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A RAPID ASSAY FOR GENOME EDITING EFFICIENCY

To the Editor: Genome editing via programmable endonu-
cleases enables us to generate site-specific double-strand 
breaks at virtually any position in a target genome.1–3 Exploit-
ing cellular repair mechanisms, this can be used for targeted 
gene disruption via nonhomologous end joining (NHEJ) or 
for the precise manipulation of a target sequence through 
homology-directed repair (HDR) in the presence of a suit-
able DNA template. The latter carries great promise for the 
field of gene therapy as it can be utilized for the correction of 
disease-causing mutations. Earlier this year, De Ravin et al. 
reported HDR rates >50% in human hematopoietic stem and 
progenitor cells using zinc finger nucleases, demonstrating 
that therapeutic levels of gene correction can be achieved 
in clinically relevant cell types.4 However, the efficiency of 
HDR remains considerably lower than that of NHEJ in many 
experimental settings and a background of mutagenic NHEJ 
is currently limiting the usefulness of genome editing for gene 
therapy approaches. This limitation signifies a need to iden-
tify conditions that bias genome editing toward HDR. Strate-
gies have been developed to encourage HDR over NHEJ, 
including stimulation with small molecules and inhibition or 
disruption of DNA ligase 4 activity, but optimal conditions still 
need to be established.5–7 Reliable quantification of HDR and 
NHEJ is essential to the identification of conditions that favor 
HDR over NHEJ. This was first achieved through the genera-
tion of single-cell clones,2 which is impractical for the deter-
mination of overall NHEJ and HDR frequencies. The Traffic 
Light Reporter system provided the first fluorescence-based 
assay for the simultaneous quantification of HDR and NHEJ.8 
However, this system requires the generation of reporter cell 
lines and therefore can not be applied easily in primary cells 
or animal models. Sophisticated methods such as single 
molecule real time sequencing or sib-selection/droplet digital 
polymerase chain reaction allow for the quantification of HDR 
and NHEJ at endogenous loci without the necessity of gen-
erating individual clones.9,10 However, downstream sample 
processing requirements limit the use of these techniques 
in a high-throughput format. As an alternative, we propose 
a simple strategy for the simultaneous quantification of HDR 
and NHEJ by targeting the ubiquitous enhanced green fluo-
rescent protein (EGFP) fluorescent reporter (Figure 1a, b).

In 1994, Heim et al. discovered that a single base substi-
tution (196T > C) in the chromophore of wild-type (wt) GFP 

could shift its fluorescence absorption and emission toward 
the blue spectrum, thus creating blue fluorescent protein 
(BFP).11 Here, we demonstrate that EGFP can be converted 
into BFP in EGFP-expressing cell lines using the clustered 
regularly interspaced short palindromic repeats (CRISPR) 
and CRISPR-associated protein 9 (Cas9) system. HDR and 
NHEJ can subsequently be quantified as blue fluorescence 
and loss of fluorescence, respectively. K562 cells carrying an 
EGFP-modified human β-globin locus in the AAVS-1 site in 
chromosome 19,12 and HEK293T cells that were stably trans-
duced with an integration competent lentiviral EGFP expres-
sion construct (K562-50 and HEK293T-EGFP, Figure 2a)  
were used in this study. Two guide RNA (gRNA) vectors 
based on px330-IRES mCherry were designed to target 
Cas9 into close proximity to the target site (Figure 1b). 
A double-stranded BFP PCR reaction product amplified 
from the vector pLMP (primers 5′-CCTGAAGTTCATCTGC 
ACCACC-3′ and 5′-GACGTAGCCTTCGGGCATGG-3′) was 
compared with two single-stranded repair templates (ssODN) 
(Figure 1c). The gRNA/Cas9 plasmids (5 µg) and HDR tem-
plates (100 pmol) were coelectroporated into the target cells 
using a BioRad Gene Pulser II electroporator. GFP and BFP 
fluorescence were assessed 10 days later using flow cytom-
etry. HDR and NHEJ were quantified as the percentage of 
BFP+ cells and nonfluorescent cells, respectively. HDR/total 
editing ratios (R) were determined using the formula: R = 
(HDR)/(NHEJ + HDR) * 100.

Our data shows that a single 196T > C substitution 
using ssODN1 is sufficient to convert GFP to BFP. How-
ever, low fluorescence intensity and a low HDR frequency 
were observed in comparison with the other templates 
in K562-50 cells (Figure 1d,e).  An additional 194C > G 
substitution in ssODN2, corresponding to a reversion of 
the EGFP amino acid sequence back to that of wild-type 
GFP, was sufficient to restore BFP fluorescence intensity 
to that observed with the PCR template (Figure 1e). The 
low HDR frequency observed with ssODN1 was theorized 
to result from recutting of the repaired sequence by Cas9, 
as the sequence resulting from HDR retains the complete 
target sequence for gRNA1 and contains only one mis-
match in the gRNA2 target site. The 194C > G substitu-
tion introduces an additional mismatch in the gRNA2 target 
site and eliminates the gRNA1 protospacer adjacent motif 
sequence. To further reduce the target sequence similar-
ity with gRNA1 after HDR, ssODN2 was designed with an 
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additional silent mutation (201C > G). In accordance with 
our expectations, the highest HDR frequency was achieved 
with ssODN2 in both K562-50 and HEK293T-EGFP cells 
(5.8% and 23.3%, respectively, Figure 2a). No significant 
difference was observed between sense and antisense 
configuration of ssODN2 (Figure 1d). The assay was vali-
dated through sequencing of clones grown from the GFP+, 
BFP+, and nonfluorescent populations after editing with 
gRNA1 and ssODN2 in K562-50 cells (Figure 2b).

In summary, we demonstrate that GFP to BFP conver-
sion is a reliable and simple method for the quantification 
of HDR and NHEJ. The high sensitivity of the GFP chro-
mophore region to single amino acid deletions demon-
strated by Arpino et al. supports our hypothesis that even 
+3 and −3 insertions/deletions can be detected as loss of 

fluorescence.13 We have applied this to the optimization of 
a HDR template for GFP to BFP conversion and verified 
the strategy through sequencing. While we used EGFP+ 
cells as targets, wt GFP may also be a target in place of 
EGFP. This strategy could be used in a high-throughput 
screen to identify conditions that enhance HDR frequency 
(Figure 2c). In order to address mechanistic differences 
that uniquely affect genome-editing rates dependent on 
the donor template used, the screen can easily be adapted 
to use a different template type (e.g., dsDNA, adeno-
associated virus). The abundance of EGFP-expressing 
cell lines and animal models permit the application of this 
strategy for optimization of HDR in a wide range of primary 
and transformed cells for the establishment of in vivo gene 
repair strategies.

Figure 1   HDR template optimization. (a) Multiple sequence alignment between the wtGFP, EGFP, and BFP chromophore regions. A single 
Y66H amino acid substitution corresponds to a shift in the fluorescence excitation and emission spectra of the protein, converting GFP to 
BFP. (b) Gene targeting strategy. Two gRNAs, in sense and antisense orientation relative to the EGFP coding sequence, target Cas9 to the 
EGFP chromophore. Cleavage sites are marked by red indicators, targeted nucleotide is highlighted in green. (c) A dsDNA PCR product 
amplified from a BFP plasmid (153 base pair) and two ssODN (133 nucleotides) were used as templates for HDR. Capital letters indicate 
deviations from the EGFP target sequence. (d) Influence of the HDR template on relative HDR rates. K562-50 cells were coelectroporated 
with a plasmid encoding Cas9 and either gRNA1 or gRNA2 and different HDR templates. Ten days postelectroporation, HDR and NHEJ were 
measured as BFP fluorescence and loss of fluorescence, respectively. Graph represents HDR/total editing ratios and SDs of two independent 
experiments (VA = no HDR template). (e) Fluorescence intensities of HDR products using different HDR templates. The BFP PCR product and 
ssODN2 yield a HDR product of ~3× greater fluorescence than ssODN1. Histograms show fluorescence intensities of BFP+ cells sorted via 
fluorescence-activated cell sorting after GFP to BFP conversion with different HDR templates compared with nonfluorescent cells resulting 
from NHEJ without a HDR template (control).
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followed by clonal expansion. (b) Verification of GFP to BFP conversion as a tool for quantification of HDR and NHEJ trough Sanger 
sequencing. Single-cell sorting of K562-50 cells from Q1, Q3, and Q4 populations as shown in Figure 2a (i) was performed for clonal 
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