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Congenital limb malformations (CLMs) affect 1 in 500 live
births. However, the value of exome sequencing (ES) for CLM
is lacking. The purpose of this study was to decipher the muta-
tional signature of CLM on an exome level. We enrolled a
cohort of 66 unrelated probands (including 47 families) with
CLM requiring surgical correction. ES was performed for all
patients and available parental samples. A definite molecular
diagnosis was achieved in 21 out of 66 (32%) patients. We iden-
tified 19 pathogenic or likely pathogenic single-nucleotide var-
iants and three copy number variants, of which 11 variants were
novel. We identified four variants of uncertain significance.
Additionally, we identified RPL9 and UBA2 as novel candidate
genes for CLM. By comparing the detailed phenotypic features,
we expand the phenotypic spectrum of diastrophic dysplasia
and chromosome 6q terminal deletion syndrome. We also
found that the diagnostic rate was significantly higher in pa-
tients with a family history of CLM (p = 0.012) or more than
one limb affected (p = 0.034). Our study expands our under-
standing of the mutational and phenotypic spectrum of CLM
and provides novel insights into the genetic basis of these syn-
dromes.
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INTRODUCTION
Congenital limb malformation (CLM) represents a heterogeneous
group of structural abnormalities of the limbs that originate from
perturbations during limb development. CLM affects ~1 in 500
live births.1,2 While CLM is usually isolated, it can be present in
conjunction with other congenital syndromes, such as Apert syn-
drome,3 Duane-radial ray syndrome,4 and Holt-Oram syndrome.5

About 20% of individuals with CLMs have at least one associated
anomaly, and 10% of all congenital anomalies have upper limb
involvement.6 Along with coexisting anomalies, CLM presents a sig-
nificant psychological and clinical burden to affected individuals
and their families.
Molecular T
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Several types of genetic variants, including single-nucleotide vari-
ants (SNVs), small insertions and deletions (indels), and copy num-
ber variants (CNVs), have been implicated in CLM. The establish-
ment of a genetic profile is essential to providing accurate genetic
diagnosis and counseling, and to allow better understanding of dis-
ease prognosis. Despite the fact that there are >500 genes associated
with CLM, many candidate genes remain under-recognized, and the
majority of CLM cases cannot be diagnosed on a molecular level.7

In order to investigate the molecular basis of CLM on an exome level,
we performed exome sequencing (ES) in a cohort of 66 patients with
CLM. In addition, to identify the mutational spectrum in known
CLM-associated genes, we also searched for potentially novel CLM
candidate genes and phenotypic expansions.
RESULTS
Clinical characteristics and diagnostic yield

We enrolled a total of 66 unrelated probands with CLM of Chinese
Han ethnicity, including 41 males and 25 females. Forty-seven of
them underwent family-based ES. Nineteen cases underwent
herapy: Nucleic Acids Vol. 24 June 2021 ª 2021 The Authors. 961
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Figure 1. Sunburst chart showing diagnostic yield of

the cohort

AD, autosomal dominant; AR, autosomal recessive; AS,

Apert syndrome; GCPS, Greig cephalopolysyndactyly

syndrome; TPT-PS, triphalangeal thumb-polysyndactyly

syndrome; DBA, Diamond-Blackfan anemia; RTS, Rubin-

stein-Taybi syndrome; FA, Fanconi anemia; DTD, diagnosis

of diastrophic dysplasia; DRRS, Duane-radial ray syn-

drome; VOUS, variant of uncertain significance.
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proband-only ES. The mean age was 4.01 ± 0.58 years, with the ma-
jority (95%) being younger than 10 years old. Reduction anomalies
were the most common anomaly in the cohort (25/66, 38%), followed
by syndactyly (16/66, 24%), polydactyly (16/66, 24%), brachydactyly
(6/66, 9%), and other unclassified anomalies (3/66, 5%). Overall, the
characteristics of the cohort reflect a diverse distribution of surgically
corrected CLM cases in clinical practice.

In total, 66 probands with CLM were analyzed. Of these, we estab-
lished a molecular diagnosis in 21 patients (32%) (Figure 1). We iden-
tified three CNVs and 19 SNVs located in 10 genes (SALL4, SLC26A2,
RPL9, FANCA, FGFR2, GLI3,HOXD13, UBA2, GJA1, and GDF5). All
together, we identified 19 disease-causing SNVs (including 6
missense, 6 frameshift, 3 splice site, 1 nonsense, and 3 in-frame inser-
tion) and 3 disease-causing CNVs (including deletion of 6q25.3,
duplication of 7q36.3, and deletion of 16q24.3). Four variants of un-
known significance (VOUS) were found in GLI3, FANCB, and
SLC26A2. Among them, diagnostic yield was highly variable among
different phenotypic groups (Table 1).

In our cohort, 32 cases (48%) have one limb affected and 34 cases
(52%) have more than one limb affected. Thirty-four cases (52%)
have syndromic anomalies, and 32 cases (48%) have isolated CLM.
Fifty-one cases (77%) are sporadic, and 15 cases (23%) have a positive
family history (Table 2). Diagnostic yield was higher in familial cases
(60% versus 24%, p = 0.012) and cases with more than one limb
affected (43% versus 16%, p = 0.034) (Table 2). Pathogenic and likely
pathogenic variants and VOUS identified in the cohort are summa-
rized in Table 3.
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Pathogenic variants in known disease-

causing genes

In total, previously reported causal variants in
three genes were observed in six patients:
FGFR2 (n = 4), GJA1 (n = 1), and HOXD13
(n = 1) (Table 3), accounting for 9% of all cases
in the study (Figure 2). (1) Among these, we iden-
tified a heterozygous FGFR2 variant, c.758C > G
(p.Pro253Arg), in patients DISCO-JST13,
DISCO-JST39, and DISCO-JST51. Notably, all
three patients presented with features character-
istic of Apert syndrome, such as craniosynostosis,
midface hypoplasia, and syndactyly of the hands
and feet. (2) We also found a de novo heterozy-
gous FGFR2 variant, c.755C > G(Ser252Trp), in patient DISCO-
JST48, who presented typical features of Apert syndrome. These
two FGFR2 variants have been reported in multiple patients with
Apert syndrome.3,8 Interestingly, an in-frame insertion variant of
RYR1, c.12788_12793dup (Glu4263_Gly4264dup), was also observed
in patient DISCO-JST48, as well as in his father and sister. Patient
DISCO-JST48 had a history of malignant hyperthermia during sur-
gery 2 years prior to this study. This c.12788_12793dup (Glu42
63_Gly4264dup) has not been previously reported in the literature
but occurred four times as a heterozygous mutation in the Genome
Aggregation Database (gnomAD) database. However, patient
DISCO-JST48’s father and sister had no history of anesthesia and
no signs of malignant hyperthermia. Thus, this variant is considered
a VOUS. (3) A heterozygous GJA1 c.119C > T (p.Ala40Val) variant
was found in patient DISCO-JST22, who presented with syndactyly
and dental dysplasia. This variant has previously been found in one
Japanese patient with oculodentodigital dysplasia.9 (4) Patient
DISCO-JST33, who presented with central synpolydactyly, was found
to carry aHOXD13 c.917G >A (p.Arg306Gln) variant, which has pre-
viously been identified in multiple patients with synpolydactyly.10,11

Novel variants in known disease-causing genes

In order to expand our understanding of the mutational landscape of
CLM, we focused on novel variants that have not been previously
implicated in CLM. We identified nine novel truncating variants in
five genes: SALL4 (n = 4), GLI3 (n = 2), SLC26A4 (n = 1), FANCA
(n = 1), and CREBBP (n = 1) (Figure 2). These variants include six
frameshift variants, two splice variants, and one nonsense variant.
Pedigree, clinical pictures, and results of Sanger sequencing of these



Table 1. Diagnostic yield among different phenotypic groups

Total (no.) Diagnosed (no.) Undiagnosed (no.) Diagnostic yield (%) Genes (no. of patients)

Reduction anomaly 25 7 18 28

Duane-radial ray syndrome 7 4 3 57 SALL4 (4)

SHFM 3 0 3 0

Holt-Oram syndrome 2 0 0 0

Longitudinal reduction 2 0 2 0

Epiphyseal dysplasia 1 1 0 100 SLC26A2(1)

Diamond-Blackfan anemia 1 1 0 100 RPL9(1)

Fanconi anemia 1 1 0 100 FANCA(1)

Nager syndrome 1 0 1 0

Unclassified radial reduction 7 0 7 0

Syndactyly 16 8 8 50

Apert syndrome 4 4 0 100 FGFR2(4)

Unclassified 12 4 8 33 GLI3(1); HOXD13(1); GJA1(1); UBA2(1)

Polydactyly 16 6 10 38

Preaxial polydactyly 10 2 8 20 6q25.3-6q27 deletion (1); 7q36.3 duplication(1)

Postaxial polydactyly 2 0 0 0

Synpolydactyly 2 2 0 100 HOXD13(2)

Greig cephalopolysyndactyly syndrome 1 1 0 100 GLI3(1)

Rubinstein-Taybi syndrome 1 1 0 100 CREBBP(1)

Brachydactyly 6 1 5 17

Poland anomaly 5 0 5 0

Brachydactyly type C 1 1 0 100 GDF5(1)

Others 3 0 2 33

Constraint band syndrome 2 0 2 0

Madelung deformity 1 0 1 0

Total 66 21 45 32

SHFM, split hand/foot malformation; No., number.
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families are presented in Figure 3. Notably, one novel missense
variant and one novel in-frame insertion variant were observed in
two patients (Table 3).

A heterozygous GDF5 c.932T > C (p.Leu311Pro) variant was identi-
fied in patient DISCO-JST17 and her mother, both of whom pre-
sented with brachydactyly type C (BDC) (Figure 3C). Two additional
family members of patient DISCO-JST17’s mother also presented
with similar phenotypes, but genetic tests were not performed. This
variant is absent from the gnomAD database and is predicted to be
deleterious by multiple bioinformatic tools (CADD = 19.42, SIFT =
0, gerp++ = 4.75 and PolyPhen2 HDIV = 0.997). Thus, we considered
GDF5 c.932T > C (p.Leu311Pro) to be a likely pathogenic variant.

Patient DISCO-JST57 had syndactyly of 3rd and 4th fingers of the right
hand (Figure 3H). In addition, her mother and five family members
within her mother’s family presented with bilateral 2nd toe clinodac-
tyly. ES of the proband and her parents identified an in-frame inser-
tion variant, c.183_203dup (p.Ala65_Ala71dup), in HOXD13, which
is absent from the gnomAD database. This variant causes the number
of residues in a polyalanine tract of HOXD13 to increase from 15 to
22. Although this cDNA change was not reported previously,
different cDNA changes leading to the polyalanine tract increasing
from 15 to 22 residues were observed in several families with syndac-
tyly or clinodactyly.12

Phenotypic spectrum expansion in known CLM genes

In our cohort, phenotypic expansion was associated with one gene
(SLC26A2) and one CNV (6q25.3-6q27). Patient DISCO-JST8 pre-
sented with limb shortening, intrauterine growth retardation, lan-
guage retardation, decreased testicular size, and normal skull size.
ES found that DISCO-JST8 carried two SLC26A2 variants (Fig-
ure 3B). The c.1512G > A (p.Met504Ile) was inherited from his fa-
ther, and the c.136_137insTT (p.Asp46Valfs*44) was not inherited
from his father (mother not tested). Genotype and phenotype of pa-
tient DISCO-JST8 strongly suggest the diagnosis of diastrophic
dysplasia (DTD), although we are unable to determine whether
the variants occur in trans or in cis because of the unavailability
Molecular Therapy: Nucleic Acids Vol. 24 June 2021 963

http://www.moleculartherapy.org


Table 2. Diagnostic yield comparison in patients with different clinical

characteristics

Total
(no.)

Diagnosed
(no.)

Undiagnosed
(no.)

Diagnostic yield
(%)

Family history

Yes 15 9 6 60

No 51 12 39 24

p value 0.012

No. of affected limb(s)

1 32 5 27 16

R2 34 16 21 43

p value 0.034

Systemic anomalies

Syndromic 34 13 21 38

Isolated 32 8 24 25

p value 0.297

No., number.
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of the mother’s sample. Typical features of DTD include limb short-
ening, normal-sized skull, hitchhiker thumbs, and spinal defor-
mities,13 whereas language retardation and testicle hypoplasia are
not associated with DTD.

Patient DISCO-JST9 presented with congenital heart disease, devel-
opmental delay, structural brain anomalies, craniofacial anomalies,
constipation, preaxial polydactyly, and elevated blood ketone bodies
and dicarboxylic acid level (Figure 3L). CNV analysis through ES
identified a heterozygous deletion of 6q25.3-6q27 in patient
DISCO-JST9. Although terminal deletion of chromosome 6q
(6q25.3-6q27 in this case) is associated with variable phenotype spec-
trum, the patient’s other symptoms of constipation, preaxial polydac-
tyly, and elevated blood ketone bodies and dicarboxylic acid levels
have not been previously reported as manifestations of chromosome
6q deletion.14

Identification of novel candidate genes for CLM

In order to uncover novel genes potentially contributing to CLM, we
searched for new candidate genes that have not been reported in
CLM. As a result, we identified a de novo heterozygous start-loss
variant, c.-2+2T > A, in RPL9 from patient DISCO-JST24, a 2-year-
old female born to healthy parents (Figure 3J). This variant was absent
from the gnomAD database. The patient presented with bilateral
thumb hypoplasia, cleft palate, dental dysplasia, micrognathia, high
scapula, and mild anemia (Figure 3J). She is clinically diagnosed
with Diamond-Blackfan anemia (DBA), which is an inherited bone
marrow failure disorder, along with a number of other systemic
anomalies, including thumb hypoplasia and craniofacial defects.
Although other members of the ribosomal protein family, such as
RPS10 and RPS26, have been associated with DBA,15 RPL9, which en-
codes ribosomal protein L9, is not an established disease gene.
Considering the biological association between RPL9 and other ribo-
964 Molecular Therapy: Nucleic Acids Vol. 24 June 2021
somal proteins, the truncating variant observed in patient DISCO-
JST24 provides evidence supporting a causal role of RPL9 in DBA.

Patient DISCO-JST19was a 3-year-oldmale bornwith an aplasia cutis
lesion at vertex, which is ~5 cm in diameter (Figure 3K). His weight
andheight at 3 years oldwere 12 kg (<3 SD) and 86 cm (<3 SD), respec-
tively. He had cutaneous syndactyly of 3rd and 4th fingers in the right
hand (Figure 3K), whichwas corrected by a syndactyly release surgery.
After the surgery, he developed contractures in these two fingers.
Other anomalies include hypospadias and large and low-set ears. He
had no Duane anomaly and strabismus. His developmental milestone
was normal. Review of his familymembers revealed no history of apla-
sia cutis congenita (ACC), digital anomalies, or other syndromes. ES
identified a de novo heterozygous variant, c.811A > T(p.Lys271Ter),
in theUBA2 gene (Figure 3K). This is predicted to lead to a premature
stop codon and is absent from the gnomAD database.

DISCUSSION
By applying ES in a cohort of 66 CLM patients, we found that 21/66
(32%) families within our cohort could be molecularly diagnosed. We
identified six known and 11 novel pathogenic/likely pathogenic vari-
ants in known CLM-associated genes and revealed two potential
novel candidate genes. Additionally, we observed phenotypic expan-
sions for one known CLM-associated gene and CNV.

Limb development is a multi-stage process, which is orchestrated by
complex interactions between different signaling pathways. Studies
have found that multiple biological pathways are critically involved
in the development of limbs.16,17 Any perturbation of these pathways
could result in CLM. For example, mutations in the WNT pathways
have been shown to lead to Robinow syndrome, which is character-
ized by brachydactyly.18,19 Mutations in Cohesin proteins could result
in Cornelia de Lange syndrome, which presents clinodactyly and oli-
godactyly, in the context of limb anomaly.20 Besides genes with suffi-
cient knowledge to be classified in certain biological pathways, many
CLM-related genes are still not well studied.

With the advent of high-throughput sequencing technology, >500
CLM-related genes have been identified.21 The genetic bases of
different kinds of CLM differ from each other but also share some
similarities. The majority of polydactyly is caused by mutations in
GLI3, which could also lead to syndactyly.22 The HOXD13mutations
can either present clinodactyly or syndactyly, even in the same pedi-
gree.10,12 In this study, we identified 19 causal SNVs and three causal
CNVs in 66 CLM patients, which reflect the diversity of CLM causa-
tive genes. Thus, we suggest using ES as first-line strategy to identify
the genetic basis of CLM.

A previous study used a targeted next-generation sequencing (NGS)
strategy encompassing 52 CLM-associated genes along with their reg-
ulatory regions in a cohort of 352 CLM patients. They found that
35.2% patients could be molecularly diagnosed,7 a rate similar to
that in our study. However, we identified a different mutational archi-
tecture: only 6 among 15 genes identified in our study were included



Table 3. Summary of pathogenic and likely pathogenic variants identified in the cohort

Known Genes

CaseID Limb presentations
Systemic
features

Family
history

No. of affected
limbs

Locus Zygosity cDNA change Protein change ACMG grade Reference (PMID)

DISCO-JST1 reduction anomaly Y Y B-H SALL4 Het c.1823del p.Asn608Thrfs*2 P this study

DISCO-JST8 reduction anomaly Y N B-H, B-F SLC26A2 NAa c.136_137insTT p.Asp46Valfs*44 P this study

DISCO-
JST13

syndactyly Y N B-H, B-F FGFR2 Het c.758C > G p.Pro253Arg P 7719344

DISCO-
JST17

brachydactyly N Y B-H GDF5 Het c.932T > C p.Leu311Pro LP this study

DISCO-
JST22

syndactyly Y Y B-H, L-F GJA1 Het c.119C > T p.Ala40Val P
25327171 and
15879313

DISCO-
JST28

polydactyly Y N B-H, B-F GLI3 Het c.1474del p.Asp492Thrfs*10 P this study

DISCO-
JST29

reduction anomaly Y N B-H FANCA Hemi c.3537+2T > C p.? P this study

DISCO-
JST33

synpolydactyly N Y R-H HOXD13 Het c.917G > A p.Arg306Gln P
22374128 and
24789103

DISCO-
JST39

syndactyly Y N B-H, B-F FGFR2 Het c.758C > G p.Pro253Arg P 7719344

DISCO-
JST41

reduction anomaly Y Y B-H SALL4 Het c.595del p.Asp199Metfs*41 P this study

DISCO-
JST47

reduction anomaly Y Y B-H SALL4 Het c.2462-1G > T p.? P this study

DISCO-
JST48

syndactyly Y N B-H, B-F FGFR2; RYR1 Het; Het
c.755C > G;c.12788_
12793dup

p.Ser252Trp;
p.Glu4263_
Gly4264dup

P; VOUS
7719344; this
study

DISCO-
JST51

syndactyly Y N B-H, B-F FGFR2 Het c.758C > G p.Pro253Arg P 7719344

DISCO-
JST57

syndactyly N Y R-H HOXD13 Het c.183_203dup p.Ala65_Ala71dup P this study

DISCO-
JST70

syndactyly N N B-H, B-F GLI3 Het c.480del p.Ala161Profs*55 P this study

DISCO-
JST72

reduction anomaly Y Y R-H SALL4 Het
c.1746_1747
delinsTGTGGG

p.Lys582Asnfs*17 P this study

DISCO-
JST74

broad thumbs Y N R-H CREBBP Het c.4471C > T p.Gln1491* P this study

Novel candidate genes

CaseID Limb presentations
Systemic
features

Family
history

Affected site Locus Zygosity cDNA change Protein change gnomAD MAF

DISCO-
JST24

reduction anomaly Y N B-H RPL9 Het c.-2+2T > A p.? 0

DISCO-
JST19

syndactyly N N R-H UBA2 Het c.811A > T p.Lys271Ter 0

(Continued on next page)
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in the reported panel. Indeed, there is epidemiological variation
of CLM among different regions and demographics,2,21,23 which
might explain the difference of mutational architecture. Using a
targeted NGS strategy is time-saving in clinical practice. Howev-
er, >500 genes are associated with CLM, and the genetic cause of
CLM remains largely elusive. Using an exome-wide or genome-
wide strategy has the potential to establish an unbiased genetic
landscape and uncover novel candidate genes.

In our cohort, we found that the diagnostic yield was higher in
familial cases and cases with more than one limb affected (Table
2). Previous studies have drawn similar conclusions regarding
the existence of family history and systemic abnormalities and
the ability of these factors to affect diagnostic yield.7 In this
study, we describe for the first time how the number of affected
limbs can influence the diagnostic yield. This might be helpful
for clinical geneticists to provide precise management of pa-
tients with CLM.

We identifieda start-lostvariant inRPL9,which isnot awell-estab-
lisheddiseasegene.Previously,thisRPL9varianthasonlybeenfound
inonepatientwithDBA.15Sincethephenotypicalmanifestationofour
patientishighlysimilartoDBA,andDBAiscausedbyvariantsintheri-
bosomalproteinfamilywithonlyafewexceptions,weconcludedthat
RPL9 may represent a potential novel disease gene candidate for
DBA.24Additionally, thevariant leads tostart-lossofRPL9protein,
and the probability of loss-of-function intolerance (pLI) score of
RPL9 is0.96.Nevertheless,furtherstudiesarestillneededtoconfirm
therelationshipbetweenRPL9andDBA.

We identified a de novo nonsense UBA2 variant in a patient with
ACC, intrauterine and postnatal growth retardation, syndactyly,
atrial septal defect, hypospadias, and large and low-set ears. These
phenotypes are also typical features in 19q13.11 deletion syn-
drome.25 Among patients with 19q13.11 deletion, most of them
had ACC and most male patients had underdelivered genitalia,
as observed in our case. After analyzing the correlation between
clinical features and deleted regions, Melo et al.26 hypothesized
that haploinsufficiency of UBA2 gene is responsible for ACC.
This hypothesis was further supported by the identification of
UBA2 variants in ACC patients. Marble et al.27 reported a patient
with ACC, Duane anomaly, and hip dysplasia, who carried a de
novo missense variant c.71G > T (p.Gly24Val) in UBA2. Wang
et al.28 reported a male child and his mother both affected with
ACC and found to have a co-segregating truncating variant,
c.327delT(p.Phe109Leufr*5), while, in a recent study about
split-hand/foot malformation, Yamoto et al.25 identified a
UBA2 frameshift variant, c.1324dupT p.(Tyr442Leufs*17), in a
patient affected with split hand/foot malformation but not
ACC. Our findings strengthen the hypothesis that UBA2 is a
novel candidate gene for Mendelian ACC and provide novel in-
sights in relating UBA2 with syndactyly.



Figure 2. Distribution of the disease genes in 66

families with established molecular diagnosis by

phenotypic groups
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All together, we performed ES on a cohort of 66 Chinese patients with
CLM. Our findings of previously reported variants confirmed the
pathogenicity of those variants and the validity of our protocol. We
also found several novel variants that expand the mutational architec-
ture. Finally, we identified RPL9 and UBA2 as possible novel candi-
date genes for CLM.
MATERIALS AND METHODS
Cohort recruitment and sample preparation

In this study, we enrolled a total of 66 unrelated probands with surgical
corrective CLM admitted to Beijing Jishuitan Hospital, China from
April 2018 to September 2019 as a part of the Deciphering
disorders Involving Scoliosis and COmorbidities study (http://
www.discostudy.org/), as well as 47 pairs of patient parents.Medical re-
cords, X-rays, clinical images, and blood sampleswere collected for each
patient. Limb and systemic anomalies of these patients were evaluated
by experiencedhand surgeons andpediatricians. Patientswere classified
intofive phenotypic groups. The reduction anomaly group included pa-
tients with Duane-radial ray syndrome, split hand/foot malformation,
Holt-Oram syndrome, multiple epiphyseal dysplasia, DBA, Fanconi
anemia, and unclassified radial anomalies. The syndactyly group
consisted of patients with Apert syndrome and isolated syndactyly (un-
classified). The polydactyly group included patients with preaxial poly-
dactyly, postaxial polydactyly, synpolydactyly, Greig cephalopolysyn-
dactyly syndrome (GCPS), and Rubinstein-Taybi syndrome (RTS).
The brachydactyly group included patients with Poland anomaly and
BDC. Several other conditions were also screened in our cohort,
including constraint band syndrome and Madelung deformity. After
collection of blood samples, genomic DNA was extracted with the
DNeasy Blood & Tissue Kit (QIAGEN, Germany) according to the
manufacturer’s protocol. This study was approved by the ethics com-
mittee of Beijing Jishuitan Hospital. Informed consent was obtained
from each patient or their parents.
Molecular
Exome sequencing and data processing

Inbrief,DNAsampleswereprepared into Illumina
paired-end libraries and underwent whole-exome
capture with the Agilent V5, followed by
sequencing on the Illumina HiSeq 4000 platform
(Illumina, San Diego, CA, USA). In-house-devel-
oped Peking Union Medical College Hospital
Pipeline (PUMP) was used for variant calling
and annotation.29,30

An in-house control dataset of 100 exomes was
incorporated for CNV analysis. Coverage infor-
mation was computed from BAM files with
GATK. Then, unqualified targets with fewer
than 50% samples covered or with a mean coverage under 10�
were filtered out. After quality control, read depths for each sample
were analyzed and a Z score was calculated. CNVs were called accord-
ing to the Z score.

ES data interpretation

Rare variants with minor allele frequencies < 0.01 in 1000 Genomes
(October 2013), gnomAD (https://gnomad.broadinstitute.org), the
Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.
org), and the in-house database of Deciphering Disorders Involving
Scoliosis and COmorbidities (DISCO, http://discostudy.org/, >2,000
exomes) were extracted. First, we examined disease-causing variants
in previously reported candidate genes and CNVs. Variant classifica-
tion was conducted according to American College of Medical Ge-
netics and Genomics (ACMG) guidelines.31

For patients highly suspected of a specific syndrome but without a
previously identified pathogenic/likely pathogenic variant, we priori-
tized potential new variant(s) in the disease-associated gene(s). First,
truncating variants in genes predicted to be intolerant to loss-of-func-
tion changes according to the gnomAD (pLI scoreR 0.9) were iden-
tified as susceptibility variants. Variants that are predicted with a
CADD score of >15 were presumed damaging. Candidacy of rare
and damaging variants was further evaluated by their known gene
function, animal models, and association with known CLM genes.

Validation of candidate variants

Variant-encoding amplicons were amplified by PCR from genomic
DNA obtained from subjects, purified with an Axygen AP-GX-50
kit (lot no. 05915KE1), and sequenced by Sanger sequencing on an
ABI3730XL instrument.
Therapy: Nucleic Acids Vol. 24 June 2021 967
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Statistics

SPSS Statistics v.15.0 software was used for statistical analyses, and a
p value < 0.05 was considered statistically significant.
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Figure 3. Clinical and genetic characteristics of patients carrying novel variant
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: indicates this individual underwent Sanger sequencing only.
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