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Abstract: The aggressive waves of ongoing world-wide virus pandemics urge us to conduct further
studies on the performability of local computing infrastructures at hospitals/medical centers to
provide a high level of assurance and trustworthiness of medical services and treatment to patients,
and to help diminish the burden and chaos of medical management and operations. Previous stud-
ies contributed tremendous progress on the dependability quantification of existing computing
paradigms (e.g., cloud, grid computing) at remote data centers, while a few works investigated the
performance of provided medical services under the constraints of operational availability of devices
and systems at local medical centers. Therefore, it is critical to rapidly develop appropriate models to
quantify the operational metrics of medical services provided and sustained by medical information
systems (MIS) even before practical implementation. In this paper, we propose a comprehensive
performability SRN model of an edge/fog based MIS for the performability quantification of medical
data transaction and services in local hospitals or medical centers. The model elaborates different
failure modes of fog nodes and their VMs under the implementation of fail-over mechanisms. Sophis-
ticated behaviors and dependencies between the performance and availability of data transactions
are elaborated in a comprehensive manner when adopting three main load-balancing techniques
including: (i) probability-based, (ii) random-based and (iii) shortest queue-based approaches for
medical data distribution from edge to fog layers along with/without fail-over mechanisms in the
cases of component failures at two levels of fog nodes and fog virtual machines (VMs). Different
performability metrics of interest are analyzed including (i) recover token rate, (ii) mean response
time, (iii) drop probability, (iv) throughput, (v) queue utilization of network devices and fog nodes
to assimilate the impact of load-balancing techniques and fail-over mechanisms. Discrete-event
simulation results highlight the effectiveness of the combination of these for enhancing the performa-
bility of medical services provided by an MIS. Particularly, performability metrics of medical service
continuity and quality are improved with fail-over mechanisms in the MIS while load balancing
techniques help to enhance system performance metrics. The implementation of both load balancing
techniques along with fail-over mechanisms provide better performability metrics compared to the
separate cases. The harmony of the integrated strategies eventually provides the trustworthiness of
medical services at a high level of performability. This study can help improve the design of MIS
systems integrated with different load-balancing techniques and fail-over mechanisms to maintain
continuous performance under the availability constraints of medical services with heavy computing
workloads in local hospitals/medical centers, to combat with new waves of virus pandemics.

Sensors 2021, 21, 6253. https://doi.org/10.3390/s21186253 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9123-3584
https://orcid.org/0000-0002-3109-798X
https://orcid.org/0000-0002-8211-6060
https://doi.org/10.3390/s21186253
https://doi.org/10.3390/s21186253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21186253
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21186253?type=check_update&version=2


Sensors 2021, 21, 6253 2 of 23

Keywords: medical information system; edge/fog computing; performability evaluation; load
balancing; fail-over mechanism; stochastic reward net; discrete-event simulation

1. Introduction
1.1. Medical Information Systems (MIS)

The proliferation of aggressive virus pandemics (e.g., Covid-19) all over the world
in past years has been causing a huge workload for medical professionals and medical
information systems (MIS) in hospitals and medical centers. In MIS, a patient’s healthcare
data are constantly collected, stored, and managed under electronic medical records (EMR)
as the medical building blocks of the MIS for a doctor’s medical decision-making and
treatment solutions, while a hospital’s medical activities and operational management are
collaboratively and seamlessly assisted and conducted via a networked system [1]. The
use of such an MIS is to improve the quality and effectiveness of healthcare services within
and across hospitals and medical centers. The implementation of existing MIS often relies
on an underlying sophisticated networked system associated with advanced computing
paradigms (e.g., cloud/fog/edge computing) via dedicated communication links to remote
data centers [2].

1.2. Computing Paradigms of MIS

Traditional MIS have mostly relied on mainframe computing systems as a form of
centralized computing in which they play the role of a central data repository or hub in
a medical data processing center placed in the IT department of a hospital [3]. However,
such computing paradigms have inherent limitations such as scalability, maintenance, and
operational cost not to mention the capabilities for business continuity and interoperability
between MIS across different medical organizations [4]. Modern MIS in hospitals/medical
centers have been adopting the Cloud-centric Internet of Things (CIoT), in which the
MIS involves three main state-of-the-art technologies including embedded systems and
middle-ware in body area networks (BAN) and cloud services (e.g., everything as a service
(XaaS)) to provide scalable and flexible medical services and solutions to every single
patient at any time during her/his treatment [5,6]. Nevertheless, the CIoT model turns
out to limit itself due to intrinsic challenges including bandwidth, latency, uninterrupted,
resource-constraints and security (BLURS) in healthcare services, especially in the context of
nationwide or worldwide virus pandemics [7]. The emergence of fog and edge computing
paradigms (FEC) in recent years offers a complete computing solution to the cloud in
IoT-based MIS by removing the gap between the central cloud and the medical things at
hospitals with five advantages including security, cognition, agility, latency, and efficiency
(SCALE) to secure continuous and trustworthy medical services [8] In particular, fog
computing is the computing paradigm for the local, shifting the capabilities of cloud
computing from geo-distributed data centers to the extreme edge of the network where
medical sensors and devices are located [9]. On the other hand, edge computing in harmony
with fog computing plays the role of data gateways and a collector in charge of synthesizing
and pre-processing medical data from heterogeneous medical sensors and devices and,
subsequently, transmitting the formatted data to the fog layer for further processing and
cross-platform collaboration. In this way, the cloud layer at remote data centers is involved
in advanced processing tasks such as the analytics of terabytes of medical data, AI-based
medical research and so forth. The involvement of FEC in local regions actually helps to
reduce non-critical data traffic outward from a local medical organization while enhancing
the performance and availability of critical processing tasks and local data traffic. Thus,
FEC is a proper solution for computing in MIS, especially in the context of high-volume
data transactions and a huge workload due to large-scale virus pandemics. A number of
recent works highlighted the significance of adopting edge/fog computing paradigms in
healthcare systems to combat the on-going worldwide Covid-19 pandemic and for future
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intelligent and reliable healthcare systems. The works [10–12] presented comprehensive
challenges and future directions of the adoption of the intelligent edge computing paradigm
to provide intelligent, real-time healthcare IoT services and solutions with satisfactory
energy consumption and latency criteria. On the other hand, some recent works [13,14]
discussed the important of fog computing paradigms for healthcare 4.0, in which the
harmony in the integration of IoT devices with fog computing paradigms plays a vital
role in many latency-sensitive healthcare services such as healthcare monitoring tasks to
monitor oxygen and blood sugar levels, and so forth, and the prediction of diseases using
machine learning techniques based on real-time collected symptoms. Kumar et al. [15]
elaborated more promising healthcare services when the FEC continuum is adopted in the
healthcare industry.

1.3. Performability of MIS in Practice

Without any exceptions, MIS are inevitably prone to partial failures and system
crashes [16]. In the context of raging pandemics, the possibility of sustaining medical
operations across a hospital/medical center to provide 24/7 medical services with high-
availability and performance of its MIS is challenging but crucial, since any uncertain failure
hitting the MIS with a large amount of constant data transactions can cause unexpected
tangled medical operations and even a severe loss of human lives due to the lack of instant
medical responses and reasonable decision-making. Practical reports have shown the
capability of realistic MIS and operational incidences in medical centers. At the LDS
Hospital in Salt Lake City, Utah, USA, a computerized hospital information system, called
the Health Evaluation through Logical Programming (HELP), serves 17,000 logons per
day with 99.85% up-time (13.14 h of downtime per year) [17]. An investigation of electronic
medical record downtime (EMRD) in a busy urban emergency department from May
2016 to December 2017 in [18] showed that a total of 58 h downtime with 12 episodes of
EMRD occurred during the study period with approximately 5 h at unpredictable intervals.
Reported in [19], an unexpected downtime of the National Institutes of Health Clinical
Center (NIH/CC) EHR system in US on 13 May 2010 eventually resulted in a sudden
loss of access to clinical information for all patients with a potential effect on patient care
and safety due to a hardware failure leading a severe corruption of primary and backup
databases. These facts urge the assimilation of the nature of performance and availability
related issues and their countermeasures in MIS through comprehensive modelling and
assessment of system design even before real-world system construction.

1.4. Fail-Over and Load Balancing Strategies

In the context of medical systems under heavy workload and medical data traf-
fic (as mentioned above), a loss or a latency of instant access to a patient’s health data
constantly collected by IoT-based medical sensors/devices can cause severely incorrect
decision-making in treatment. Therefore, the integration of fault-tolerance techniques in
harmony with load-balancing strategies into the design of FEC-based MIS is of paramount
importance to secure a high level of performability for medical information operations
in hospitals/medical centers. The FEC-enabled MIS, in practice, is expected to be capa-
ble of failing over the data transactions in the cases of system/subsystem breakdown to
secure service continuity, and of routing medical data onto healthy components in order
to maintain high performance of medical services in extremely over-loaded and fragile
circumstances. Lumpp et al. [4] introduced various fault-tolerant information system
architectures to secure high availability (HA) and business continuity (BC) in virtualized
systems. Grottke et al. [20] presented different fault-tolerant techniques for a variety of soft-
ware faults in [20]. Wang et al. [21] proposed an adaptive and fault-tolerant data processing
mechanism to secure the reliability of data transmission and processing speed. On the other
hand, a number of other works performed different studies on load balancing strategies
in existing computing paradigms. Shah and Prajapati [22] presented the reallocation and
allocation of virtual machines (VMs) in cloud computing using load balancing algorithms
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for efficiency in [22]. Panda and Jana [23] proposed a probabilistic approach for load
balanced task scheduling in cloud computing. The recent work in [24] proposed a dynamic
resource allocation method in a fog computing environment. In the literature, the combina-
tion between load balancing and fail-over strategies was not investigated in a complete
manner for fog/edge computing layers. However, in the context of medical environments,
the harmony of such strategies is of paramount importance to secure the continuity and
performance of medical services, especially when the workload increases due to large-scale
aggressive virus pandemics. The main idea behind this is if load-balancing techniques
help enhance the performance, the fail-over mechanisms provide an assurance of service
continuity with the obtained performance.

1.5. Literature Review

Previous works in the literature have shown rapid progress in the evaluation of
healthcare systems, mostly focusing on availability without an appropriate considera-
tion of performance and strategic techniques to guarantee system performability for a
high level of quality of services (QoS). Strielkina et al. [5] presented in [5,25] two of the
first studies adopting queuing network models and Markov models respectively for the
availability evaluation of IoT healthcare systems considering attacks on vulnerabilities.
Santos et al. [26] proposed using a multi-objective optimization algorithm, NSGA-II, in
combination with stochastic models, to optimize the system availability of a fog-cloud
based IoT for healthcare. Pereira et al. [27] in their most recent work proposed compre-
hensive continuous time Markov chain (CTMC) models to investigate the availability of
fog/edge computing nodes for drone-based facial recognition security systems. Only two
recent works [2,28] presented comprehensive studies on the performance assessment of
IoT-based healthcare systems with a consideration of the integration of cloud/fog/edge
computing paradigms using M/M/c/K queuing network models for pure performance
evaluation. Santos et al. [29] was one of the most recent studies on a performability
evaluation of an IoT-based medical system.

1.6. Contributions

To the best of our knowledge, previous works in the literature have not shown com-
prehensive studies on the performance assessment using SRN under certain constraints
of availability requirements (or in other words, performability evaluations) of healthcare
systems at local hospitals/medical centers with the integration of fog/edge computing
paradigms. Thus, this study can be distinguished as one of the studies at the very early
stages in the research area on the performability assessment of healthcare systems re-
garding various evaluation metrics. This work extends the progress of studies on the
performability assessment of MIS with the following contributions.

- Proposed a comprehensive performability SRN model of an edge/fog based MIS
in local hospitals or medical centers. The model captures detailed medical data
processing and transmission from local edge layer to local fog computing nodes.

- Elaborated failure modes of fog nodes and their hosted VMs along with fail-over
mechanisms at fog node levels in the SRN system model to assimilate the impact
and applicability of fail-over mechanisms to secure the continuity of medical data
processing and transmission in MIS.

- Elaborated three main load balancing techniques to handle massive amounts of
medical data transactions including (i) probability based, (ii) random based and (iii)
shortest-queue based data distribution.

- Captured sophisticated behaviors and dependencies between performance and avail-
ability sub-models in a monolithic SRN system model using a set of guard functions,
which enables the performability evaluation of the whole system at a high level of
detail and comprehension.

- Performed various discrete-event simulations and analyses of the developed SRN
system model using a set of reward functions to assimilate the system behaviors based
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on the evaluation of different performability metrics of interest including (i) recover
token rate, (ii) mean response time, (iii) drop probability, (iv) throughput, (v) queue
utilization of network devices and fog nodes.

1.7. Research Remarks

Through the analyses, we draw some findings as follows.

- The developed model is capable of capturing sophisticated behaviors and dependen-
cies when assessing performability metrics with different load balancing and fail-over
mechanisms in an MIS.

- The impact of fail-over mechanisms at fog nodes and VMs are clear to not allow
request losses in a real-time medical response system. Particularly, the performability
metrics related to medical service continuity and quality including mean response
time (MRT), drop probability (DP) of requests, or queue utilization (QU) of network
devices are apparently higher in the MIS with fail-over mechanisms.

- Load balancing techniques are revealed to be the key role in the improvement of
system performance. The shortest queue technique outperforms in most of the cases,
compared to the remaining LB techniques.

- Lastly, the implementation of both load balancing techniques and fail-over mecha-
nisms brings about better performability metrics (e.g., MRT, DP, QU) compared to
the cases without their combination. The case with the shortest queue load balancing
technique and fail-over mechanisms outperforms in most of the analyses, compared
to the other cases in particular.

The development of a comprehensive and monolithic SRN model along with the above
analysis findings can help accelerate the design phases of practical medical information
systems in hospitals and medical centers by providing proofs of concept for different
system configurations even before its real-world construction.

1.8. Paper Structure

The paper is organized as follows. In Section 2, we present a discussion of selected
works on performability assessments of healthcare systems. In Section 3, the overall system
architecture of a typical MIS is detailed. The corresponding performability system model is
proposed in Section 4. The analysis and simulation results are presented in Section 5. The
paper is concluded in Section 6.

2. Related Works

The use of analytical models with performance optimization structures is not very
common, as it requires deep knowledge of the modelling of complex mechanisms. Using
Petri nets, there were a greater number of works with load balancing policies [30–32]; how-
ever, none of them have addressed the issue of the fail-over mechanism. The structure of
fail-over with Petri nets has already been investigated in an isolated context of availability
with machine live migration [33,34], without considering performance metrics. Besides,
none of them have taken into account scheduling jobs. Therefore, the present work is
the first to combine, in a single model, performability issues (performance + availability)
based on the adoption of fail-over mechanisms and load balancing strategies. Panda and
Jana [23] presented a load balanced task scheduling algorithm for cloud computing using
a probabilistic approach. The work modelled the execution time of tasks on VMs as a
probability load matrix. However, the work limited itself to the elaboration of stochastic
behaviors in the integration of performance and availability modelling and analysis, which
is our focus in this study. Entezari-Maleki et al. [35] proposed SRN models for the per-
formance assessment of a grid computing environment in the presence of failure-repair
of resources. The proposed models took into account three different scheduling schemes
called random selection, non-preemptive priority, and pre-emptive priority for simultane-
ous task scheduling of tasks to processors. In an extended study, Entezari-Maleki et al. [36]
presented an SRN model for performability evaluation of workflow scheduling in grids
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in which the failure-repair behavior of processors is considered along with a performance
assessment of several metrics including blocking probability and service time of a resource.
Nevertheless, the focus of this work was on grid computing while our focus is on FE
computing paradigms for medical systems. We also elaborate more sophisticated behaviors
related to both fail-over and load balancing techniques. Sun et al. [37] proposed a reliability-
performance-energy correlation Markov model that captures random resource failures and
recovery in a multiagent cloud system (MACS). The work suggested interesting research
topics for the investigation of the correlation between different metrics of interest, which is
also the main focus of our work. Furthermore, we incorporate sophisticated interdependen-
cies between components at different levels using SRN, which is an advanced modelling
methodology to reduce the complexity in Markov models. Tang and Xie [38] presented
the most recent work on the availability and performance of a healthcare cloud-based IoT
system using a Markov chain model. Nevertheless, the work did not elaborate on the so-
phisticated system architecture of the cloud while focusing on a body area network (BAN)
and the failure-repair of its communication links to a cloud. Strielkina et al. [5] presented
one of the very early studies on modelling a healthcare Cloud-centered IOT system using
queuing theory. In an extended work, Strielkina et al. [25] investigated the availability
of cloud-centered healthcare IoT systems in consideration of attacks on vulnerabilities.
The authors developed Markov models to capture the streams of requests and attacks on
vulnerabilities and a procedure of recovery in the healthcare IoT infrastructure. The papers
exposed some limitations of the sophistication of data streams and the interdependency
between the performance and availability of components. Li et al. [39] presented one of
the specific works on the adoption of the Petri Net modelling methodology for a real-world
cloud healthcare system in China. The work attempted to capture the state of patients and
the relationship between medical processes and resources between a big tertiary hospital
and small community hospitals through a telemedicine platform. Mahulea et al. [40]
presented a modular Petri net modeling methodology for healthcare systems. The work
highlighted the modulization in modelling healthcare services based on Petri net models.
A recent work [41] presented the use of a colored Petri net to model and analyze medical
resource allocation. One of the most recent works [42] adopted a timed colored Petri net
modeling approach for the simulation and improvement of patients’ workflow in heart clin-
ics during the Covid-19 pandemic. These works showed the significant adoption of Petri
net variants in the modelling and analysis of healthcare services in real-world hospitals or
medical centers. However, none of the works considered the data transactions throughout
the computing systems in the medical centers. Santos et al. [26] presented a hierarchical
model of a reliability block diagram (RBD) with a stochastic Petri Net (SPN) and a surrogate
model to analyze and maximize the availability of an IoT infrastructure for healthcare
associated with cloud-fog computing paradigms. Nevertheless, performance metrics were
not considered in the work. In [43,44], Araujo et al. [43] presented a hierarchical modelling
approach using RBD and SPN/CTMC models for the dependability quantification of an
m-Health system. The studies considered various failure causes of mHealth systems, such
as communications, battery discharge rates and timeouts, to see their impact on the perfor-
mance of delivered services. Nguyen et al. [16] presented a comprehensive modelling and
analysis framework for the dependability and security quantification of Internet of Medical
Things (IoMT) associated with Cloud/Fog/Edge continuum. However, the work did not
elaborate the involvement of performance evaluation for such medical infrastructures. The
works [2,28] studied different pure performance metrics of an Internet of Health Things
(IoHT) such as mean response time (MRT), resource utilization, service throughput and so
forth. Nevertheless, the evaluation of pure performance metrics without an appropriate
consideration of failure modes is optimistic and, in some cases, it is not sufficient, for
instance in the case of massive data transactions as in MIS. Santos et al. [29], in the most
recent work on the performability evaluation of IoT-based medical systems, proposed a
simplified hierarchical model for availability and performance evaluation in a separate
manner for cloud/fog layers. Our focus is on the fog/edge computing layers for data
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transaction in MIS where a massive amount of medical data and processes can be disrupted
due to unbalanced load and discontinuity of back-end computing fog/edge infrastructure.

The summary and comparison of the above-mentioned related works on MIS and
performability evaluation are presented in Table 1 to highlight the contributions of this
study. We consider different factors featured for the performability evaluation of a comput-
ing system for medical purposes. Particularly, we investigated the features of the system
in previous works related to computing infrastructures for medical purposes including:
(i) system specification (or context of the study); (ii) mechanisms (if possible) and/or
metrics for QoS enhancement; and (iii) methodology for modelling and evaluation. To
distinguish the key contributions of this work, we investigated whether the previous works
under consideration elaborated different metrics for performability assessment or only
for performance/availability/reliability evaluation in an optimistic and separate manner.
As observed, most of the previous works did not consider performability assessment
of a computing infrastructure for medical purposes regarding a variety of metrics in a
comprehensive manner. Our main focus in this study is to explore the missing parts in
the literature.

Table 1. Selected Works in Comparison.

Works
System

Method.
Metrics

Spec. QoS Perf. MRT TP DP RTR QU

[23] Cloud computing systems LB, LS Pr ë ë ë ë ë ë

[37] Cloud computing reliability, performance, energy QN, Markov chain ë ë ë ë ë ë

[38]
Healthcare IoT systems
(Wireless body area
network—WBAN)

availability performance
improving (API) method
(increasing probability of
system full service)

Markov chain � ë ë ë ë ë

[5,25] Healthcare IoT systems Availability under attack
vulnerabilities Markov chain ë ë ë ë ë ë

[26] IoT for healthcare
Availability optimization
combining stochastic models
with optimization algorithms

RBD, PN, Surrogate
models (extension

of [29])
ë ë ë ë ë ë

[43,44] Mobile cloud computing for
healthcare (mHealth) Availability RBD, PN ë ë ë ë ë ë

[16] Cloud/Fog/Edge based IoT
for healthcare monitoring

Reliability, availability, security
under persistent software
attacks

FT, CTMC ë ë ë ë ë ë

[28] Fog-cloud IoT system for
healthcare monitoring

Redundancy and scalability of
fog/cloud for performance
enhancement

QN ë � ë ë ë ë

[29] Edge/Fog/Cloud based
e-Health IoT system Availability, performance RBD, PN � ë ë ë ë ë

[35]
Grid computing
environment (with
failure-repair of resources)

LS (random selection,
non-preemptive priority, and
pre-emptive priority)

SRN � � ë ë ë ë

[36] Grid computing LS (genetic-based scheduling
algorithm of programs) SRN � � ë ë ë ë

This
work

Edge/Fog Medical
Information System for
healthcare

LB, Fail-over mechanisms SRN � � � � � �

Acronyms—Spec.:System Specification; QoS: quality of service; LS: load/task scheduling; LB: load balancing; QN: queuing network; Pr:
probabilistic methodology; RBD: reliability block diagram; FT: fault tree; CTMC: continuous-time Markov chain; SRN: stochastic reward
net; Perf.: performability evaluation; MRT: mean response time; TP: throughput; DP: discard probability of jobs; RTR: recovered token rate;
QU: queue utilization.
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3. A medical Information System Architecture

This section presents an overview of the medical monitoring system architecture
modeled through SRN. Figure 1 presents the architecture, divided into two layers: edge
and fog. The edge encompasses data generation, and fog deals with the processing of
such data. Edge monitoring tasks are operated upon a set of patients physically located
within a hospital. Various health sensors are coupled to patients and generate vital data
(e.g., temperature, pressure, heart rate), which are then transmitted to the fog through a
gateway (GTW). The gateway, therefore, receives the data and relays it to the fog nodes.
The gateway has two software modules: a module called GTW Load Balancer and a module
called GTW Monitoring Agent. The GTW Load Balancer, as the name implies, makes the
optimized distribution of data to the fog nodes obey a specific balancing strategy. The GTW
Monitoring Agent constantly listens to how resources are being consumed at each node
in the fog. Such monitoring is essential for the GTW Load Balancer to make appropriate
decisions on how to distribute arriving data.

Edge Fog

Sensors

[...]

Patients

Data:*

Gateway (GTW)

VMs
Node 1

VMs
Node 2

VMs
Node N

<GTW Load Balancer>
<GTW Monitoring Agent>

<Node Load Balancer>
<Node Monitoring Agent>

Figure 1. Overview of the scenario considered in the modelling phase.

Upon reaching the fog, the data are transferred to a specific virtual machine (VM) by
its respective host machine node. Therefore, the fog node also acts as a gateway since it has
a monitoring module (Node Monitoring Agent). In the figure , fog nodes are represented
by physical machines that host virtual machines. However, the proposed model abstracts
the nature of such computing entities. The appraiser can define, for example, clusters
comprised only of containers. However, for intuitive purposes, they are represented
as physical nodes and VMs. The appraiser must feed the SRN model according to the
characteristics of the adopted nodes. The appraiser is able to define a specific number of
fog nodes in the modelling. Furthermore, both physical nodes and VMs can fail. In this
case, specific data forwarding policies are adopted for both nodes and VMs.

Figure 2 visualizes two scenarios in which the fog reacts to uncertain failures at either
fog node or VM levels. As mentioned earlier, the gateway is responsible for monitoring
physical nodes. Thus, if the GTW Monitoring Agent identifies a node in a failure mode
(or all VMs in a node in failure mode), the GTW Load Balancer is triggered. All data
previously sent to that nodeare forwarded immediately to another healthy node once
again, as depicted in Figure 2a. The second failure scenario (Figure 2b) occurs when a single
VM fails. In this case, the physical node of the fog is responsible for forwarding the data of
the failed VM to another available VM, often obeying a sophisticated routing strategy.
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Gateway (GTW)

Node 1

Node N

Node Fail or All VMs Fail

Gateway (GTW)

Node 1

Node N

*
*

*
*

*
*

(a)

Node N

One VM Fails

*

*

Node N

*

(b)

Figure 2. Data forwarding policies in the case of fog node and VM failures. (a) Scenario A: Node fail
or all VMs fail; (b) Scenario B: One VM fails.

4. A Performability SRN Model

Figure 3 presents the overall performability system model using SRN. The model
is divided into three sequential layers. For better visualization, different colors are used
for each layer. The data (represented by tokens) are generated at the Admission layer,
then the data are transmitted to the gateway, and finally, they are processed at the fog
layer. Both physical machines (nodes) and respective virtual machines are represented
in the model. There is a separation into sub-models that represent the processing and
availability of nodes and VMs. In general, at the Admission, data are generated following
an exponential distribution. When they arrive at the gateway, these data are redirected to
one of the nodes. Such re-transmission follows a specific load balancing algorithm. Next,
each sub-module is better detailed from the cut-outs of the system model. The model has
several guard expressions used to control the token’s flow. All guard expressions follow
the pattern “[gNK]”, where N means the node number (1 for fog node in the downside
or 2 for the node in the upside). The letter K indicates a simple set of indexes for each
node. The general guard expressions are summarized in Table 2. Table 3 presents the guard
expressions related to the load balancing strategies. To ease the description of sophisticated
behaviors captured in the models, we pick the two nodes in the fog layer and suppose that
each node contains two VMs.
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Figure 3. Overall SRN system model.
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Table 2. Model Guard Expressions.

Transition Index Guard Expression Module

T12 [g10] ((#VM1U=0) && (#VM2U=0))||(#N1U=0) Gateway

T3 [g11] ((#VM1U=1)||(#VM2U=1)) && (#N1U=1) Gateway

T10 [g12] ((#VM1U=0) && (#VM2U=0)) Node 1—Processing

T11 [g13] ((#VM1U=1)||(#VM2U=1)) && (#N1U=1) Node 1—Processing

T51 [g14] (#VM1U=1) VMs—Processing

T5 [g15] (#VM2U=1) VMs—Processing

T61 [g16] (#VM1U=0) VMs—Processing

T81 [g17] (#VM1U=0) VMs—Processing

T6 [g18] (#VM2U=0) VMs—Processing

T8 [g19] (#VM2U=0) VMs—Processing

T2 [g110] (#N1U=0) VMs—Availability

VM1_MTTR [g111] (#N1U=1) VMs—Availability

T13 [g112] (#N1U=0) VMs—Availability

VM2_MTTR [g113] (#N1U=1) VMs—Availability

T4 [g114] ((#VM1U=0) && (#VM2U=0))||(#N1U=0) Gateway

T121 [g20] ((#VM3U=0) && (#VM4U=0))||(#N2U=0) Gateway

T101 [g22] ((#VM3U=0) && (#VM4U=0)) Node 2—Processing

T111 [g23] ((#VM3U=1)||(#VM4U=1)) && (#N2U=1) Node 2—Processing

T511 [g24] (#VM3U=1) VMs—Processing

T52 [g25] (#VM4U=1) VMs—Processing

T611 [g26] (#VM3U=0) VMs—Processing

T811 [g27] (#VM3U=0) VMs—Processing

T62 [g28] (#VM4U=0) VMs—Processing

T82 [g29] (#VM4U=0) VMs—Processing

T21 [g210] (#N2U=0) VMs—Availability

VM3_MTTR [g211] (#N2U=1) VMs—Availability

T131 [g212] (#N2U=0) VMs—Availability

VM4_MTTR [g213] (#N2U=1) VMs—Availability

T0 [g214] ((#VM3U=0) && (#VM4U=0))||(#N2U=0) Gateway
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Table 3. Loading Balancing Strategies—Guard Expressions.

Load Balancing
Strategy Transition Index Node Guard Expression

Shortest Queue

T3 [g11] 1

GENode1 = (Node1UP && Node1LessThenNode2)||Node2Down
Node1UP = ((#VM1U = 1)||(#VM2U = 1)) && (#N1U = 1)
Node1LessThenNode2 = ((#N1Q + #N1B + #VM1Q + #VM2Q) ≤
(#N2Q + #N2B + #VM3Q + #VM4Q))
Node2Down = (((#VM3U) = 0) && ((#VM4U) = 0))

T31 [g21] 2

GENode2 = (Node2UP && Node2LessThenNode1)||Node1Down
Node2UP = ((#VM3U = 1)||(#VM4U = 1)) && (#N2U = 1)
Node2LessThenNode1 = ((#N2Q + #N2B + #VM3Q + #VM4Q) ≤
(#N1Q + #N1B + #VM1Q + #VM2Q))
Node1Down = (((#VM3U) = 0) && ((#VM4U) = 0))

Probability
T3 [g11] 1 No guard expression, only the probability percentage.

T31 [g21] 2 No guard expression, only the probability percentage.

Random
T3 [g11] 1 GENode1 = ((#VM1U = 1)OR(#VM2U = 1)) AND (#N1U = 1)

T31 [g21] 2 GENode2 = ((#VM3U = 1)OR(#VM4U = 1)) AND (#N2U = 1)

Figure 4 shows the Admission sub-model, composed of two places and two transitions.
The Arrival place represents the arrival place for new requests. The timed transition AD
represents the time between arrivals of each request. In the ArrivalQueue place, new
requests are queued if the system is overloaded. If the system is not overloaded, the
immediate transition T1 is triggered, and the token proceeds to enter the system, and
a token is created at the Place Arrival to trigger a new request. The AD transition is
configured following a single server policy, and therefore the arrival of requests occurs
sequentially.

Figure 4. Admission submodule responsible for generating new requests following a specific
probability distribution.

Figure 5 shows the cutout for the Gateway component. The gateway is responsible for
choosing the node and storing the requests until the service is completed. Tokens in place
GQ represent requests that have not yet defined their destination. For the token to arrive
in GQ, the gateway must have available capacity, represented by the number of tokens
in GC. After the consumption of tokens of the gateway’s capacity, that capacity will only
be returned with the completion of the processing of the respective request. From the GQ
location, tokens can go to one of the nodes when triggering any immediate transitions.
For example, the T3 transition is triggered when node 1 is selected by the load balancing
mechanism to proceed with processing. The guard expression of T3 is [g11] to guarantee
the existence of tokens in the places VM1U or VM2U while there is a token in the place
N1U at the same time. The guard expression [g11] means that the node is up and at least
one of its VMs is up as well. The number of tokens in N1Q represents the requests that are
in the gateway’s output buffer. From N1Q, the token can also return to the GQ place (T4 is
triggered) if all VMs on the node are unavailable. The guard expression of T4 is [g114] to
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verify if there are zero tokens in both places VM1U and VM2U or no token in the place
N1U. The T12 transition is triggered when the node or all VMs drop, and the fail-over
mechanism requests the re-submission to the other node. The guard expression of T12 is
[g10] as similar to [g114]. Finally, the N1D transition is triggered if there is capacity on the
node and that node is available. N1D is an exponential transition that represents the time
the data are sent over the network.

[g10]

[g11]

[g114]

Figure 5. Gateway submodule responsible for transmitting requests to the final processing targets.

Figure 6 shows the processing sub-module. The number of tokens on N1C represents
the capacity still available for processing on the node. When the token arrives at N1B, it
must be chosen to process VM the request. Since the behavior of both VMs is similar, we
will focus on explaining only the VM1 token flow. Considering that the token starts in place
N1B and the decision made is to send a request to VM1, then transition T51 is triggered.
The T51 transition is triggered if there is a queuing capability in the VM’s input buffer
(place VM1C with marking VMQC). Therefore, tokens on VM1Q are waiting in line for
the next processing step. The guard expression of T51 is [g14] to check if there is a token in
the place VM1U. Such a guard expression means that VM1 is up. When T71 is triggered,
the VM starts processing the request. The VM1D transition represents this processing time.
When a VM goes down, all VMs return to the initial state, and their jobs must be re-sent to
another VM (locally or on another node). The transitions T61 and T81 are triggered when
the VM falls, also creating tokens in place of Retry1. Transitions T61 and T81 have the
same guard expression [g16] = [g17] to monitor the cases in which the place VM1U has
zero tokens. Considering that the token is still in N1B and there is no VM available on the
node, the transition T10 is triggered, creating tokens on Retry1. The guard expression of
T10 is [g12], which monitors the conditions if there is not a token in the places VM1U and
VM2U. From Retry1, there are two possibilities. First, the request can be relayed to a VM
internally on the same node. The second possibility is that the request is again available for
forwarding through the gateway (GQ place) to another node with available VMs.
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Figure 6. Processing submodule representing the virtual machines queues and processing capacities.

Figure 7 depicts the representation of availability to the node and respective VMs. On
the left side, there are two building blocks for the two VMs, and on the right side, there is
the building block to the node. For the three blocks, there are the traditional MTTF and
MTTR transitions. Additionally, the VMs’ building blocks include immediate transitions
to be triggered when the node fails. In this case, both VMs are turned off as a consequence.
The guard expressions responsible for that are [g110] = [g112] to check if the place N1U
has zero tokens. The recovery transitions (VM1_MTTR and VM2_MTTR ) present the
contrary guard expressions: [g111] = [g113] to monitor if there is a token in the place
N1U. All the fail-over mechanisms and load balancing strategies take this sub-module
into account.

Availability

[g
1
1
0
]

[g111]

[g
1
1
2
]

[g113]

Figure 7. Availability sub-module encompassing availability aspects related to the fog node and
respective virtual machines.
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Metrics

Table 4 presents the metrics used in the model. The mean response time (MRT) can be
obtained by following Little’s law [45]. One of the most used theorems in queuing theory is
Little’s law, which allows us to relate the mean number of jobs in any system with the mean
time spent in the system as follows:mean number of jobs in the system equals the arrival
rate timed mean response time. This relationship applies to all systems or parts of systems
in which the number of jobs entering the system is equal to those completing service.
Little’s law, which was first proven by Little (1961), is based on a black-box view of the
system. The law applies as long as the number of jobs entering the system is equal to those
completing service so that no new jobs are created in the system, and no jobs are lost forever
inside the system. Even in systems where some jobs are lost due to finite buffers, the law
can be applied to the part of the system consisting of the waiting and servingcomponents,
because once a job finds a waiting position (buffer), it is notdropped. The arrival rate, in
this case, should be adjusted to exclude jobs lost before finding a buffer. In other words,
the effective arrival rate of jobs entering the system should be used. Therefore, by Little’s
law, we can compute the mean response time as follows:

MRT = (
RequestsInProgress× ArrivalDelay

1− DropProbability
). (1)

On the other hand, the RequestsInProgress is calculated by summing up all the ex-
pected number of tokens in each request-in-progress place. The arrival delay is the inverse
of the arrival rate:

ArrivalDelay =
1

ARR
. (2)

It is noteworthy that Little’s Law requires the consideration of an effective arrival rate
without considering dropped requests. Thus, as recommended by the author Jain (1990),
we discount the drop probability by dividing the MRT by 1− P(#GC = 0).

The throughput (Tp) represents how many requests per unit time one application can
execute. This metric is obtained based on [46]. Tp is obtained by computing the expected
value of tokens at a place, multiplied by the inverse of the subsequent transition delay.
As in the system model, we present four VMs. We have the total throughput being the
aggregation of the four throughput values. The drop probability (DP), as aforementioned, is
the probability of discarding requests, calculated as the probability of not having available
resources at the entering point of the system (the gateway).

Therefore, the recovered token rate (RTR) is calculated by adding the recovered
token rate of all nodes. The RTR of one node (e.g., RTR_TotalNode01) is given by adding
the token rate of all respective VMs and the node itself. The token rate of the VM (e.g.,
RTR_VM1) is given by multiplying the VM fail rate by the tokens that were executing at
that moment. The VM fail rate (e.g., FailRateVM1) is obtained by multiplying the expected
number of available VMs by the inverse of the MTTF. TokensNumberInProcess adds the
tokens waiting in the queue and the tokens in the processing stage. The gateway queue
utilization (GQU) is calculated by the number of tokens in the processing stage divided by
the total gateway capacity. The node queue utilization (NQU) is the mean utilization of the
respective nodes’ VMs.



Sensors 2021, 21, 6253 16 of 23

Table 4. Metrics used in the model.

Metric Expression

MRT

MRT = ( RequestsInProgress×ArrivalDelay
1−−−DropProbability )

RequestsInProgress =
((E{#GQ}) + (E{#N1Q}) + (E{#N1B}) + (E{#VM1Q}) +

(E{#VM1P}) + (E{#VM2Q}) + (E{#VM2P}) + (E{#N2Q}) +
(E{#N2B}) + (E{#VM3Q}) + (E{#VM3P}) + (E{#VM4Q}) +

(E{#VM4P}) + ... + (E{#NNQ}) + (E{#NNB}) + (E{#VMMQ}) +
(E{#VMMP}) + (E{#VMM2Q}) + (E{#VMM2P}))

ArrivalDelay = 1
ARR

DropProbability = P{(#GC = 0)}

Through- put (Tp)

Tp = ∑N
0 (ExpectedNumberTokensToGoOutN ×OutputRateN)

Tp = ((E{#VM1P})× (1/VM1D))+
((E{#VM2P})× (1/VM2D))+
((E{#VM3P})× (1/VM3D))+
((E{#VM4P})× (1/VM4D))

Drop Probability (DP) DP = P{(#GC=0)}

Recovered Token Rate (RTR)

RTR = RTR_TotalNode01 + RTR_TotalNode02 + RTR_TotalNodeN
RTR_TotalNode01 = (RTR_VM1 + RTR_VM2) + RTR_Node01

RTR_VM1 = FailRateVM1× TokensNumberInProcessVM1
FailRateVM1 = (E{#VM1U})× (1/VM1_MTTF)

TokensNumberInProcessVM1 = ((E{#VM1Q}) + (E{#VM1P}))
RTR_Node01 = FailRateNode01× TokensNumberInProcessNode01

FailRateNode01 = (E{#N1U})× (1/NODEMTTF)
TokensNumberInProcessNode01 = (E{#N1B})

Gateway Queue Utilization (GQU) GQU = GTWQ−(E{#GC})
GTWQ

Node Queue Utilization (NQU) NQU = ((E{#VM1Q})+(E{#VM2Q}))
(VMQC×2)

5. Simulation Results

This section presents a set of simulation results on the proposed model. The models
and simulations were performed using the Mercury tool [47] associated with discrete-event
simulation engines. An MIS system with three fog nodes with two VMs in each node is our
target system for the simulation as illustrated in Figure 8. The model with three nodes can
better show the benefits and drawbacks of distinct optimization strategies.

Gateway (GTW)

Node 1

Node 2

Node 3

VMs

Figure 8. Case-study in simulation

Five metrics were adopted to achieve a complete understanding of the system. The
adopted metrics are drop probability, recovered token rate, mean response time, through-
put, and utilization (gateway and VMs). A comparison is performed based on each metric
according to two aspects: load balancing strategies (three options) and use with and with-
out a fail-over mechanism. Table 5 summarizes the model’s configuration combinations.
This combination aims to compare the impact of using fail-over mechanisms with different
classic load balancing strategies. Table 6 presents all the parameters used to feed the model
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before executing the simulations. Both time and resource capacities are detailed. The
parameters were extracted from the literature ([26,48–50]).

Table 5. Combinations of load balancing techniques and fail-over mechanisms to reduce request
losses and enhance response time.

Feature Name Description

Load Balancing

Probability

Each node has an associated target
probability. The assumed probabilities were:
Node 1 = 25%, Node 2 = 35%, and Node 3 =
40%. The higher the node’s capacity is, the
higher the probability percentage of
forwarding requests to that node can obtain.

Random The node target is chosen randomly.

Shortest Queue The load balancing technique selects a fog
node with the shortest queue capacity.

Fail-over
With Fail-over (W − FO) The fail-over mechanism is adopted

Without Fail-over (WO− FO) The fail-over mechanism is not adopted.

Table 6. Default parameters of the SRN system model.

Parameter Description Time Capacity

ARR Arrival Rate 0.001–0.01 ms n/a
N1D Node 1 Transferring Time 1 s n/a

VM1D & VM2D Node 1 Service Time 30 s n/a
N2D Node 2 Transferring Time 1 s n/a

VM3D & VM4D Node 2 Service Time 20 s n/a
N3D Node 3 Transferring Time 1 s n/a

VM5D & VM6D Node 3 Service Time 10 s n/a
NCC1 Node 1 Virtual Machine Capacity n/a 8
NCC2 Node 2 Virtual Machine Capacity n/a 12
NCC3 Node 3 Virtual Machine Capacity n/a 16

NC Node Capacity n/a 1000
VMQC Virtual Machine Queue Capacity n/a 100

VMN_MTTF Virtual Machine N Mean Time to Failure 1 day n/a
VMN_MTTR Virtual Machine N Mean Time to Repair 2 h n/a
NN_MTTF Node N Mean Time to Failure 7 days n/a
NN_MTTR Node N Mean Time to Repair 2 h n/a

GTWQ Gateway Queue Capacity n/a 30,000

Figure 9 presents eight results, considering five metrics as previously mentioned. A
variation on the arrival rate (ARR) was performed between 0 and 0.01 ms. A confidence
interval accompanies all resulting lines. All metrics have a strong relationship with each
other. The first point to note is comparing the adoption or not-adoption of the fail-over
mechanisms (W− FO & WO− FO). Figure 9a shows the recovered token’s rate (RTR) with
the fail-over mechanism activated. Without the fail-over mechanism, all these requests
would be lost, so the graph shows only the results with the mechanism. The fail-over
mechanism brings a small price to pay. In most points, there is a clear overlap of the
results. However, there are points of non-overlapping in the metrics MRT, drop probability,
and gateway queue utilization. In these cases, using the fail-over mechanism degrades
performance somewhat to have a greater MRT, drop probability, and gateway queue
utilization than when the fail-over mechanism is not used. This difference is observed
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mainly with the random load balancing strategy (ARR > 0.0075 jobs/ms). In particular,
the gateway queue utilization presents a higher number of different results between
WO− FO and W − FO. Although such results are at first negative, two aspects must be
observed. First, the difference with request loss happens only with very high arrival rates
(ARR > 0.0075 jobs/ms). Second, such a difference is a small price paid to not lose requests
by re-sending them to be reprocessed when the system fails.

In Figure 9a, there is a significant difference between the behaviors of the three load
balancing strategies. The probability based strategy recovers more requests than the
Random based strategy because the Probability based strategy is more optimized than the
Random based strategy. However, from ARR = 0.005 jobs/ms, the number of requests
recovered by the Shortest Queue strategy is even greater than the others. Probability
causes more requests to be forwarded to more capable nodes, so more requests remain
in the system and are not lost right at the gateway’s entrance. Even though it exposes
flexibility, the Probability strategy is not adaptable to the arrival rate. The Shortest Queue,
in turn, allows requests to be forwarded to less busy machines regardless of the arrival
rate. The other metrics can corroborate this fact. Random’s MRT (Figure 9b) is greater
than Probability, which is greater than Shortest Queue, regardless of arrival rate. The
same justification applies to the drop probability (Figure 9c), where Random loses more
requests than Probability, which loses more requests than Shortest Queue. The throughput
(Figure 9d) of Shortest Queue is greater than Probability, which is greater than Random.
The use of the gateway (Figure 9e) with Shortest Queue is less than the others because the
nodes have lower mean utilization than the other two cases.

The analysis of the utilization of the three nodes (Figure 9f,g,h shows an interesting
result regarding the load balancing strategies. First, it is worth remembering that the
capacity of nodes 1, 2, and 3 are 8, 12, and 16 processors, respectively. For the Random
and Probability strategies, node 1 reaches very high usage peaks earlier than node 2, while
in node 3, this peak is not even reached. Random and Probability do not adapt to the
increase in the arrival rate. It is worth mentioning that in node 2, Probability reaches
100% of utilization, but Random reaches only 75% because Random is not performative.
The Shortest Queue, in turn, uses all the resources of node 3 as soon as nodes 1 and 2 no
longer have available capacity. For this reason, the throughput (Figure 9d) of Shortest
Queue is always better. Even with very low utilization with Random and Probability
at Node 3, there is still a greater utilization of Probability than Random from the point
ARR = 0.0075 jobs/ms. Such an optimized capacity utilization of Shortest Queue explains
why the Recovered Token Rate (Figure 9a) of this strategy is much better than the other
when the system is highly busy (ARR > 0.005 jobs/ms).

In summary, the simulations showed that the model is capable of calculating perfor-
mance metrics with different load balancing techniques and fail-over mechanisms. As
previously mentioned, the results must be observed broadly, encompassing all metrics.
The more adaptable load balancing strategies to the workload tend to perform better and
use resources better. The Shortest Queue strategy was superior in terms of RTR, mainly for
higher arrival rates. The Shortest Queue obtained lower levels of drop probability at all
points of arrival rate, as well as this strategy allowing greater throughput. Only three load
balancing strategies were used, but other strategies can be applied to the model simply by
configuring guard expressions and weight conditions. The contribution of the fail-over
mechanism is clear because, in a real-time medical response system, request losses are not
allowed. For example, observing the RTR (Figure 9a) for ARR = 0.01 jobs/ms, we have
that the fail-over mechanism with Shortest Queue avoids losing more than 40 requests per
hour in the case of VM failure.
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Figure 9. Simulation results for case-studies with/without load balancing strategies and fail-over mechanisms.
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In the simulations,only the fail-over mechanism presence, the load balancing strate-
gies, and arrival rates were varied. However, it is important to note that the appraiser
can calibrate many other parameters in the model. As Table 6 shows, there are several
parameters regarding service times and resource capacities. Of course, some parameters
have a greater impact on metrics than others. In this case, it should be valuable to carry out
a sensitivity analysis [51–53] to find out where the appraiser should invest in optimizing
the system’s behavior. Another topic is the abstraction that the model allows obtaining. The
computational nodes that the model refers to in principle refer to physical machines located
in a local structure called a fog. However, such nodes can be located at a greater distance in
a cloud structure since there are transitions regarding the transfer of data from the sensors
to the processing nodes. The appraiser can, instead of exploring the use of virtual machines,
also consider containers. To apply such an approach, the appraiser should only perform
initial experiments with containers to obtain average response times and feed the model.
Something that was not explored in the present simulations was the change of parameters
related to availability (MTTF/MTTR) or extending the model by exploring the application
of redundancies. All of these actions can impact the entire set ofstudied metrics.

6. Conclusions

In this paper, we proposed a comprehensive SRN performability model for an edge/fog
based MIS system. Three main load-balancing techniques, including (i) probability-based,
(ii) random-based and (iii) shortest-queue based approaches with/without fail-over mech-
anisms at the levels of fog nodes and fog VMs, were adopted and elaborated in the system
model to assimilate the impact of the strategies to obtain a high level of trustworthiness on
performance continuity under harsh availability conditions. Performability metrics of in-
terest were comprehensively analyzed including: (i) recover token rate; (ii) mean response
time; (iii) drop probability; (iv) throughput; and (v) queue utilization of network devices
and fog nodes. The simulation results indicated that: (i) the impact of fail-over mechanisms
at fog nodes and VMs are clear to not allow request losses in a real-time medical response
system; (ii) load balancing techniques are revealed to be the key role in the improvement
of system performance; (iii) the implementation of both load balancing techniques and
fail-over mechanisms brings about better performability metrics compared to the cases
without their combination, specifically, the shortest-queue load-balancing technique with a
fail-over mechanism outperforms in maintaining major performability metrics compared
to other strategies; and (iv) the developed model is capable of capturing sophisticated
behaviors and dependencies when assessing performability metrics with different load
balancing and fail-over mechanisms in an MIS. This study, along with its findings, can assist
system design and operational management in practical medical information systems to
obtain better performance and availability of medical services in the chaotic circumstances
of virus pandemics.
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