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It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either
through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated
with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity
on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven
tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations
of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the
cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that
such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex,
nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are
needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

1. Introduction

After stem cells have been discovered at the top of the
hematopoietic system hierarchy [1], it became apparent that
human acute myeloid leukemia is also organized hierarchi-
cally. Leukemia is initiated and fueled by a leukemic stem
cell that gives rise to transit-amplifying progenitor cells and
eventually differentiated cancer cells with limited lifespan [2].
A cellular hierarchy in a tumor and the accompanying stem
cell hypothesis has been hailed as a significant breakthrough
in the cancer research community, as its concept holds new
promises for cancer therapy. If only CSCs are uniquely able
to initiate, sustain, and propagate a tumor, then, selective
eradication of CSCs, however difficult it might be to target
them, would be sufficient to cure a cancer [3]. Despite its
conceptual beauty, recent reports consolidated the skepticism
that stemness might not be a prescribed cell phenotype but a
transient state that cells can acquire anddiscard depending on
the cellular environment and signaling context [4–7]. Then,

the heterogeneous tumor population becomes a dynamic,
moving target that is increasingly difficult to treat [8].

The complex biology of stem and nonstem cancer cells
and their interactions with each other as well as with the
intra- and extratumoral environment is yet to be fully
deciphered experimentally. Inroads have been made to use
mathematical and computational models to identify first-
order principles and key biological mechanisms in cancer
plasticity, from which new actionable hypotheses can be
derived [7, 9–12]. Herein, we propose an in silico agent-based
computationalmodel to help decipher parts of the complexity
that arises from the myriads of stem and nonstem cancer cell
interactions and phenotypic plasticity. Agent-based models
are increasingly utilized in theoretical oncology [13–20] to
derive emerging population level dynamics from defined
single cell properties and their perturbation. Such modeling
approach has previously shown that the proliferation capacity
(or telomere length [21, 22] or Hayflick limit [23, 24]) of
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nonstem cancer cell (CC) is a pivotal force in driving tumor
evolution [25, 26]. Then, early progenitor cells that adapt a
stem cell state confer different kinetic properties including
proliferation potential to the new stem cell than dedifferen-
tiating cells that are closer to their terminal phenotype.

The role of the cellular hierarchy in a tumor has been
widely ignored in the modeling community, such that CCs
that transition into a CSC have the same properties as the
initial population-founding CSC. Thus, in addition to con-
ferring the general CSC traits of (a)symmetric division and
longevity, the new CSC gets also bestowed with the historic
initial telomere length with the stupendous consequences
of increased aggressiveness and treatment failure. Herein,
we give explicit consideration of the degrading proliferative
potential in the cellular hierarchy in a phenotypic plasticity
model. We show that phenotypic plasticity promotes early
tumor growth; in the long term, however, plasticity can
impede tumor progression and ultimately lead to the col-
lapse of the tumor population. We will use radiotherapy as
an example of an external catalyst to eventually complete
remission.

2. Materials and Methods

2.1. Mathematical Model. We adapt an in silico agent-based
model [26, 27], in which each cancer cell occupies a 10
× 10 𝜇m grid point on a dynamically expanding 2D lattice
[28]. A dynamic computational domain prevents boundary-
imposed spatial constrains that may influence outcomes.

The tumor population is divided into cancer stem cells
(CSCs) and nonstem cancer cells (CCs) with an individual
proliferation capacity, 𝜌, representative of the telomere length
[21, 29]. Telomeres are shortened during mitosis [22, 30]
reducing the proliferation capacity in each daughter cell (𝜌 −
1), which is a visualization of the Hayflick limit [23, 24].
CSCs are believed to upregulate telomerase which rebuilds
telomeric DNA and thus prevents telomere erosion and
confers longevity to the cell [31–34]. We assume a cell with
exhausted proliferation capacity (𝜌 = 0) will undergo cell
death in the next mitotic attempt as previously assumed [25,
35] without explicit consideration of replicative senescence
[18, 36]. In addition to replicative cell death, we consider
spontaneous cell death in CC with probability 𝛼, which is
prevented inCSC.Without considering cell plasticity, CC and
CSC populations are only connected through asymmetric
division of a CSC, when one of the progeny adopts a CC
phenotype (Figure 1(a)). We denote the probability of sym-
metric CSC division by 𝑝s. Plasticity may occur at successful
proliferation with probabilities 𝑝d (CSC differentiation) and
𝑝dd (CC dedifferentiation). If 𝑝d = 𝑝dd = 0, plasticity is
averted and cells have a persistent phenotype. With 𝑝d >

0 and 𝑝dd > 0, cell phenotypes are plastic and stemness
becomes a transient state. We note that stemness is defined
by the ability to divide (a)symmetrically and prevention of
telomere erosion [33, 37]. Therefore, a CC that adopts a
CSC state through dedifferentiation will be equipped with
current telomere length, that is, 𝜌, which will be bequeathed
to subsequent daughter cells (Figure 1(b)). This is in stark
contrast to previous modeling attempts that in addition to

Table 1: Summary of model parameters.

Parameter Description Nominal value

𝜌
Nonstem cancer cell
proliferation capacity

10

𝛼
Probability of spontaneous
death of nonstem cancer cell

1%

𝑝s
Probability of symmetric
division of cancer stem cell

1%

𝑝d Differentiation probability 1%

𝑝dd Dedifferentiation probability 1%

𝑝p Proliferation probability 1/24

𝑝m
Migration probability if there
is no proliferation

15/24

𝜉

Radioresistance of quiescent
cell, that is, for a cell with no
available space in the
neighborhood

0.5

𝜆
Radioresistance of cancer
stem cell

0.1376

𝑎

Parameter of linear-quadratic
radiation response model,
1/Gy

0.3859

𝑏

Parameter of linear-quadratic
radiation response model,
1/Gy2

0.01148

𝐷 Radiation dose, Gy 2

conferring general CSC traits also reset time and equip new
CSC with historic uniform initial telomere length.

At discrete simulation time steps representative of Δ𝑡 = 1
hour, cells are randomly selected and updated. In case of a
CC, spontaneous cell death is considered with probability 𝛼.
Proliferation and migration of surviving cells are mutually
exclusive (𝑝p = 1/24, i.e., once per day; 𝑝m = 15/24,
i.e., 150𝜇m per day) and subject to available space in the
immediate cell neighborhood. All model parameters are
summarized in Table 1, and the simulation procedure is
visualized in a flowchart in Figure 1(c).

2.2. Tumor Morphology Analysis. In case of frequent migra-
tion events, defining tumor periphery on a two-dimensional
lattice is not straightforward, as cells may separate from the
main tumor mass. In order to define the tumor periphery,
we first transform the lattice into binary information (cell
present or not). Then, we substitute the value of each pixel
by the average number of positive pixels in the immediate 8
neighbors’Moore neighborhood and apply an image intensity
threshold of 3/8 (this includes vacant sites with more than
2 cancer cells in the neighborhood) and select regions con-
tainingmore than 104 cells. We define the tumor periphery as
the periphery of the selected regions. All transformations are
performed using MATLAB and Image Processing Toolbox
Release 2014a, The MathWorks, Inc., Natick, Massachusetts,
United States.



Stem Cells International 3

𝜌 = N 𝜌 = N 𝜌 = N − 1 𝜌 = 1 𝜌 = 0

CCCSC

Proliferation capacity

1 − ps

ps

(a)

Plasticity

CSC CC

D
ec

re
as

e i
n 

in
he

rit
ed

pr
ol

ife
ra

tio
n 

po
te

nt
ia

l pd

pdd

pd

pdd

(b)

Simulation scheme

Stack of cells Stack 
empty? Increase time

Pick at random cell 
from the stack and 

perform its cell cycle
Remove picked cell 

from the stack

Sponta-
neous
death?

Remove 
the cell 
from the 

lattice

Any free 
spot?

Proliferation
attempt?

Migration
attempt?

Phenotype 
change?

Move the 
cell

No Yes

NoYesNo

Yes

Perform 
proliferation

Change
phenotype

Yes

No

Yes

No Cell cycle scheme

present at time t

(c)

Figure 1: (a) Schematic of the proliferation potential erosion in the nonstem cancer cell (CC) population after asymmetric division of cancer
stem cell (CSC) that occurs with probability 𝑝s. (b) Schematic of cellular differentiation and dedifferentiation (probabilities 𝑝d and 𝑝dd, resp.),
in which the proliferation potential is memorized in course of evolution. (c) Schematic of the simulation procedure and cell cycle evaluations.

Tumor circularity is calculated as

Circularity = 4𝜋𝐴

𝑆
2
, (1)

where 𝐴 is the tumor area and 𝑆 is the perimeter length. For
a perfect circle, the circularity is equal to 1. Both 𝐴 and 𝑆

are calculated using the regionprops function fromMATLAB
Image Processing Toolbox.

In order to calculate the CSC fraction in the proximity
of the tumor boundary, we dilate the tumor periphery by 20
pixels in four orthogonal directions and select all cells within

the dilated area. This procedure selects cells that are within
200𝜇m from the tumor boundary.

2.3. Metastatic Potential. We estimate the potential for
metastatic spread using a virtual 5-well plate, where wells are
connected sequentially by a narrow canal of 100 𝜇m width
and 400 𝜇m length. Each well is circular with a 500𝜇m
radius. Each simulation is initiated with a single CSC in
the geometric center of the first well. Metastatic spread is
simulated until the first CSC enters the last blind-ended
canal.
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2.4. Radiotherapy. We simulate fractionated radiotherapy of
30 fractions of dose 𝐷 = 2Gy applied every 24 h hours. The
dose-dependent surviving fraction SF(𝐷) is calculated using
the linear-quadratic formalism

SF (𝐷) = 𝑒−𝜉𝜆(𝑎𝐷+𝑏𝐷
2
)
, (2)

where 𝜉 < 1 describes radioresistance of quiescent cell, that is,
for a cell with no available space in the neighborhood, and 𝜉 =
1 otherwise and 𝜆 < 1 describes increased radioresistance of
CSC [38, 39]. For CC, 𝜆 = 1. In line with previous estimates,
we set 𝜉 = 0.5, 𝜆 = 0.1376, 𝑎 = 0.3859, and 𝑏 = 0.01148 [39].

3. Results and Discussion

We initiate each simulation with a single CSC with prolifera-
tion capacity 𝜌 = 10 and probability of symmetric division
𝑝s = 1% and simulate tumor growth for 720 days. We
consider bidirectional plasticity with equal probabilities 𝑝d =
𝑝dd = 0% (static phenotypes), 0.01%, 0.1%, 1%, and 10%. For
each set of parameters, we performed 100 simulations, and
statistical analyses were performed using Student’s 𝑡-test.

3.1. Impact of Plasticity on Tumor Growth Characteristics.
Phenotypic plasticity increases initial tumor growth rate
yielding larger tumors after 720 days than the tumors with
static phenotypes (Figure 2(a)). However, for larger plasticity
(𝑝d = 10%), tumor growth saturates around day 320 keeping
the tumor in a dormant state followed by a decrease in total
cell number. In contrast with initial growth that is favored
by higher plasticity rates, increasing phenotypic plasticity
inhibits tumor growth later. This population level behavior
mimics the evolution of CSC number (Figure 2(b)) and
ratio (Figure 2(c)). CSC fraction in phenotypic plasticity
tumors appears to saturate around the value of 50% for all
considered transition rates, but this ratio is only achieved in
the considered time frame with 𝑝d = 𝑝dd = 10%.

In addition to increasing the average tumor size during
the growth phase, plasticity reduces the amount of variation
in tumor size (Figure 2(d)). For 𝑝d = 1%, standard deviation
is only about 20% of the mean at 𝑡 = 720 days, compared
to about 3 times larger S.D./mean for tumors with static
phenotypes.The source of variation in tumor size across inde-
pendent simulation is opportunistic competition for available
space between CSC and CC in the tumor interior where most
CSCs are locatedwithout plasticity [19, 25, 35, 40]. Phenotypic
plasticity partially averts intratumoral CSC inhibition and
prolonged phases of population level dormancy [41] as new
CSCs are continuously created at the boundary with fewer
spatial constrains.

Interestingly, in case of 𝑝d = 0.1%, one simulated tumor
died spontaneously early during development. In that simu-
lation, the initial CSC differentiated before the first stochastic
symmetric division event, and all of its CC progenies died
before a dedifferentiation event. In the Appendix, we show
analytically that the probability of that event is approximately
0.5% for all considered plasticity rates and, thus, is large
enough to manifest in numerical simulations.

To analyze analytically if tumors with phenotypic plastic-
ity can undergo spontaneous remission, we first consider the
possible division fates of a CSC with proliferation capacity
𝑖 (CSC

𝑖
). With probability 𝑝d, the CSC will differentiate

before a symmetric division and it will be lost. In case of
a dedifferentiation event of a CC, the new CSC will have
a proliferation capacity 𝜌 < 𝑖 (Figure 3(a)). If the CSC
divides symmetrically, a new CSC

𝑖
will be created. In case

of asymmetric division, we need to follow the fate of the
CC progeny. At each iteration, the CC can die spontaneously
with probability 𝛼. Let us denote by 𝛼

󸀠 the probability
that the newly created CC will die before a proliferation
attempt (𝛼󸀠 ≥ 𝛼). Then, no new CSC

𝑖
will be created

with probability 𝛼󸀠. If the CC divides, a new CSC
𝑖
is only

created in case of a dedifferentiation event with probability
𝑝dd. If after dedifferentiation the CSC

𝑖
undergoes symmetric

division, then two newCSC
𝑖
are to be created.This theoretical

consideration has four possible outcomes: the number of
CSC
𝑖
(1) decreases with probability 𝑝

1
= 𝑝d, (2) remains

the same with probability 𝑝
2
= (1 − 𝑝d)(1 − 𝑝s)[𝛼

󸀠
+ (1 −

𝛼
󸀠
)(1 − 𝑝dd)], (3) increases by one with probability 𝑝

3
=

(1−𝑝d)[𝑝s + (1 −𝑝s)(1 −𝛼
󸀠
)𝑝dd(1 −𝑝s)], and (4) increases by

twowith probability𝑝
4
= (1−𝑝d)(1−𝑝s)(1−𝛼

󸀠
)𝑝dd𝑝s. Hence,

the probability 𝑃 that all CSC
𝑖
will die after the initial seeding

of one CSC
𝑖
fulfills the relation 𝑃 = 𝑝 + 𝑞𝑃

2
+ (1 − 𝑝 − 𝑞)𝑃

3,
where 𝑝 = 𝑝

1
/(𝑝
1
+ 𝑝
3
+ 𝑝
4
) and 𝑞 = 𝑝

3
/(𝑝
1
+ 𝑝
3
+ 𝑝
4
), from

which we obtain that

𝑃 = min
{
{

{
{

{

𝑝 − 1 + √−3𝑝
2
− 4𝑝𝑞 + 2𝑝 + 1

2 (1 − 𝑝 − 𝑞)

, 1

}
}

}
}

}

. (A)

Obviously, for 𝑝d = 0, that is, no possible differentiation
event, we have 𝑃 = 0, and for 𝛼󸀠 = 1 the problem reduces
to 𝑃 = min{(1 − 𝑞)/𝑞, 1}. Importantly, if 𝑃 = 1, then all
CSCs will die off regardless of the initial number of CSCs.
Equation (A) contains only one unknown parameter, 𝛼󸀠,
which depends on the extent of spatial inhibition and the
proliferation probability 𝑝p. However, the probability, 𝑝, is an
increasing function of 𝛼󸀠, and 𝛼󸀠 ≥ 𝛼. Thus, if a tumor dies
spontaneously with probability 1 for 𝛼󸀠 = 𝛼, then it also dies
spontaneously with probability 1 for any larger 𝛼󸀠. Similarly, if
𝑃 < 1 for 𝛼󸀠 = 1, then the tumor will not die spontaneously in
each single simulation iteration. It is worth mentioning that a
nonzero value of parameter 𝛼 is crucial for relating the agent-
basedmodel to probability𝑃, as the average time between the
CSC proliferation events can grow without bound if 𝛼 = 0,
due to intratumoral spatial inhibition.

Figure 3(b) shows the probability 𝑃 of a CSC population
vanishing for 𝛼󸀠 = 1 and 𝛼

󸀠
= 0.01 if 𝑝d = 𝑝dd. All

simulated tumors will eventually die off spontaneously for
𝑝d values larger than ≈9.09%. This explains the previously
observed decrease in the average tumor size for𝑝d = 10%(cf.,
Figure 2(a)). For 𝑝d = 0.1% in the initially presented tumor
growth simulations, 𝑃 ∼ 0.1 for 𝛼󸀠 = 1, and thus about 90%
of tumors will grow successfully.

Let us consider 100 independent simulations initialized
with CSC

3
and 𝑝d = 𝑝dd = 10%. As predicted by the above

theory, all 100 tumors will undergo remission as 𝑃 = 1 in that
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Figure 2: Average total cell count (a), cancer stem cell (CSC) number (b) and fraction (c), and coefficient of variation, that is, standard
deviation/mean, for the total cell count (d) as a function of time for tumor without plasticity (𝑝d = 0%, blue solid curve) and with plasticity
probability of 0.1% (red dashed curve), 1% (yellow dot-dashed curve), and 10% (purple dotted curve). Shown are means from 100 simulation
runs (only successfully grown tumors are considered). Error bars are omitted for clarity.
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Figure 3: (a) Possible outcomes of the cancer stem cell (CSC) division when one considers survival of CSC with proliferation potential 𝑖
(CSC

𝑖
). (b) Probability of spontaneous tumor remission,𝑃, described by (A), for different values of probability that the nonstem cancer cell will

die before proliferation attempt, 𝛼󸀠, and plasticity event frequencies, 𝑝d = 𝑝dd. (c) Spontaneous remission of all 100 simulated tumors initiated
with single CSC equipped with proliferation capacity 𝜌 = 3 and probability of symmetric division 𝑝s = 1%. (d) Spontaneous remission of
17 out of 100 simulated tumors initiated with single CSC equipped with proliferation capacity 𝜌 = 3 and probability of symmetric division
𝑝s = 3%.

case (Figure 3(c)). Increasing the probability of symmetric
division from 𝑝s = 1% to 𝑝s = 3%, only 17 of 100 tumors
die out (Figure 3(d)). However, the above theory cannot
conclusively predict if all of these tumors will eventually die
off.

3.2. Impact of Plasticity on Tumor Morphology. Figure 4(a)
shows the largest tumors after being simulated for 720
days of 100 independent simulations for different plasticity
probabilities. Although the average tumor size for 𝑝d = 10%
is larger than for 𝑝d = 0% (cf., Figure 1(a)), the biggest
simulated tumor is smaller (114,950 versus 283,504 cells).This
is a manifestation of the larger coefficient of variation in the
static phenotype cohort (cf., Figure 2(d)).

The morphology of tumors with static phenotypes is
described as self-metastatic [35] with low circularity [42].
Tumors with intermediate plasticity probabilities, 𝑝d =

0.1% and 𝑝d = 1%, feature more circular morphology at
day 720 as the self-metastatic morphology caused by the
spatial inhibition of CSCs is averted by spontaneous CCs
dedifferentiation at the tumor periphery (Figure 4(b)). For
larger plasticity probabilities (𝑝d = 10%), clusters of cells at
the tumor periphery die off stochastically, which yields a less
regular boundary and decreasing tumor circularity.

Low values of plasticity probabilities (𝑝d = 0.1% and
𝑝d = 1%) are associated with a fivefold increase in the
fraction of quiescent cells compared to tumors with static
phenotypes, arguably at least in part due to the larger size
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Figure 4: (a) Simulation snapshots of the biggest tumor at 𝑡 = 720 days for each considered plasticity event probability. 𝑠: number of
cancer stem cells; 𝑛: number of cancer cells. Comparison of circularity (b), percent of quiescent cells (c), and cancer stem cells fraction
in 200 𝜇m proximity of tumor boundary (d) for different probabilities of plasticity event. Shown are means ± SD from 100 simulation runs
(only successfully grown tumors are considered).
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Figure 5: (a) Average ± SD number of days until the right boundary of 5-well plate is reached by cancer stem cell for different probabilities of
plasticity event (𝑝d). (c) Simulation snapshots at the moment when first cancer stem cell reaches the right boundary for different probabilities
of plasticity event (𝑝d). Percentages above each well indicate the fraction of cancer stem cells within each well.

and thus reduced surface-to-volume ratio (Figure 4(c)). For
𝑝d = 10%, the exhaustion and spontaneous death of CC are
not effectively filled and thus a larger proportion of cells is
actively proliferating, which is comparable to the one in the
nonplastic tumor.

A monotonic dependence on plasticity probability is the
fraction of cancer stem cells in the proximity of the tumor
boundary (Figure 4(d)). For 𝑝d = 10%, more than 50% of
the CSCs are close to the tumor boundary, which represents
almost the entire cancer stem cell fraction (cf. Figure 2(c)).
The prevalence of CSC in the tumor periphery suggests
that plasticity may lead to increased potential for metastatic
spread.

3.3. Impact of Plasticity on Invasiveness. For each considered
value of plasticity probability, we simulated 100 virtual 5-
well plate experiments. For 𝑝d = 0%, 0.1%, and 1%, in all
simulations a CSC successfully reached the right boundary
of the experimental setup. However, for 𝑝d = 10%, as many
as 97 out of 100 simulations ended with spontaneous death
of all cancer cells before invading all wells. Time to reach the
right boundary was significantly lower in all plastic tumors,
with almost 1.5-fold and 2-fold reduction for 𝑝d = 0.1%
and 𝑝d = 1%, respectively, when compared to tumors with
static phenotypes (Figure 5(a)). However, the invasion speed
follows a nonmonotonic behavior in plastic populations, as
the time needed to reach the right boundary is reduced for
𝑝d = 1% compared to both 𝑝d = 0.1% and 𝑝d = 10%,
indicating exhaustion of the population as discussed above.

Visualizations of successful simulations show a plasticity-
dependent gradient of cancer stem cell fraction values in
subsequentwells (Figure 5(b)).With lower values of plasticity,

the difference between the composition of population in the
first and the last wells increases, with about 16-fold change
for nonplastic tumor. For the largest considered value of
𝑝d = 10%, however, there is no significant difference in
composition between the wells.

3.4. Impact of Plasticity on Radiation Outcome. We simulated
the impact of radiotherapy on tumors that consisted of
250,000 cells generated for different plasticity probabilities.
As expected, the tumor without plasticity responds best to
radiotherapy (Figure 6(a)), as it has the smallest fraction
of CSC with decreased radiosensitivity 𝜆 (cf., Figure 2(c))
and small proportion of quiescent cells with decreased
radiosensitivity 𝜉 (cf., Figure 4(c)).The tumors with relatively
low plasticity, 𝑝d = 0.1% and 𝑝d = 1%, show similar
response to radiation, with the number of cells reduced by
about 20 times compared to the pretreatment state. Tumor
with the highest plasticity event probability, 𝑝d = 10%, shows
an intermediate response, which can be explained by lower
fraction of quiescent cells compared to other plastic tumors
(Figure 4(c)) and larger fraction of stem cells compared to
the plasticity-free tumor (Figure 2(c)). However, in none of
the simulations was the tumor eradicated during the course
of treatment.

Simulations of tumor growth following the treatment
show that tumors without and with low plasticity show
regrowth to pretreatment cell counts within 200 days after
the onset of treatment (Figure 6(b)). However, almost all of
the simulated tumors with 𝑝d = 10% undergo spontaneous
remission (Figure 6(c)) within two years after transient
regrowth. Radiotherapy on highly plastic tumors may serve
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Figure 6: Response to radiotherapy (RT) consisted of 30 × 2Gy dose applied every day to tumors with about 250,000 initial cell count for
different probabilities of plasticity event (𝑝d). (a) Average radiation response. (b) Regrowth for low 𝑝d. (c) Remission for 𝑝d = 10%.𝑁 = 10

simulations.

as an accelerator of CSC exhaustion due to frequent differen-
tiation events with subsequent loss of proliferation potential.

4. Conclusions

The observation of cancer stem cell plasticity has led to the
general belief of more aggressive tumor growth and reduced

treatment response [12]. We introduced an in silico agent-
based model of cancer stem cell driven tumor growth to
study the impact of different rates of phenotypic plasticity
on tumor growth, morphology, invasion, and treatment
response. Simulations of our model show that plasticity
accelerates early tumor growth, as prolonged phases of tumor
dormancy due to intratumoral competition [41] are averted
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by cells on the periphery acquiring stem cell traits and
propagating the tumor population. Whilst tumors with fixed
phenotypes show a gradual increase in CSC over time,
phenotypic plasticity yields relatively constant population
fractions, with CSC predominantly located at the tumor
boundary, thereby facilitating invasion andmetastatic spread.
The explicit consideration of the cellular hierarchy within
a tumor and the accompanying reduction of proliferation
potential, however, offer a previously unappreciated aspect of
CSC plasticity. Transitions between stem and nonstem cancer
cell states at high frequencies yield a reduction of proliferation
potential in each cell, thereby reducing the lifespan of each
daughter cell and inevitably cell death. This may lead to
population level dormancy and ultimately collapse of the
tumor with complete remission.

Mathematical and computational models, by virtue of
their very purpose, are subject to gross oversimplifications
of reality [43]. However, they may provide interesting and
nonintuitive insights into the tumor progression dynamics,
including novel discussion points in understanding cancer
stem cell plasticity. Further theoretical, experimental, and
integrated studies are needed to fully decipher cancer stem
cell plasticity and how it can be harnessed for novel thera-
peutic approaches. In a simple experimental approach, cancer
stem cell driven tumor cell lines can be propagated in vitro,
and at different passages cells may be sorted for cancer
stem cell marker expression. The negative population can be
exposed to radiation or hypoxic and acidic environmental
conditions, which have been shown to reprogram cells
towards a cancer stem cell phenotype [44–47]. Repeated
sorting of the previously marker-negative population should
yield marker-positive cells, arguably plastic new cancer stem
cells, which can be further propagated in vitro. With increas-
ing passages, our model suggests a significant reduction in
telomere length of marker-positive cells, which may translate
into different in vivo tumor growth dynamics.

Appendix

Probability of Early Tumor Death Event

We set out to approximate analytically the probability that
the initial CSC with proliferation capacity 𝜌 will differen-
tiate before first symmetric division and all of its nonstem
progenies will die before any dedifferentiation event, which
we denote as 𝐷

𝜌
. We consider a very early stage of tumor

development and, thus, we can neglect space inhibition (we
have a large migration probability of 15/24). The probability
that a nonstem cell with given proliferation potential, 𝜌, and
all its progenies will not dedifferentiate before dying off, 𝜔

𝜌
,

follows the recurrence relation

𝜔
𝜌
=

𝛼

𝛼 + (1 − 𝛼) 𝑝p
+

(1 − 𝛼) (1 − 𝑝dd) 𝑝p

𝛼 + (1 − 𝛼) 𝑝p
𝜔
2

𝜌−1
, (A.1)

with𝜔
0
= 1−𝑝p(1−𝛼)𝑝dd/(𝛼+𝑝p(1−𝛼)).The probability that

the CSC will undergo differentiation before first symmetric
division is equal to 𝑝d/((1 − 𝑝d)𝑝s + 𝑝d) and the number of
nonsymmetric divisions follows geometric distribution with
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Figure 7: Probability of early tumor death event for different
plasticity event probability and for parameters considered in the
main text.

probability of success 𝑝 = (1 − 𝑝d)𝑝s + 𝑝d. Thus, we obtain
the following expression for𝐷

𝜌
:

𝐷
𝜌
= 𝑝d𝜔

2

𝜌−1

∞

∑

𝑘=0

𝜔
𝑘

𝜌
(1 − (1 − 𝑝d) 𝑝s − 𝑝d)

𝑘

=

𝑝d𝜔
2

𝜌−1

1 − 𝜔
𝜌
(1 − (1 − 𝑝d) 𝑝s − 𝑝d)

.

(A.2)

In Figure 7, we plotted 𝐷
𝜌
under the assumption that 𝑝d =

𝑝dd and for parameters considered in the main text. We
see that for all considered plasticity event probabilities the
probability of early tumor death is close to 0.5%. It is worth
noticing that if spatial inhibition will increase value𝐷

𝜌
more

for lower probabilities of plasticity event, on average more
nonstem progenies are created before differentiation event.
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