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ABSTRACT

Mathematical cancer models are immensely powerful tools that are based in 
part on the fractal nature of biological structures, such as the geometry of the lung. 
Cancers of the lung provide an opportune model to develop and apply algorithms 
that capture changes and disease phenotypes. We reviewed mathematical models 
that have been developed for biological sciences and applied them in the context of 
small cell lung cancer (SCLC) growth, mutational heterogeneity, and mechanisms 
of metastasis. The ultimate goal is to develop the stochastic and deterministic 
nature of this disease, to link this comprehensive set of tools back to its fractalness 
and to provide a platform for accurate biomarker development. These techniques 
may be particularly useful in the context of drug development research, such as 
combination with existing omics approaches. The integration of these tools will 
be important to further understand the biology of SCLC and ultimately develop 
novel therapeutics.
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KEY POINTS

Novel therapies are urgently needed for patients 
with small cell lung cancer (SCLC)

The use of mathematical models in medicine 
is becoming progressively more robust due to the 
exponentially increasing processing power of new 
hardware and software

Computational models thus far have mostly focused 
on comprehensive cancer biology models rather than 
individualized disease models

Mathematical modeling integrated with 
computational modeling can be used to simulate tumor 
growth, mutational heterogeneity, cellular automata, and 
mechanisms of metastasis

Mathematical oncogenic models can provide insight 
into biological mechanisms of action, identification of 
biological markers, quantification of image analysis and 
understanding of chaotic cell dynamics, especially in 
immune function

MAIN

Self-similar, repeating patterns, also known as 
fractals, can describe the universe and mimic nature’s 
highly complex structures. Nature often presents itself in 
fragments of patterns that are similar, yet not identical. 
The conservation of structural patterns in nature is 
manifested across organisms from different realms. One 
prominent example is the respiratory analogy between 
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trees and lungs, where conservation of both fractal design 
(self-similarity) and function is elegantly manifested 
(Figure 1). The central tree trunk/trachea divides into 
wider branches/bronchi, which bifurcate into increasingly 
smaller branches/bronchioles, and eventually conclude 
in leaves/alveoli. The synchrony in morphology is also 
translated into function, where gas exchange occurs at 
the same terminal end, leaves or alveoli. Maintenance of 
this stable, yet complex natural order controls biological 
equilibrium and thus life. Quantifying changes in chaotic 
patterns could provide a valuable diagnostic tool to 
distinguish at an early stage between healthy and abnormal 
tissue, paving the way for more effective and personalized 
cancer treatments. 

Our goal is to develop an understanding of the 
mathematical basis of cancer in the context of small cell 
lung cancer (SCLC) growth, mutational heterogeneity, 
and mechanisms of metastasis. The results can serve as 
a biomimetic framework for organizing and applying 
the wealth of available genomic and clinical data. We 
aim to communicate this mathematical understanding to 
clinicians and tumor biologists in the hope of generating 
precise treatment maps and therapies with improved 
outcomes. It is hypothesized that cancer is switched on 
by a chaotic imbalance through stochastic processes of 
mutation generation and genetic drift, which are inherently 
random. However, further malignant development seems 
to recover this balance, albeit to one far from normal, 

Figure 1: Fractal geometry in SCLC. (A) 3D visualization of SCLC patient lungs and their fractal properties. (B) Fractal tree 
generated using Swift 3.1 programming language. (C) Histology of SCLC showing the fractal geometry of tumor tissue. Hematoxylin 
and eosin stained SCLC specimen. SCLC tends to travel in clusters and the encircled areas are examples of this clustered tumor property. 
Specifically, a cluster infiltrating into a blood vessel is shown on the left.
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in favor of a deterministic process through clonal 
selection. Deterministic models include ordinary and 
partial differential equations that describe tumor kinetics 
and stroma, whereas stochastic models include cancer 
initiation and progression such as cellular automata and 
group theory. These tools may provide a focal point 
for integrated systems approaches that are aimed at the 
development of new cancer therapeutics. 

SMALL CELL LUNG CANCER (SCLC) 
AND ITS CLINICAL STATUS

SCLC is thought to originate from neuroendocrine 
cells that normally reside in the lung epithelium [1], 
still retaining some of the neuroendocrine cell markers, 
including CD56 [2, 3], chromagranin, and synaptophysin 
[1] or the neuroendocrine transcription factor ASCL1 
(achaete-scute complex homolog-like 1 (ASCL1)) [4]. 
SCLC is typically highly metastatic in the majority of 
patients with a large number of circulating tumor cells 
(CTCs) in the periphery, likely contributing to relapse and 
poor prognosis [5, 6]. CTCs can have stem cell properties 
and may help detect early disease, define treatment 
efficacy or serve as diagnostic markers using liquid biopsy 
methodology [7–9]. The majority of SCLC patients have 
a history of smoking and the disease can present itself 
many years after smoking cessation [10, 11]. SCLC is 
characterized by rapid and early metastatic growth. SCLC 
itself is typically not confined to a single tumor mass, 
instead it spreads rapidly, often as clusters of cancer 
cells. These clusters or spheroids are commonly observed 
during metastasis and may contribute to chemoresistance 
[12]. This suggests that molecules that regulate cell/
cell interactions, cell/matrix interactions or in general 
cytoskeletal functions, are potential therapeutic targets for 
SCLC. 

SCLC is either staged as limited disease (LD), with 
tumors localized to one hemithorax with potential regional 
lymph node involvement or ipsilateral pleural effusion, 
or it is staged as extensive disease (ED) with expanded 
metastatic states [13]. Most patients are not diagnosed at 
an early stage, have metastatic disease and face limited 
treatment options with an overall 5-year survival of less 
than 7% [14]. It seems apparent that early diagnosis 
using appropriate biomarkers would improve outcomes. 
However, to date there are no effective methods for early 
screening and detection for SCLC. With a 5-year survival 
rate of less than 20% and more than 30,000 deaths per 
year, SCLC is defined as a “recalcitrant” cancer in the US. 
Treatment of SCLC varies depending on the extent of the 
disease. Standard therapy for LD includes chemotherapy, 
mostly in combination with radiation. Currently, 
approximately a quarter of patients with LD can be cured 
with current standard treatments. Typically, platinum-
based chemotherapeutics are combined with etoposide and 
once or twice daily thoracic radiation therapy before the 

third cycle of chemotherapy [15–18]. In general, SCLC 
initially responds well to chemotherapy, yet eventually 
resistance develops. The median survival for patients 
diagnosed with LD is 15–20 months and 5.5 months for 
patients diagnosed with ED. Chemotherapy is also the 
first-line treatment for patients with ED, but treatment 
is often palliative [19]. For patients that are not sensitive 
to etoposide/carboplatin, second-line treatment is mainly 
limited to the topoisomerase I inhibitor topotecan [20, 21]. 
Additional therapeutic approaches and targeted therapies 
have been developed and tested or are under development 
but have not yet led to a breakthrough in treatment and 
5-year overall survival has only marginally improved in 
the past 40 years [14, 22]. There is thus a clear need to 
discover new targeted therapies for SCLC and it will be 
crucial to define biological mechanisms that cause cancer 
promotion, progression or metastasis and link them to 
genetic changes. Advances in understanding the biology 
of SCLC have largely relied on in vitro studies using cell 
line models and may not be suitable for unraveling the 
sequence of events leading to the aberrations responsible 
for tumor initiation. Solving these problems remains a 
challenge, and clinical application of acquired discoveries 
is often lacking [23, 24]. 

SCLC CELLS REPRESENT A DIVERSE 
POPULATION

Intrinsic and persistent genomic instability in 
SCLC are a driving force for clonal diversity and disease 
evolution. With about 175 mutations per tumor, the rate 
of genomic alterations in SCLC is amongst the highest 
in solid tumors (5.5 to 7.4 mutations per Mb) [25, 
26]. Frequent G-to-T transversions indicate a tobacco 
carcinogenesis signature and are consistent with a 
smoking history [25]. Even though SCLC is thought to 
be of neuroendocrine origin, the cancer stem cell (CSC) 
population is not well defined and appears diverse on 
a phenotypical and genomic level, which may be due 
to high rate of mutations and/or epigenetic regulation. 
Phenotypically, SCLC CSCs are not well defined and 
may contain several markers including SOX2, CD44, 
CD56 (NCAM), CD90, CD105, CD133, Sall4, Oct4, 
nestin, S100β or vimentin [27, 28]. Interestingly, as the 
ASCL1 transcription factor regulates neuroendocrine 
features, it also cooperates with Notch signaling in 
normal airway stem cell differentiation [29]. In SCLC, 
this pathway is altered and overexpression of E2F3 as 
well as loss of RB function drive disease progression, 
likely supported by loss of function mutations in the 
tumor suppressor TP53 [30]. Indeed, TP53 (100%) 
and RB1 (93%) are the highest mutated genes in SCLC 
cases without chromotripsis. [31]. Further, expression of 
the histone-lysine methyltransferase enhancer of zeste 
homolog 2 (EZH2) strongly correlated with disruption 
of E2F transcription factors/RB1 pathway, found in 96% 
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of SCLC [32]. Changes in target gene profiles are also 
associated with a “stem cell-like” phenotype [32] and in 
some cases with acquired chemoresistance [33]. NOTCH 
family genes are frequent targets of inactivating mutations 
in SCLC, with about 25% of tumors being affected and 
this inactivation is required for optimal tumor growth 
[31]. In addition, expression of Delta-like protein 3 
(DLL3), an inhibitory ligand of NOTCH that is regulated 
through ASCL1, is expressed in more than 80% of SCLC. 
Inhibition of DLL3 with rovalpituzumab, a DLL3-targeted 
antibody-drug conjugate, in recurrent SCLC shows 
single-agent anti-tumor activity and would be expected to 
also specifically target CSCs [34]. The overall NOTCH 
pathway mutational profile in SCLC is consistent with 
suppression of Notch activity [31]. Additional genes that 
are mutated at a significant level include the G protein-
coupled receptor FPR1, the G protein regulatory protein 
RGS7 as well as KIAA1211 and COL22A1 [31]. There is 
also amplification of MYC family members in about 16% 
of SCLC [25], which function through transcriptional 
regulation [35]. There are also alterations in receptor 
tyrosine kinases, including FGFR1 and KIT or less 
frequent targets, including MET, RON and EPHB4 as well 
as proximal downstream effectors, such as PIK3CA or 
PTEN [31, 36–38]. Also, these receptor tyrosine kinases 
may signal in part through reactive oxygen species (ROS) 
as a result of metabolic reprogramming that can non-
specifically activate signaling cascades and contribute 
to DNA damage [39]. Metabolic changes in cancer cells 
are intrinsically associated with transformation and 
may not only provide energy, but also intermediates 
for anabolic pathways or metabolites that affect gene 
expression and ultimately result in changes within the 
tumor microenvironment, leading to an overall growth 
advantage. There are additional mechanisms that reflect 
the genetic heterogeneity within this cancer [25, 31].

SCLC METASTASIS AND THE TUMOR 
MICROENVIRONMENT

The process of metastasis is divided into several 
characteristic phases, starting with invasion of tumor 
cells into surrounding tissues and then eventually the 
blood stream. As circulating tumor cells (CTCs) they 
can reach distant sites and grow if they have acquired the 
capability to survive and interact with the various tissues, 
such as extravasation through the endothelial lining of 
blood vessels [40]. The success of this process depends 
on specific cellular properties that may vary and are not 
only determined by genomic changes and their cellular 
consequences but also by the effects that the tumor has 
on its microenvironment and how it interacts or responds 
to them. Both extravasion and subsequent intravasion to 
establish metastatic sites, can be regulated at multiple 
levels, involving ligands within the extracellular matrix 
ECM, their receptors, including selectins, integrins, 

cadherins, CD44 and others, or chemokines and cytokines 
and their receptors. Additional interaction with immune 
cells or stromal cells further determine metastatic 
function [41]. A retrospective study analyzed 251 SCLC 
patients diagnosed between 1999 and 2000 and found 
152 (60.6%) with distant metastases. Target organ 
involvement included 20.3% liver, 18.3% bone, 15.5% 
brain, 10.0% lung and 6.0% of adrenal gland [42]. (Figure 
2; Supplementary Video 1) The model was generated by 
javascript bubble chart, where the initial state is fixed 
with all cancer cells positioned at the primary site, and the 
final state is quantitatively fixed based on the metastasis 
sites population reported in Nakazawa et al. [42]. Cells 
with different metastatic phenotypes first appear at the 
primary site, then cells with similar metastatic phenotypes 
cluster together and eventually metastasize to the different 
sites. Metastasis is a multi-step process in the cancer 
model, we think about mitogenesis, morphogenesis, and 
motogenesis [43]. The mitogenesis gives the proliferation 
that also then effects morpho- and moto-genesis. The 
process of metastasis is dependent on genetic regulation, 
protein network, and tumor-stroma interaction. As an 
example, we have shown that PAX5 transcription factor 
is highly expressed in SCLC [44]. This then regulates 
chemokine receptor CXCR4 and RTKs such as MET 
and RON. The receptors themselves cause a plethora of 
signal transduction events such as activation of the focal 
adhesion protein FAK and Actin cytoskeleton. Ultimately 
this leads to increased motility, invasion, and metastasis.

EMT is a crucial process for metastasis formation 
in cancer progression and development. A few studies 
have identified small cell lung cancer as an epithelial 
to mesenchymal transition (EMT)-like cancer [45, 46]. 
Small cell lung cancer and other carcinomas that undergo 
EMT have been observed to have an enhanced metastatic 
capacity, but this is complicated by the presence of 
epithelial differentiation at the metastatic sites [47]. The 
forward and backward transitioning between epithelial 
and mesenchymal phenotypes has become more well 
understood and it is believed that cancer cells with hybrid 
phenotypes, in which the EMT network is in a hybrid 
oscillating state, are associated with more aggressive 
cancer behaviors [48–50]. In the role of metastasis, it is 
theorized that the presence of a high number of hybrid 
E/M cells may form CTC clusters, which form much more 
metastases than single CTCs [51–53].

The significance of the tumor stromal 
microenvironment for tumorigenicity and metastasis 
in SCLC has been well established and some of the 
mechanisms involved have been already unraveled. In 
particular, high levels of extracellular matrix (ECM) 
proteins are found to be specifically associated with 
SCLC tumors. ECM proteins bind to integrin and other 
cell surface receptors, effectively regulating cellular 
transformation processes through ‘outside-in’ signaling. 
Conversely, ‘inside-out’ signaling regulated by tumor 
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cells defines the interaction of receptors through changes 
in their functional interaction with ECM proteins [54, 55]. 
SCLC can actively participate in producing ECM proteins, 
such as fibronectin and laminin to support anti-apoptotic 
mechanisms and reduce the efficacy of chemotherapy [56]. 
Binding of fibronectin to the β1 integrin receptor stimulate 
PI3K signaling mechanisms that regulate apoptosis, cell 
motility/morphology and adhesion [56, 57]. Laminin also 
signals through the PI3K pathway and this activity may 
be required for suppression of apoptosis, morphological 
changes and chemoresistance [58]. Invasion and 
metastasis requires protease activity to penetrate the 
barrier provided by the ECM. Expression of the ADAM-
12 (A disintegrin and metalloprotease-12) protease was 
found in 73% of tumor specimen and other ADAM family 
members in 10-40% of specimen. Targeted knockdown 
of ADAM-12 in the H1688 SCLC cell line reduced cell 
growth, invasion and metastatic function [59]. Hyaluronic 

acid, another ECM component, binds mostly to the CD44 
receptor and can be cleaved by hyaluronidase. In SCLC, 
the expression of CD44 and hyaluronidase was found to be 
low or absent, thus altering potential metastatic function 
during intravasion and extravasion [60, 61]. 

The MET receptor, and its ligand, HGF, may also 
play an important role in metastatic process as well as 
allowing cancer cells to survive in distant sites [62]. The 
juxtamembrane R988C and T1010I mutations in MET 
introduced in a pre-clinical cell line model can lead 
to growth factor-independent cell growth. Moreover, 
when overexpressed in the H446 SCLC cell line, both 
mutations were sufficient to alter cell morphology, 
adhesion, foci-formation and soft-agar colony formation 
[38]. MET activation leads in part to phosphorylation 
and activation of FAK (focal adhesion kinase), AKT, 
the ERK1/2 pathway and others. Expression of active 
MET can be targeted by the MET inhibitor, SU11274 

Figure 2: Most common metastasis sites of SCLC. Simulation of early time points and the endpoint (from top left to bottom right) 
of tumor cells (purple) metastasizing to different organs (colored as indicated). See also Supplementary Video 1.
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or RNA interference, thus regulating MET-dependent 
invasion [63, 64]. In vitro testing of metastatic cells in 
an orthotropic transplant model showed HGF/MET-
dependent motility and invasion of metastatic cells 
and metastasis itself in bone marrow, kidney and brain 
could be suppressed by MET inhibition [65]. Ligation of 
the related receptor tyrosine kinase RON by its ligand 
macrophage stimulating protein (MSP) suggests a rather 
specific role in promoting liver metastasis in a SCLC cell 
line-based in vivo mouse model [66]. In patients, there 
is high expression of the SDF-1/CXCL12 chemokine 
receptor CXCR4. Normally, SDF-1 is produced in the 
bone marrow by stromal cells and acts as a homing factor 
for hematopoietic cells. In SCLC, SDF1 enhances the 
binding of VCAM-1 (vascular cell adhesion molecule 1 
or CD106) to VLA-4 (Very Late Antigen-4 or integrin 
α4β1). This may explain in part the high propensity of 
SCLC to metastasize to the bone marrow [67]. This is 
consistent with an orthotopic xenograph in vivo mouse 
models, wherein tumor growth could be reduced by 
cisplatin and etoposide, but formation of metastases was 
not affected. However, the CXCR4 inhibitor AMD3100, 
was somewhat less effective in reducing tumor growth 
but significantly reduced suppressed metastasis formation 
by 43% [68].

The phenotypic plasticity of small cell lung cancer 
is a dynamic chaotic system where a variety of starting 
conditions exhibited by molecular interactions and 
environmental fluctuations evolves into a set of values of 
the variables, which can be understood as an “attractor” 
(steady state) where slight perturbations can have robust 
outcomes [69, 70]. At the core of this system is an 
endogenous molecular-cellular network that is regulated 
by gene regulatory networks (GRNs) where fluctuations 
from normal attractor to cancer attractor are responsible 
for cancer formation and the eventual cancer progression 
as cancer attractors transition phenotypes responsible for 
resistance [70, 71]. A recent study explored the stability 
of the cancer state that relies on the cancer attractor and 
the results implied that at a certain state the cancer can 
no longer be reversed to a non-malignant phenotype [72]. 
However, existing data shows that it is possible to reverse 
and maintain aggressive “cancer attractors” by applying 
a stepwise therapeutic approach by targeting the dynamic 
system responsible for the primary factors of metastasis 
and progression [70]. In one example, the transition 
from normal state occurs through the stepwise process 
of MDM2 on, CDK2 on, RB off leading to cancer state 
[72]. However, the reversal processes is similar where RB 
goes on, CDK2 and CDK4 off, and off of MDM2 leading 
to a normal state in that sequence [72]. This method of 
reversing the cancer attractor is vital for SCLC due to the 
vital role of RB in SCLC oncogenesis, and the restoration 
of this tumor repressor gene may be a potential therapeutic 
tactic [72].

As can be appreciated, the genetics/proteomics 
and growth characteristics for SCLC are unique. In spite 
of decades of research, we have not made progress in 
the therapy for SCLC. The role of the immune system 
in the biology of SCLC is just beginning to emerge 
and typically depends on the functional interaction of 
lymphocytes, tumor cells and antigen presenting cells. 
Currently, several trials determine the efficacy of immune 
checkpoint inhibitors in SCLC. This treatment is done 
with a curative intent, since it has the potential to target 
cancer stem cells, rather than blocking metastatic spread 
of the tumor [73]. Some of the additional advances for 
this disease will come from early detection, understanding 
biology, developing novel therapies, and prevention of 
recurrence. In order to understand the various genetic 
and cellular biology of SCLC, we have started to develop 
mathematical models. In particular, one can evaluate the 
growth characteristics with first order kinetics such as 
ordinary differential equations, tumor-stroma interactions 
with partial differential equations, and geometry/cell 
movement/metastasis with chaos theory/fractal analysis.

COMPUTATIONAL MODELING

Discrete models – cellular automata and agent 
based models

Single cell events such as mutations have been 
modeled by discrete methods such as cellular automata 
[74], agent-based models and hybrid continuum-discrete 
approaches [75]. These discrete models led to multiscale 
modeling of cancer where by ordinary differential 
equations (ODEs) are linked to cellular level parameters 
[76]. 

The cellular Potts model [77] is a more generalized 
cellular automata (CA) that uses lattice dynamics to study 
interactions among biological cells. The cellular Potts 
model was used to study the formation of cell clusters 
as a consequence of assuming configurations of minimal 
adhesive free energy [78]. The CA model and the cellular 
Potts model fall under agent based models (ABM). The 
variables in ABM are individuals. These individuals are 
considered as agents and a set of prescribed rules govern 
the behavior of these agents. In the case of CA, the 
individual lattice cells are the agents. 

A discrete agent based spatio-temporal model that 
incorporates the effects of nutrient supply, mechanical 
confinement that represents the tissue resistance against 
tumor cell movement and toxicity of metabolites in the 
context of brain tumor progression was developed by 
Mansury et al. [79]. They simulated the complex dynamic 
self-organizing and adaptive processes observed in tumors, 
namely spatial aggregation of tumor cells as clusters and 
their migration in search of suitable survival conditions. 

Hybrid agent based models combine the unusual 
effectiveness of continuum deterministic models to 
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capture tumor dynamics at the tissue scale with discrete 
CA models at cellular and subcellular scales [80]. Tumor 
invasion of stroma and surrounding tissue are modelled as 
coupled non-linear partial differential equations (PDEs). 
The PDEs are discretized to model cell migration and 
form the basis of the hybrid discrete-continuum model. 
This model enables specific properties of cells to be 
described such as proliferation, death, cell-cell adhesion 
and mutation. 

The software BioFVM [81] was utilized to simulate 
the cellular automaton models with some adjustments to 

values that would favor SCLC (Figure 3, Supplementary 
Videos 2 and 3). To do this, by increasing the birth rate by 
.025 and increasing the viable cell Hill coefficient to 4 to 
simulate our growth rate in Figure 4, modified the viable 
life span of the tumor cells to increase the probability of 
apoptosis over time and decrease the time between 
apoptosis and necrosis due to hypoxia, and introduced a 
3% rate of necrosis for perinecrotic tumor cells to fit our 
carrying capacity obtained in Figure 4. The remaining 
parameters of the simulation remain similar, where the 
duration of necrosis and cell death are the same, the 

Figure 3: The cellular automaton model of SCLC growth and necrosis. (A) Growth of the tumor (scale on left side) and oxygen levels 
within the tumor (color scale on right side) at different time points. See also Supplementary Video 2. (B) Growth of the tumor showing the extent of 
the necrosis at different times (red = live cells, green = apoptotic cells, and blue = necrotic cells). The necrosis of the tumor initiates at > 180 hours. 
See also Supplementary Video 3.
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system begins with a single cell at time = 0, and the drug 
parameters are unchanged. The first action performed by 
the BioFVM program as it creates the simulation is to fill 
any unoccupied spaces with fluid and considers any dead 
cells as an empty space [81]. The model then uses the 
following reaction-diffusion equations for the oxygen and 
drug, respectively, to apply the uptake rate across each 
cell:

∂
∂

= ∇ − −

∂
∂
= ∇ − −

∑pO
t

D pO pO U pO

c
t
D c c

oxy oxy
cells i

i oxy

c c
ce

2 2
2 2 2

2

λ

λ

,

llls i
i cU c∑ ,

where the treatment by the drug is set at 5 μM at time t = 
528 (Day 22). When observing the two-dimensional image 
of the tumor over time, the cells become more hypoxic the 
closer they are to the middle. The oxygen concentration in 
the tumor begins to decrease in steps as the tumor begins to 
grow, leaving the population of hypoxic cells to grow rapidly.

With the presence of the drug at time t = 528, the 
live tumor cell’s exposure to the drug E and its response to 

the drug R (having a Hill coefficient h = 1) are given by 
the equations below:
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where α is the exposure for a half-maximum effect [81].
The BioFVM simulations may be captured after 

the 2-Dimensional tumor profile, cell automata model, 
basic agent model, and MATLAB model scripts have 
been edited and saved and the simulations have been run 
through the command prompt [75]. Once the simulations 
have finished running, MATLAB is automatically 
prompted and a series of images, or visual interpretations 
of the system at each recorded time interval, are then 
opened. These images may then be saved as image files. 
This spatio-temporal model could be utilized to predict 
and personalize patient response to drug therapy using 
organoids, spheroids, mouse models, and zebrafish 
models.

Figure 4: Tumor growth models. (A) Tumor growth with dynamic carrying capacity and metastatic burden. The growth of the tumor’s 
cell population c (blue) and carrying capacity K (black) with λ = 0.192, φ = 5.85, and ϕ = 0.00873, parameters used by Enderling and 
Chaplain [90]. The evolution of metastatic growth rate d (red) is presented with the parameters from Benzekry et al. [114]. (B) Histogram 
of tumor evolution (green) alongside the histogram (red) of the metastatic growth. As the primary tumor reaches the maximum carrying 
capacity, the metastatic burden will increase exponentially from the detached primary cells traveling and growing at distant sites (see 
curve). The metastatic cell population grows beyond the original carrying capacity until it reaches a new carrying capacity due to the model 
describing the growth of cells in all metastatic sites rather than just the primary site.
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Discrete models – cellular automata, tumor 
microenvironment, and cell viability

Cancer models based on differential equations 
address a continuum of cells at the tissue scale where the 
effect of individual cells is averaged. On the other hand, 
discrete models of tumor growth based on CA capture 
the response of individual cells as they interact with one 
another as well as with its microenvironment. CA is a 
collection of cells arranged on a lattice that evolve with 
time according to a defined set of rules that includes the 
values of neighboring cells. The first practical application 
of CA was shown by John Conway in “Game of Life” [82]. 
CA models have been used to study tumor growth at the 
cellular scale [83–87] and subcellular scale [88, 89]. For 
example, CA was used to study the invasion of cancerous 
cells in a population of normal cells by Qi et al. [86]. In 
this context, a lattice cell represented a single biological 
cell. The state of each of the cells of the CA was assumed 
to be normal, cancerous, complex (cancerous and bound 
by white blood cell) or dead cancerous. Probabilistic 
rules were then applied to study the dynamics of the 
cellular states. However, this model did not explicitly 
consider growth promoting factors (such as presence of 
blood vessels, nutrient supply and oxygen) and growth 
inhibiting factors (such as toxic metabolites) for tumors 
that ‘motivate’ them to move far away from primary sites. 

The microenvironment-dependent birth rate bi and 
death rate di are then modeled how Macklin et al. 
described as shown below:
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i,N is a constant [81]. The microenvironment 

apoptosis rate di,A is modeled as:
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where dmax is the maximum rate of apoptosis [81].
For the time interval [t, t+Δt], each viable tumor cell 

has the chance to divide, undergo apoptotic death, or reach 
necrotic death. The probability for a live cell to perform 
one of the three actions in each time step until death is 
described by the equations below [81]:

P cell division d t t

P apoptotic death b
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i
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)
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Each dead cell then has the probability that it will 
become lytic and rupture, leaving an empty space in the 
automaton model, based on the average duration the cell 
death. The probability of the dead cell to reach lysis is 

expressed in the equation below where TD is the duration 
of cell death [81]:

P cell lysis
T

t
i D

( ) = − −1 1exp( )
,

∆

Continuous models − ODEs and PDEs

For a given set of initial conditions, models that 
produce the same results each time they are solved are 
known as deterministic models. These differ from 
stochastic or probabilistic models in that the model results 
change each time they are solved even though the initial 
conditions don’t. Deterministic models with one 
independent variable (“time”) and one or more dependent 
variables (such as “substrates” or “metabolites”) and 
represented by ODEs are ideal to capture dynamical 
processes. For example, Enderling and Chaplain [90] 
studied the rate of tumor growth cells. Utilizing parameters 
α (fraction of dividing tumor cells) and β (fraction of 
tumor dying cells), they showed that tumor cells could 
either be in 1) quiescence (α – β = 0), 2) proliferative (α > 
β) or 3) depleting (α < β). Since tumors do not grow 
indefinitely in size, a more realistic representation of rate 
of tumor growth should take into account the carrying 
capacity constraint, K, representing the maximum 
population of cells also known as carrying capacity of the 
host cell. Hahnefeldt and colleagues [91] modelled K as a 
function of time and tumor size as follows:

dK C C
dt

= −φ ϕ
2
3

where ϕ and φ represent constant positive rates of 
angiogenesis stimulation and inhibition, respectively 
(Figures 4 and 5, Supplementary Video 4). 

Mathematical models solely based on ODEs 
describe the total number of tumor cells over time but do 
not consider any spatial variables. It is essential to model 
the spatial variables along with time since processes such 
as cancer invasion and metastases are more potent killers 
than local tumor growth and are inherently spatial in 
nature. Models based on PDEs such as reaction diffusion 
are apt for quantitative substances of interest in cancer 
modeling (such as nutrients or oxygen) at a specific 
position (space) and time (t). PDE based models are also 
referred to as continuum models since they are solved for 
continuously in space and time variables.

For example, Gatenby and Gawlinski [92] were one 
of the earliest to model cancer invasion as a spatio-
temporal evolution of tumor cells (C), enzymes with H+ 
ions (m) and extracellular matrix (υ) as follows:

∂
∂

= ∇ −( )∇( ) + −( )
∂
∂

= ∇ + −( )
∂
∂

= −( ) −

C
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D C C C
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t
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1
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where DC is the diffusion coefficient constant, ρ is 
the tumor cell proliferation rate constant, δ is the H+ 
ions production and decay rate constant and γ is the 
extracellular matrix degradation rate. Appropriate initial 
conditions and spatial region need to be specified to solve
∂
∂

= ∇ + −( )m
t

m C m2 δ  where tumor cells are assumed to proliferate 
and undergo nonlinear diffusion and secrete H+ ions which 
diffuse and degrade the normal tissue. The H+ ions are 
assumed to undergo linear decay with logistic growth for 
normal tissue in the absence of any cancer cells. Cancer 
cell migration processes such as haptotaxis (i.e. directional 
cell migration in response to gradients of cellular adhesion 
molecules in the extracellular matrix or gradients of the 
extracellular matrix density) were modeled using a 
modified version of ∂∂ = ∇ + −( )m

t
m C m2 δ by Anderson et al. [93].

The PDE based models can be discretized using 
finite-difference approximations. To study individual 
cell movement, Anderson et al. investigated the discrete 
form of the continuous version built to study haptotaxis 
[94]. Spatial variables were discretized retaining time, 
t, to be continuous. Stochastic movement rules were 
incorporated to derive a biased random walk governing 
the motion of a single tumor cell. Dynamical models 
of cancer growth leading to chaotic behavior have also 
been reported [95]. Itik and Banks were able to explicitly 

show the existence of deterministic chaotic dynamics 
by modeling the interactions and competitions between 
tumor cells and other cells of the body such as healthy host 
cells and activated immune system cells. Based on ideas 
from Lie algebra [96], the control of chaotic dynamics of 
cancer growth has been recently formulated [97] in a three 
dimension cancer model (TDCM) for tumor growth. This 
spatio-temporal heterogeneity model could be utilized 
to understand the tumor evolution over time as well as 
attempt to predict the genetic phenotype that may correlate 
with metastasis and cancer progression. As we go forward 
from here, we have to be able to incorporate mathematical 
modeling in SCLC. We can envision the utilization of 
the various models in the behavior of cell lines/three-
dimensional models, organoids/spheroids along with 
PDX/CDX models, as well as tumor behavior in natural 
progression and/or therapeutic response. In particular, we 
should be able to study the potential for mechanisms of 
resistance.

MultiFractals – applications to image data 
analysis

Most naturally occurring phenomena exhibit 
complexity and irregularity in structure. Classical 

Figure 5: Simulation of tumor heterogeneity and tumor burden in SCLC. (A) Tumor heterogeneity and cellular automata at 
different time points. (B) Tumor burden at corresponding time points, indicating the growth of wild-type cells (red) and cells containing 
mutations (blue). See also Supplementary Video 4.
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techniques in mathematics are not adept at capturing the 
underlying geometry. Irregular objects for which the 
“Hausdorff dimension” is strictly greater than the 
“Topological dimension” were defined as fractals by 
Benoit B. Mandelbrot [98]. Even though fractal objects 
seem to have complex shapes and exhibit dynamic 
behavior, they always exhibit a nesting of statistically self-
similar features at different scales [99]. The branch of a 
tree has similar structure to the tree but at a smaller scale. 
A high degree of self-similarity has also been documented 
in human tissue [100]. Fractals are compared by their 
fractal dimension, a real number, which is a measure of the 
size of the underlying fractal sets. There are multiple 
methods to compute the fractal dimension. The similarity 
dimension [101], DS is ideal for computing the fractal 
dimension of artificially generated fractals (following 
precise creation rules and having regular structure). It is 
defined as follows:

D N
rS = −

ln
ln

where N represents the number of non-overlapping copies 
of the object and r (< 1) represents the scaling ratio. The 
box counting dimension [102] that is most widely used 
in practice to compute the fractal dimension takes into 
account the relationship between non-empty boxes and 
box-size necessary to cover the fractal object. The fractal 
dimensions of most objects found in nature are best 
computed using the box counting method. The fractal 
dimension has been applied as one of the features for 
classifying pathological tissue in mammograms and tumor 
blood vessels [103, 104].

The box counting approach to computing the fractal 
dimension assumes that the fractal object can completely 
be described by two states (presence inside or outside the 
box). However, most natural phenomena such as greyscale 
image of tissue or cells require the intensity inside a box 
to be considered as well. Since the intensity levels of such 
an image can be non-uniform resulting in low to high 
densities, their structure characterized by their fractal 
dimension would vary with the observed scale. 

Unlike synthetically generated fractals, the structure 
of naturally occurring fractal objects at different scales 
will be similar but not exactly same as the whole. This 
results in the co-existence of multiple fractal subsets with 
different scaling behavior. Therefore, instead of one set of 
fractals we are typically faced with multifractals. 

Multifractal analysis requires the description of a 
local and global measure over a region. For each point 
of the region, the local singularity coefficient (i.e. the 
local dimension) is known as the “Holder exponent” or α 
values [101, 102]. In image data analysis, α values reflect 
the local behavior of the intensity measure that are of 4 
different types [105, 106]. The corresponding image is 
often referred to as the α –image. A region would contain 
a range of positive, finite α values, with a minimum value, 

αmin and a maximum value, αmax. The fractal dimension can 
be computed using the box counting method [107] over 
a set of points (isolated or otherwise) having the same α 
value. A plot of fractal dimension against α values results 
in a multifractal spectrum, f(α) (i.e. the global measure) 
after adjusting for noise in digital images. 

Multifractal theory has been applied in the 
context of medical image data analysis [103] and object 
classification [101]. Using multifractal analysis of breast 
cancer tissue prior to chemotherapy Vasiljevic et al. [107] 
showed that the tissue can be differentiated based on 
their sensitivity to chemotherapy. Small cell lung cancer 
embodies the essence of the aberrant tumor cell which 
despite its diverse genotype has a distinctive, discrete, 
and easily recognizable tumor tissue [69]. These unique 
spatial characteristics could be characterized utilizing 
the multifractal model at different scaling magnifications 
such as DNA random walks, tumor tissue, and radiological 
scans. 

CONCLUSIONS 

We have summarized and applied several 
mathematical models to SCLC that enable us to replicate 
some of its unique fractal characteristics. Features of 
SCLC tumors are a reflection of alterations in genes 
associated with the disease including overexpression, 
somatic mutation and amplification, resulting in a plethora 
of targeted therapies existing or in development including 
FAK inhibitors, RTK inhibitors targeting KIT, IGF-1R, 
EPHB4, RON and MET as well as their downstream 
pathways including the PI3K/AKT/mTOR and MYC 
[108]. Further areas for drug therapies in SCLC include 
the apoptotic pathway, the hedgehog and DNA repair 
pathways, heat shock proteins and HDAC as well as 
angiogenesis pathways and others [109]. Additional novel 
therapies in development include targeting of cancer stem 
cells and immunotherapy [110]. Despite these targeted 
therapies, the prognosis for SCLC remains grim [111, 
112]. Most recently, there have been immunotherapies 
that have come to fruition. Checkpoint inhibition appears 
to work with pembrolizumab or nivolumab/ipilimumab. 
There are specific other programs, such as bispecific 
antibodies and CAR-T cells that are just beginning to 
be employed. The effective utilization of mathematical 
models to these therapies is hampered in part by the 
availability of quantitative in vitro experimental data and 
clinical results. Whereas the goal remains to link outcomes 
to the fractalness of SCLC, these techniques may be 
particularly useful in the context of drug development 
research, particularly in combination with existing 
research platforms, such as various omics approaches 
that provide large amounts of data. As clinical results can 
vary widely, dependent on the patient’s specific tumor 
alterations, it will be important to link them to these 
genetic changes. Even though the models presented here 
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are not perfect, they provide us with the tools to allow us 
to breakdown the mechanisms of growth and metastasis 
and eventually add additional parameters. We can really 
state that models depend on the circumstance. ODE can 
be utilized to study tumor kinetics, PDE on tumor-stroma 
interactions, and chaos theory on geometry and symmetry 
breaking [113] in metastasis. The complexity of any 
physical or biological system can be quantified in terms 
of combinatorial, geometric and functional components. 
Each of these components is best characterized by their 
symmetries. Symmetric breaking occurs when the natural 
symmetry is broken either explicitly or spontaneously. 
Understanding cancer processes like metastasis as a 
sequence of symmetry breaking events will be required. 
The fractal analysis gives us a unique insight on geometry 
and ultimately could serve as a biomarker. An important 
goal is to link the existing comprehensive set of analytic 
tools back to the fractalness of cancer and provide a 
platform for accurate biomarker development. The 
identification of appropriate biomarkers in combination 
with mathematical modeling has the potential to provide 
breakthroughs in the development of therapeutics. Since 
SCLC is a rapidly growing disease, it will be important 
to utilize these powerful mathematical tools to enhance 
our understanding of the biology of this devastating cancer 
and ultimately accelerating the development of novel 
therapeutics.
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