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Apoptosis is a genetically regulated program of cell death that plays a key role in immune
disease processes. We identified EBF4, a little-studied member of the early B cell factor
(EBF) family of transcription factors, in a whole-genome CRISPR screen for regulators
of Fas/APO-1/CD95-mediated T cell death. Loss of EBF4 increases the half-life of the
c-FLIP protein, and its presence in the Fas signaling complex impairs caspase-8 cleavage
and apoptosis. Transcriptome analysis revealed that EBF4 regulates molecules such as
TBX21, EOMES, granzyme, and perforin that are important for human natural killer
(NK) and CD8+ T cell functions. Proximity-dependent biotin identification (Bio-ID)
mass spectrometry analyses showed EBF4 binding to STAT3, STAT5, and MAP kinase
3 and a strong pathway relationship to interleukin-2 regulated genes, which are known
to govern cytotoxicity pathways. Chromatin immunoprecipitation and DNA sequencing
analysis defined a canonical EBF4 binding motif, 50-CCCNNGG/AG-30, closely related
to the EBF1 binding site; using a luciferase-based reporter, we found a dose-dependent
transcriptional response of this motif to EBF4. We also conducted assay for transposase-
accessible chromatin sequencing in EBF4-overexpressing cells and found increased chro-
matin accessibility upstream of granzyme and perforin and in topologically associated
domains in human lymphocytes. Finally, we discovered that the EBF4 has basal
expression in human but not mouse NK cells and CD8+ T cells and vanishes following
activating stimulation. Together, our data reveal key features of a previously unknown
transcriptional regulator of human cytotoxic immune function.
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Apoptosis is a genetically regulated program of cell death that plays a key role in cell
and organ homeostasis and the prevention of cancer (1–3). Abnormalities of apoptosis
affect many biological processes, including aging, organismal degeneration, and disease
(4). In particular, the autoimmune lymphoproliferative syndrome (ALPS), contributing
to expansion of the secondary lymphoid tissue and autoimmune cytopenias, is caused
by germline mutations in FAS, FASL, CASP10, CASP8, and FADD, which are
involved in the Fas (CD95)/tumor necrosis factor apoptosis pathway (5–7). The pro-
teins encoded by these genes associate together once the Fas ligand (FASL) engages the
Fas receptor to form the death-inducing signaling complex (DISC) (Fig. 1D) (8). The
result of DISC formation is the proteolytic process converting caspase-8 and caspase-
10 zymogens into highly active and soluble aspartate proteases. These proteases cleave a
limited number of specific substrates, leading to apoptotic cell death. The disruption of
DISC formation or the inhibition of these proteases prevents apoptosis. However,
identification of the molecular checkpoints of DISC and Fas-mediated death is still
incomplete. In addition to FL-killing, cytotoxic CD8+ T cells and natural killer (NK)
cells secrete granules containing granzyme proteases and perforin (9). Perforin allows
granzymes to enter virus-infected or malignant target cells and trigger apoptosis and
cell death (10, 11). The transcription factors controlling the development of immune
cytolytic cells are not completely understood.
One checkpoint protein for Fas apoptosis is cellular FLICE inhibitory protein (c-FLIP),

encoded by the CFLAR gene, for which human genetic deficiencies have not yet been
reported (12). c-FLIP is a catalytically inactive evolutionary derivative of the progenitor
molecule of caspase-8 and caspase-10 in humans. Genes for all three molecules are found
tightly linked on chromosome 2. c-FLIP shares the caspase subunit structure and can be
cleaved by caspases despite having amino acid substitutions that preclude its own enzymatic
function. The structure of c-FLIP also preserves the death effector domain (DED), which
permits it to associate with DISC DED-containing proteins and serve as a dominant inhib-
itor of caspase activation and Fas apoptosis (13). Due to its apoptosis-inhibitory function,
c-FLIP contributes to cancer progression and metastases, and therefore it is important to
understand its molecular regulation (14).
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Fig. 1. The whole-genome CRISPR screen shows that EBF4 KO attenuates Fas-induced apoptosis. (A) Scheme of whole-genome CRISPR screen to identify
genes whose deletion causes resistance to Fas-induced apoptosis. (B) Graph of log10- FC difference vs. gene index from DNA samples after Fas stimulation
compared to unstimulated cells. The orange line denotes the significance cutoff of our CRISPR screen. (C) The percentage of viable WT and EBF4 KO Jurkat
T cells after different concentrations of FASL stimulation. (D) Scheme of Fas-mediated apoptosis. (E) Immunoblot of key Fas canonical regulators with or
without stimulation with FasL for 4 h. Lanes have been rearranged along dashed lines but sourced from the same gel, membrane, and exposure time.
(F) Intensity of immunoblot bands of cleaved caspase-8, c-FLIPs, Bcl-2, Bcl-xl, and Mcl-1 following FasL stimulation relative to HSP90 loading control.
(G) Immunoblot of Fas canonical regulators following stimulation with 1 μg/mL APO-1 to APO-3 for 0 to 120 min. Lanes have been rearranged along dashed
lines but sourced from the same gel, membrane, and exposure time. (H) CD95-immunoprecipitation was performed, and immunoprecipitated members of
the DISC were analyzed with the same condition in G. Lanes have been rearranged along dashed lines but sourced from the same gel, membrane, and
exposure time. (I) The percentage of viable EBF4 KO and EBF4 CFLAR double-KO cells compared to WT following FASL from experiments represented in C.
All experiments are representative of at least three independent experiments with similar findings. Two-way comparisons were calculated using a two-
tailed, unpaired Student’s t test. MW, Molecular weight; *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001.
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The early B cell factor (EBF; also called Olf) family consists of
EBF 1, 2, 3, and 4 in both mice and humans (15–19). EBF fam-
ily proteins contain a DNA binding domain comprising a zinc
finger motif as well as a helix–loop–helix (HLH) domain, which
enables them to interact with specific short DNA sequences, gen-
erally palindromic variants of the motif 50-GGGNNCCC-30
(20–22). EBF1 is the best studied and is known as a central tran-
scription factor in B cell differentiation (23, 24). In addition,
EBF2 and EBF3 proteins have roles in neuronal cell differentia-
tion (7). However, as the last member of this family, EBF4 is not
well investigated and its immune function remains unknown (18).
In this paper, we show that EBF4 plays a small regulatory

role in FAS-mediated apoptosis using a whole-genome CRISPR
screening system. This was due to the ability of EBF4 to con-
trol the degradation of the anti-apoptotic molecule c-FLIPs.
Further investigation, however, revealed that it is selectively
expressed in NK and CD8+ T cells and regulates cytotoxic and
other key molecules. These findings shed light on the role of
EBF4 in immunity.

Results

Whole-genome CRISPR screen reveals that EBF4 mediates
Fas-induced apoptosis. Genetic abnormalities in the canonical
Fas apoptosis pathway cause ALPS (7). Because there is incom-
plete penetrance of Fas mutations, we sought to identify addi-
tional genes influencing this pathway through a whole-genome
CRISPR screen. We therefore transduced the human CRISPR
Genome-Scale CRISPR Knock-Out (GeCKO) v2 guide RNA
library into Jurkat T cells (Fig. 1A). We found that deletion in
the FAS, FADD, and CASP8 genes encoding the known Fas sig-
naling DISC proteins attenuates FASL-induced death. Enriched
gene barcodes were plotted as the log10-fold change (FC) differ-
ence of gene-associated bar codes vs. the gene index, using a
screening cutoff value for log10(FC) of 2.2 (Fig. 1B and SI
Appendix, Table 1). One highly ranking gene that we identified
was EBF4, a little-studied member of the EBF transcription fac-
tor family (18, 25). Because of the important role of EBF1 in
the immune system, specifically B cell development, we believed
that EBF4 could also play a significant role in immune cell func-
tion and development. By performing a selected gene knockout
(KO) in Jurkat T cells (EBF4 KO), we confirmed that the loss
of EBF4 partially attenuated Fas apoptosis (Fig. 1C).
Fas initiates the extrinsic apoptosis pathway when FasL triggers

the recruitment of FADD, procaspase-8, and c-FLIP into the
DISC, leading to the processing and release of caspase-8 or
caspase-10 as a highly active, soluble aspartate protease (Fig. 1D)
(8). This can elicit caspase-9 cleavage through the intrinsic path-
way regulated by B-Cell CLL/Lymphoma 2 (Bcl-2) family mem-
bers (Fig. 1D). To elucidate the mechanism of apoptosis resistance
in EBF4 KO cells, we investigated key proteins of the Fas pathway
(Fig. 1 E and F). After FasL stimulation, the control cells showed
the expected increase in cleaved caspase-8, but this was reduced in
EBF4 KO cells (Fig. 1 E and F). Conversely, we found that the
“short” low molecular weight variant of c-FLIP (c-FLIPs) was
reproducibly increased (Fig. 1 E and F). The levels of Bcl-2, Bcl-
xl, and Mcl-1, as well as the HSP90 control, remained unchanged
(Fig. 1E). We obtained the same reduction in cleaved caspase-
8 accompanied by an increase in c-FLIP variants over a time
course of stimulation using an FAS agonistic antibody (Fig. 1G
and SI Appendix, Fig. 1A). Thus, we hypothesized that increased
c-FLIP inhibits Fas apoptosis in EBF4 KO cells.
We next analyzed the DISC assay using APO-1, an agonist

monoclonal antibody that triggers the assembly and precipitation

of the DISC (Fig. 1H and SI Appendix, Fig. 1B) (26). From 0 to
120 min, APO-1 induced cleaved caspase-8 in the DISC while
procaspase-8 expression accordingly dropped. In EBF4 KO cells,
cleaved p43/p41 caspase-8 was decreased in the DISC and
uncleaved caspase-8 was correspondingly higher. Notably, the
DISC also showed increases in c-FLIPs in EBF4 KO cells at all
time points (Fig. 1H). Finally, knocking out the CFLAR gene
encoding c-FLIP in EBF4 KO cells rescued full FASL death
induction (Fig. 1I and SI Appendix, Fig. 1C). Thus, the EBF4
KO inhibits apoptosis by inducing c-FLIP, altering the stoichi-
ometry of its binding at the DISC and reducing the production
of cleaved caspase-8.

EBF4 is found primarily in cytotoxic immune cells. We further
investigated the basis for elevated c-FLIP expression. Unexpect-
edly, we found that CFLAR messenger RNA (mRNA) was
modestly decreased in EBF4 KO cells (Fig. 2A). Since it is well
established that c-FLIP expression is regulated posttranscription-
ally, especially by degradation, we investigated protein turnover
(27, 28). c-FLIP has a naturally high turnover rate, so presumably
it has a high translation rate to maintain steady-state levels, and
any differences in the degradation rate will be magnified (29). We
therefore measured c-FLIP turnover using a cycloheximide (CHX)
chase assay. After 2 h CHX treatment, the EBF4 KO cells had
an average of 30% of their original c-FLIPs levels left, while
the wild-type (WT) cells retained an average of 15% (Fig. 2 B
and C). Thus, the loss of EBF4 caused the c-FLIPs protein to
be degraded at a slower rate (Fig. 2 B and C). The ubiquitina-
tion of c-FLIP reduces its stability by leading to proteasomal
degradation (30). We therefore examined ubiquitin–protein that
could contribute to c-FLIP protein degradation. However, we
found small or no differences in these factors between WT and
EBF4 KO Jurkat T cells (SI Appendix, Fig. 2B).

EBF4 (Olf-1/EBF-Like 4) was originally identified as an
olfactory neuron–enriched transcription factor and has strong
homology to the three other HLH genes, including the B cell
regulator EBF1 (25). We examined the human expression
quantitative trait loci (eQTL) database and found that EBF1 is
highly and solely expressed in B cells, EBF2 and EBF3 are
absent from immune cells altogether, and EBF4 is most highly
expressed in NK and cytotoxic CD8+ T lymphocytes (SI
Appendix, Fig. 2C). Human single-cell RNA sequencing (RNA-
seq) also showed preferential expression in NK cells, CD8+ T
cells, and a small fraction of monocyte/macrophages, mast cells,
and B cells (Fig. 2D). We experimentally confirmed these data
by RT-qPCR on purified primary cells from healthy human
donors by showing that EBF4 is most highly expressed in cyto-
toxic NK cells, especially CD16+ NK cells, followed by CD8+

T cells, and much less in CD4 or Jurkat T cells (Fig. 2 E and
F). Interestingly, stimulating purified NK cells with natural killer
group 2D (NKG2D) and natural killer cell receptor 2B4 (2B4)
caused EBF4 mRNA levels to decrease (Fig. 2G). Similarly, anti-
CD3/CD28 stimulation of purified CD8+ T cells caused a rapid
drop and near-disappearance of both the EBF4 mRNA and pro-
tein levels (Fig. 2 H and I). Since the loss of EBF4 causes resis-
tance, we tested the effect of EBF4 overexpression in CD8+ T
cells and found that it increased sensitivity to Fas apoptosis (Fig.
2J). Thus, EBF4 is necessary and sufficient to achieve enhanced
Fas-mediated T cell death under these conditions.

EBF4 regulates cytotoxic molecules via interleukin-2 signaling.
To further elucidate the role of EBF4 in immune cells, we per-
formed transcriptome analysis that compared overexpressed (OE)
EBF4 to EBF4 KO Jurkat T cells prior to any stimulation.
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A volcano plot showed that transcripts from genes encoding
cytotoxic proteins such as granzyme A (GZMA), granzyme K
(GZMK), and perforin (PRF1) as well as the differentiation
factors for NK cells and the CD8+ T cells eomesodermin
(EOMES) and T-bet (TBX21) were up-regulated in the OE
EBF4 Jurkat T cells (Fig. 3A, Left) and down-regulated in the
EBF4 KO (Fig. 3A, Right) Jurkat T cells, indicating that
EBF4 positively regulates the expression of these genes. These
data are consistent with higher expression of the EBF4 gene
itself in NK and CD8+ T cells.
In addition, ingenuity upstream regulator analysis predicted

that interleukin-2 (IL-2) was a positive upstream regulator in
EBF4 OE cells and a negative upstream regulator in EBF4 KO
cells (Fig. 3A, Bottom). Gene set enrichment analysis (GSEA)
further revealed that EBF4 OE induces the same gene sets that
IL-2 induces in NK cells and decreases those that IL-2 reduces
in NK cells (Fig. 3B). Furthermore, we performed Proximity-
dependent biotin identification (Bio-ID) mass spectrometry
analysis to investigate proteins interacting with EBF4 (Fig. 3C
and SI Appendix, Table 2). Filtering out potential contaminants
and evaluating the remaining candidates using the National
Institute of Allergy and Infectious Disease Selection by Iterative
Pathway Group and Network Analysis Looping database to
classify Kyoto Encyclopedia of Genes and Genomes biological
pathways (Fig. 3D), we found that EBF4 is potentially involved
in the JAK-STAT pathway and NK cell cytotoxicity. Based on
our RNA-seq data implicating IL-2 signaling, we immunopreci-
pitated key members of this pathway, MAPK3 and STAT5,
and found that EBF4 was specifically coprecipitated with these
factors (Fig. 3E). These data suggest that EBF4 has an impor-
tant role in controlling cytotoxic molecules in conjunction with
the common gamma chain cytokine pathway.
To investigate the function of EBF4 in the CD8+ and NK cells,

we next examined mice. The EBF4 gene is highly conserved in
mice; however, the expression was not detected in mouse immune
cell public databases (Fig. 3F and SI Appendix, Fig. 3A). Although
EBF4 was strongly detected in purified WT mouse olfactory epi-
thelium, no EBF4 expression was detected by RT-qPCR in NK
cells and CD8+ T cells (SI Appendix, Fig. 3B). We next established
an EBF4 KO mouse line to determine whether the developmen-
tal stages of NK and CD 8+ T cells depend on EBF4. However,
we detected no differences in the NK, CD8+, and CD4+ pre-
cursor and mature cell subsets in the thymus, spleen, or liver
between WT and EBF4 KO mice (Fig. 3G and SI Appendix,
Fig. 3C). From these data, we conclude that the function of
EBF4 in immune cells is different between humans and mice.

EBF4 binds the promoters of human cytotoxicity mediators.
Next, we performed chromatin immunoprecipitation and DNA
sequencing (ChIP-seq) to analyze EBF4 DNA binding regions.
Our ChIP-seq analysis of Jurkat T cells expressing FLAG-tagged
EBF4 captured DNA sequences that defined an EBF4 binding
motif, 50-CCCNNGG/AG-30, that was closely related to the
binding site of EBF1 and other EBF family proteins (Fig. 4A).
Furthermore, more than half of the sites were located in either
intronic or intergenic regions and ∼18% were near promoters/
transcription start sites (Fig. 4B). This finding could suggest that
EBF4 mainly regulates enhancers/intergenic control regions. Next,
we tested the transcriptional function of this motif by transfecting
293T cells with a minimal promoter–luciferase reporter con-
struct containing five upstream tandem repeats of the EBF4
binding sequence, 50-CCCAGGGG-30. We then cotransfected
increasing amounts of an EBF4 expression construct and measured
a dose-dependent increase in the luciferase response (Fig. 4C).

These findings support the conclusion that this site could respond
to EBF4 and perhaps other members of the EBF/HLH transcrip-
tion factor families.

We next compared the binding of EBF4 to promoters to the
transcriptomic analysis with the hypothesis that genes with
altered expression in the EBF4 OE and KO conditions could
be direct targets of EBF4. A total 279 genes were up-regulated
in the OE cells and underexpressed in the KO cells. Among
them, EBF4 binds only to the promoter region in 27 genes and
to both promoter and intergenic or intron regions in 21 other
genes (SI Appendix, Table 3). Three immunoregulatory genes
for cytotoxic CD8+ or NK lymphocytes, NKG7, GZMA, and
TBX21, illustrate our findings (Fig. 4D). EBF4 OE or KO in
Jurkat T cells caused changes in mRNA corresponding to a
positive regulatory role for EBF4 (Fig. 4E). In addition, EBF4
overexpression in Jurkat T cells increased NKG7, GZMA, and
T-bet protein expression (Fig. 4F). We therefore performed
luciferase reporter assays with the NKG7 promoter region con-
taining the EBF4 binding site. We found a dose-dependent
inducible effect of EBF4 on NKG7 activity that was completely
abrogated by an 8–base pair deletion of the EBBF4 binding site
(Fig. 4G). Our data show that EBF4 can regulate the promoter
region of NKG7, a gene important to NK and CD8+ T cell
function, using the sequence CCCNNGGG.

We also found that 122 genes (including EBF4 itself) with
intergenic or intron EBF4 binding sites were transcriptionally
regulated by EBF4 (SI Appendix, Table 4). Among them, we
noticed several important molecules for NK and CD8+ T cell
function such as GZMK, PRF1, and EOMES. Therefore, we
conducted assay for transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq) in EBF4 OE cells and
found increased chromatin accessibility upstream of these mole-
cules and in topologically associated domains (Fig. 4H). EBF4
binding on these sites was also confirmed by ChIP-seq (Fig. 4H
and SI Appendix, Fig. 4A). Of note, the GZMK and GZMA
genes are in close proximity in the genome, and they may be
coregulated by EBF4 via the same open chromatin site (Fig.
4H). Collectively, we concluded that EBF4 regulates cytotoxic
molecules by binding to their promoter or enhancer regions.
Moreover, we found that EBF4 binds to the promoter region
for three transcriptional factors, binds to the intergenic or
intron region for 15 transcriptional factors, and binds to both
the promoter region and intergenic or intron regions for one
transcriptional factor among 279 genes, suggesting that EBF4
may be part of a hierarchical gene regulatory network and may
have indirect effects on chromatin and gene accessibility, as pre-
viously discovered for the related factor EBF1 (31, 32).

Discussion

In this study, we uncovered an immunoregulatory role for
EBF4, a member of the EBF family, that has regulatory effects
in human CD8+ and NK cytotoxic lymphocytes. EBF4 is a
previously unexplored transcription factor. We were surprised
by the fact that since its discovery in olfactory epithelium in
the early 1990s, there were no in-depth studies of this protein
even though it is a close homolog of EBF1, which has a critical
role in B cell differentiation. The EBF family of HLH transcrip-
tion factors consists of EBF1 through EBF4, which have been
shown to have important roles in various cell lineages. Among
them, EBF1 has been the best studied in its crucial role as a B cell
lineage developmental factor (23, 33, 34). EBF2 is an essential
mediator of brown adipocytes (35), whereas EBF3 is a regulator
of inhibitory GABAergic neuronal development (36). In humans,
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EBF3 loss causes a genetic neurodevelopmental syndrome (37).
By comparison, there is only a single report on EBF4, showing
its cloning from olfactory cells (18). We now recognize that a
major obstacle has been that the gene and protein are expressed
little, if at all, in immune or other tissues in C57BL/6 experi-
mental mice. Using human samples, we were able to identify
functions in Fas-induced apoptosis and in cytotoxic lymphocytes.
Thus, EBF4 is like EBF1 in that it has a role in the immune sys-
tem but predominates in T and NK lymphocytes rather than B
lymphocytes.
EBF4 first came to our attention in a whole-genome CRISPR

screen showing that FAS-mediated apoptosis was impaired by an
EBF4 KO in Jurkat T cells. Biochemical analyses revealed that
the loss of EBF4 causes an increase in the endogenous protein
levels of c-FLIP due to a reduced turnover of the protein.
c-FLIP competitively binds to the DISC formed after FasL bind-
ing to the Fas receptor, and we found that its increased level in
EBF4 KO Jurkat T cells impaired caspase-8 cleavage, thereby
reducing apoptosis (38, 39). Transcriptome analysis comparing
EBF4 KO cells to WT cells revealed that three different E3
ligases showed a more than 25% decrease in the EBF4 KO cells,
such as RNF212, ZNF521, and RNF125, among 390 human
E3 ubiquitin ligases (SI Appendix, Table 5). We subsequently
knocked out these molecules to check the c-FLIP expression;
however, these E3 ligases did not affect the rate of cFLIPs pro-
tein degradation. Further investigation will be required to reveal
the underlying mechanism of how EBF4 regulates c-FLIP degra-
dation. FAS and its signals are important for apoptosis induction
in cancer cells. The Cancer Genome Atlas database revealed that
lower EBF4 expression in glioma/glioblastomas correlated with
higher mortality (SI Appendix, Fig. 4B). Conversely, higher
CFLAR (c-FLIP) expression correlated with higher mortality (SI
Appendix, Fig. 4C). We have shown that a loss of EBF4 results
in a loss of sensitivity to stimulation that induces apoptosis via
the induction of c-FLIP expression. We conjecture that this anti-
apoptotic mechanism may manifest during the proliferation and
survival of cancer cells. When there is a loss of EBF4, the cancer
cells that have an increased level of c-FLIP may not respond nor-
mally to apoptotic signals and have better survival. Nevertheless,
despite the clear changes in c-FLIP, the effects of EBF4 on
cleaved caspase-8 levels and apoptosis are mild, and EBF4 KO
cells can be killed by increased FAS stimulation. Thus, we
believe that this mechanism is a modulatory influence but not a
primary regulator of Fas homeostasis.
We gained insight into EBF4 function by first conducting

transcriptome analysis. This brought to our attention that
human CD8+ and NK lymphocytes had high expression. Our
mRNA sequencing data revealed that EBF4 regulates molecules
such as TBX21 and EOMES, which are important for the
development of NK and CD8+ T cells, as well as granzyme and
perforin, which are important for immune cytotoxicity. In addi-
tion, our data and a previous report showed that the CD56dim

CD16+ human NK cell subset had a higher expression of EBF4
(40). Further studies will be needed to reveal whether a specific
cell subset among CD8 and NK cells highly expresses EBF4.

Interestingly, we found that EBF4 mRNA expression was
decreased by T cell receptor (TCR) activation in CD8+ T cells
or following NKG2D stimulation of NK cells. This finding was
particularly striking in how swiftly EBF4 expression was down-
regulated. Although we do not really understand the regulatory
significance, previous papers showed that the release of FasL
from NK cells also leads to NK cell death (41). This leads us to
conclude that activation-induced suppression of EBF4 could
contribute to regulating cell death mechanisms during immune
responses. However, most functional assays were performed
with Jurkat T cells, and thus further experimentation is neces-
sary to address the expression of EBF4 in human NK and
CD8+ T cells or other rare immune subsets that could yield
fresh insight into its immune function. The uniqueness of this
observation invites further investigation especially because we
found that the levels of EBF4 are not restored for an extended
time. Hence, the response resembles that of a developmental or
differentiation switch—once turned, it locks in the cells to a
particular phenotype by the presence or absence of specific tran-
scription factors.

Materials and Methods

Jurkat T cells were transduced with a CRISPR KO pooled library and selected for
response to FASL, and the small-guide RNA (sgRNA) sequences were deep-
sequenced. EBF4 OE Jurkat T cells were generated through lentiviral transduc-
tion, while EBF4 KO cells were generated with a CRISPR KO system either
through lentiviral transduction or electroporation. EBF4-deficient mice were gen-
erated using the CRISPR-Cas9 genome–editing method. Animal procedures
were performed under protocols approved by the National Institute of Allergy
and Infectious Disease Animal Care and Use Committee. Under various condi-
tions, cells were subjected to immunoprecipitation, immunoblotting, FAS killing
assays, qPCR, mass spectrometry, transcriptome analysis, DNA sequencing, ChIP-
seq analysis, ATAC-seq analysis, and luciferase reporter assays. A more detailed
explanation of methods can be found in the SI Appendix.

Data Availability. Raw data for RNA-seq, ChIP-seq, and ATAC-seq have
been deposited in GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE206222) (42).

All study data are included in the article and/or SI Appendix.
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