importance ranking using the five machine learning classifiers for
moderate glaucoma eyes, Table S5: Variable importance ranking using the five machine learning
classifiers for severe glaucoma eyes.
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