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Abstract

Oligonucleotide microarrays are commonly adopted for detecting and qualifying the abundance of molecules in biological
samples. Analysis of microarray data starts with recording and interpreting hybridization signals from CEL images. However,
many CEL images may be blemished by noises from various sources, observed as ‘‘bright spots’’, ‘‘dark clouds’’, and
‘‘shadowy circles’’, etc. It is crucial that these image defects are correctly identified and properly processed. Existing
approaches mainly focus on detecting defect areas and removing affected intensities. In this article, we propose to use a
mixed effect model for imputing the affected intensities. The proposed imputation procedure is a single-array-based
approach which does not require any biological replicate or between-array normalization. We further examine its
performance by using Affymetrix high-density SNP arrays. The results show that this imputation procedure significantly
reduces genotyping error rates. We also discuss the necessary adjustments for its potential extension to other
oligonucleotide microarrays, such as gene expression profiling. The R source code for the implementation of approach is
freely available upon request.
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Introduction

Oligonucleotide microarrays have been commonly adopted in

various biomedical researches, such as gene expression profiling,

single nucleotide polymorphism (SNP) genotyping, and copy

number estimation, etc [1-3]. Typically, a microarray is attached

with millions of short immobilized nucleic acid sequences, known

as probes, which are designed as sequences complementary to the

nucleic acid molecules in biological samples, known as targets. The

targets are usually labeled with fluorescent dyes and their

abundance can be qualified by measuring fluorescent intensities

yielded from their hybridization with the probes. The intensities

are further stored in a CEL file, which becomes the raw data of a

microarray experiment (See [4,5] for detail of cDNA chips). This

technology is able to produce a large amount of data for thousands

of genes or millions of SNPs simultaneously. However, the quality

of a microarray may be affected by noises from various sources

during the experiment. A series of pre-processing procedures are

required before any subsequent analyses can be conducted,

including image processing, background adjustment and data

normalization [6].

All fluorescence images may have spatial defects to some extent,

due to dust and debris, glass flaws, uneven distribution of fluids or

surface coatings, etc [7]. Image processing is usually the first step

to ensure the validity of downstream analyses. The intensities from

a defect area will distort the scaling [8], which may further affect

multiple samples through between array normalizations. The

impact of image defects have been investigated by using a number

of summarization packages available in bio-conductor, such as

MAS5, RMA and GCRMA [9–11]. Suárez-Fariñas et al. studied

the impact of blemished images on gene expression microarrays by

directly applying MAS5 and GCRMA [7]. They concluded that a

defect area of ,0.2% of a chip would artificially change the

expression by two folds for 20 genes in MAS5, and for 3 genes in

GCRMA. Reimers et al. conducted a similar comparison by using

packages MAS5 and RMA [12]. They found that RMA was less

affected than MAS5 when the blemished area was small, but its

performance got worse with larger blemished regions [13].

To ensure the image quality, researchers were always recom-

mended to visually examine all CEL images [14,15]. However,

some defects cannot be easily recognized by naked eyes due to a

large dynamic range of probe intensities [13]. In the past few

years, several approaches have been proposed for detecting and

removing the defect areas automatically. These approaches

covered a wide variety of image defects. For example, Suárez-

Fariñas et al. developed an approach, referred to as ‘‘harshlight’’,

which was able to detect and mask three types of defects: localized

blemishes affecting a few probes, diffuse defects affecting larger

areas, and extended defects which may invalidate an entire chip

[7]. Upton et al. used replications for identifying the abnormal

spatial structures, referred to as ‘‘blob’’, ‘‘lines’’, ‘‘rectangular

enhancement’’ and ‘‘coffee rings’’ [16]. Song et al. proposed a

software package, referred to as Microarray Blob Remover

(MBR), which allowed visualization, detection and removal of

various ‘blob’ like defects [17].

These approaches have showed great promise for image

processing. However, the existing approaches commonly masked

affected intensities with missing. Previous studies indicated that

correction of the affected intensities could improve the reliability of

data, and thus improve the reproducibility of the results [7].

However, relatively few strategies are available to impute the

affected intensities. Upton et al. and Arteaga-Salas discussed
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possible correction for the affected intensities in some samples

[16,18]. However, the correction relied on biological replicates

which were not always available. Imputation approaches based on

intensities from the same array are still in great need, especially

when working with rare or expensive arrays [13].

In this article, we propose an imputation approach for the

intensities from defect areas. The proposed approach is single-

array-based, which does not require any biological replicate. It

models the cross-hybridization between probes and targets, and

imputes the intensities by the binding affinities between them. In

the following, we first explain our approach and further examine

its performance with Affymetrix high-density SNP arrays. The

performance of imputation is evaluated by genotyping accuracies.

Methods

Among current platforms, Affymetrix DNA microarrays have

been commonly used for gene expression profiling, SNP genotyp-

ing and copy number estimation at a relatively high resolution

with low-cost. In this article, we introduce our approach by using

Affymetrix high density SNP arrays. We used SNP arrays as an

example, because the performance of imputation can be easily

examined by genotyping accuracies.

The Affymetric SNP array is a major platform that was used in

the international Haplotype Map (HapMap) projects [19]. The

genotypes of HapMap samples are commonly viewed as a gold-

standard for the assessment of many genotyping approaches.

However, we still found a number of defect areas in a few

HapMap arrays, showing bright spots in the CEL images. Though

the defect areas are relatively small in HapMap samples, a large

number of SNPs could be affected. The intensities from these

defect areas are not biologically meaningful and may lead to large

genotyping errors and bias in copy number estimation. Most of

current genotyping approaches used multi-array training [20–24],

and relied on the between array normalization to take care of the

image defects [25]. It is rarely evaluated how the genotyping

results are affected by these defect areas.

The design of Affymetrix SNP arrays
Affymetrix SNP arrays use multiple probe_sets to capture the

property of each SNP. Here, we use Affymetrix Mapping 100 K

arrays as an example to illustrate the design. In a 100 K array, ten

quartets are used to interrogate a single dimorphic SNP site with

alleles commonly denoted as A and B. Each quartet consists of 4

types of probes that are 25-mer in length, either perfectly matched to

the target or mismatched at a particular SNP site for each allele:

perfect match A, mismatch A, perfect match B and mismatch B,

denoted respectively PA, MA, PB and MB for short. The quartets

have different shifts (k) of the nucleotide (k may take the values 24,

23, 22, 21, 0, 1, 2, 3, 4) from the center of the probe sequence (k =

0 at position 13 of the 25-mer), see Figure 1 for detailed illustration

(Figure 1 was adapted from Figure 1A of [26]). The Affymetrix

Mapping 500 K SNP Array has a similar design with 100 K arrays,

but only 6 quartets are used to interrogate each SNP instead of 10.

In order to account for potential spatial effect on an array, the

probe_sets of each SNP are usually distributed evenly over the

array. The intensities for these probe_sets are highly correlated

and inherently determined by SNP alleles. Unless the majority of

array is defective, most of the probe_sets will not be affected.

Therefore, it is possible to impute the affected intensities with those

that are unaffected.

PICR model for copy number estimation and genotype
calling

In the past few years, a number of genotyping approaches, such

as BRLMM and CRLMM, have been proposed for Affymetric

high density SNP arrays [20,21]. Recently, a single-array

approach was proposed for copy number estimation and SNP

genotype calling, referred to as Probe Intensity Composite

Representation (PICR) [27]. It was shown previously that PICR

attained higher genotyping accuracies than a commonly adopted

approach, CRLMM. The PICR approach is based on single array

training, and estimates copy number abundance on a single SNP

basis. It addresses the cross-hybridization through the binding free

energies and affinities between probes and targets. The free energy

is calculated based on either perfect match or mismatch binding. It

should be noted that a target sequence with allele A could

Figure 1. Twenty-five-mer oligonucleotides which are perfectly matched or mismatched to the target sequence with SNP allele A or
B.
doi:10.1371/journal.pone.0058677.g001
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hybridize to PA probe through perfect match binding and

hybridize to PB, MA or MB probes through mismatch binding.

Importantly, the hybridization to mismatch probes can have two

mismatch nucleotides when shift k ? 0 (Figure 1). Given the

quartet (PA, MA, PB, MB) with shift k, the corresponding binding

free energy is calculated with a positional-dependent nearest

neighbor (PDNN) model [28,29].

Following the same notation with Wan et al., we first briefly

introduce PICR model, the detail of which can be found elsewhere

[27]. A target sequence TA with allele A could hybridize to PA probe

through perfect match binding, the binding free energy of which is :

E(TA,PA)~
X24

p~1

vpl(bPA
p ,bPA

pz1) ð1Þ

where PA~(bPA
1 ,bPA

2 , � � � ,bPA
25 ) is the 25-mer PA probe, vp is a

weight factor that depends on the position of consecutive bases along

the probe, and l represents stacking energy depending on nearest

neighbor along the probe.

Further, a target sequence TA with allele A could hybridize to

MA, PB, MB (k = 0) probes through mismatch binding with one

unique mismatch. For example, the binding free energy between

TA and MA is

E1(TA,MA)~
X24

l~1
l=12,13

hll(bMA
l ,bMA

lz1)zd(fbMA
12 bMA

13 bMA
14 g,

fbTA
12 bTA

13 bTA
14 g)

ð2Þ

where l is the same stacking energy in Equation (1) and hp is a

position weight factor for mismatch. dis the corresponding stacking

energy for the triplets at mismatch position.

Finally, a target sequence TA with allele A could hybridize to

MB probes through mismatch binding with two mismatches when

shift k ? 0. The mismatch would occur at both the center and shift

k of the probe. The binding free energy is:

E2(TA,MBk)~E1(TA,MB0)zjk(fbMBk

12zk
bMBk

13zk
bMBk

14zk
g,

fbTA

12zk
bTA

13zk
bTA

14zk
g),

ð3Þ

The term E1(TA,MB0) in Equation (3) is the binding free energy

if there is only one unique mismatch at the center, and the term jk is

the binding free energy of the triplets at the second mismatch.

Eventually, a linear regression model was used to model the

probe intensities of quartets:

..

.

I
PAk~NA Q(E(TA,PAk))zNB Q(E1(TB,PAk))zbze

PAk

I
PBk ~NA Q(E1(TA,PBk))zNB Q(E(TB,PBk))zbze

PBk

I
MAk ~NA Q(E1(TA,MAk))zNB Q(Etk

(TB,MAk))zbze
MAk

I
MBk ~NA Q(Etk

(TA,MBk))zNB Q(E1(TB,MBk))zbze
MBk

..

.

where tk~2 if k=0; tk~1 if k~0;

ð4Þ

where (I
PAk ,I

PBk ,I
MAk ,I

MBk ) is the probe intensities of a quartet

with shift k. E is the binding free energy between the probe and the

target. Q(x)~1=(1z exp (x)) gives the corresponding binding

affinity in the form of Langmuir adsorption [28,30]. The

coefficients NA and NB are copy number abundance of target

sequences with allele A and allele B, respectively. The model

intercept b represents the baseline intensity. The error terms

(ek
PA,ek

MA,ek
PB,ek

MB) are independent measurement errors of inten-

sities, each following a normal distribution with mean 0 and a

constant variance. All the parameters are trained by a single

HapMap sample, and are entirely determined by probe sequences.

Empirically, we found the parameters were robust across different

samples and different platforms, providing unbiased estimation of

copy number abundance [27]. For a randomly selected HapMap

sample, the linear model had a median R-square value of 0.764.

Mixed effect model for multiple SNPs
The PICR model is a single-SNP, single-array approach, which

was shown to have greater genotyping accuracies than a

commonly used approach, CRLMM [27]. However, it also has

a few limitations. First, the PICR model assumes the probe_sets of

each SNP are mutually independent, which may not always be

valid. Second, the PICR model utilized a linear regression

framework with a very limited sample size (40 for 100 K array,

24 for 500 K array). It is less robust with outliers, such as probe

intensities from defect areas. In this study, we extended the PICR

model to a multi-SNP setting with a mixed effect model. In the

extended model, we take into account the correlation among

probe_sets for each SNP. Further, by adopting a mixed effect

model, we borrow strength from multiple SNPs and improve its

robustness to outliers. Finally, we are able to impute the intensities

from defect areas by using a large number of SNPs that are not

affected.

Assuming we have a SNP array with a large number of N SNPs,

each has M probe_sets (M = 40 for 100 K SNP arrays). Each

probe_set has binding affinities fij,A and fij,B for target sequences

TA and TB, respectively. The binding affinities can be calculated

based on the equations described in Section 2.2. For example, if

the j-th probe is a PA probe with shift k,

thenfij,A~Q(E(TA,PAk)), fij,B~Q(E1(TB,PAk)).We model the

intensity values for the j-th probe_set of the i-th SNP with a mixed

effect model:

Iij~b0zbAfij,AzbBfij,Bzai0zai,Afij,Azai,Bfij,Bzeij ;

where Iij is the intensity for the j-th probe of SNP i ; i = 1, 2 ……N;

j = 1, 2, ……40; and fij,A, fij,B are the binding affinities of the j-th

probe of SNP i with respect to two allele A and B, respectively.

Here, b0, bA, bB are the fixed effect for the baseline intensity, copy

number abundance for allele A and copy number abundance for

allele B, respectively; ai0,ai,A,ai,B are the corresponding random

effect subjected to SNP-wise variability with ai0*N(0,s2
0),

ai,A*N(0,s2
A), and ai,B*N(0,s2

B); eij is a random measurement

error with eij*N(0,s2). By using the above mixed effect model,

the intensity values are assumed to be independent across different

SNPs, but correlated within the same SNP. The fixed effect bA, bB

has an interpretation as the average copy number abundance of

the N SNPs of interest. Further, bAzai,A,bBzai,B has an

interpretation as the copy number abundance for the i-th SNP.

The random effect ai,A,ai,B is a constant for all the available

probes of SNP i, but varies across different SNPs, the variance of

An Imputation Approach for DNA Microarrays
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which are estimated by all probe intensities of N SNPs in the

model.

Based on the above mixed effect model, an imputation

procedure can be conducted as follows: 1) First, defect areas are

identified by examining a CEL image or using existing image

processing software, such as harshlight and BMR. The intensities

from defect areas will be set as missing. 2) Second, for each

affected SNP, a large number of unaffected SNPs (e.g. 100 SNPs)

will be randomly selected to fit a mixed effect model. 3) The

missing values can be imputed by the predicted values based on

the mixed effect model.

Results

We considered 90 Affymetrix Mapping_100 K_Xba arrays

from the HapMap study. D-ChIP was first used to examine the

CEL image for each sample [31,32], and 12 samples were

identified with potential defect areas. Here, we only presented the

CEL image for one sample (NA12812) as an example. The CEL

images of the other 11 samples can be found in Figures S1, S2, S3,

S4, S5, S6, S7, S8, S9, S10, and S11. The CEL image before and

after imputation were given in Figure 2. Before imputation, a

bright spot was identified at lower part of the image (Figure 2).

Further examination indicated that over 20,000 SNPs were

affected. However, for most of the SNPs, the number of affected

probes is less than 10. We used a rectangle area to cover the bright

spot and set the intensities from the defect area as missing. The

data was then imputed according to the procedure described

above. After imputation, the damaged area was recovered

(Figure 2).

In order to examine the quality of imputation, PICR was

applied to conduct genotyping for both the original CEL and the

imputed CEL. Figure 3 showed the estimation of allelic copy

number abundance before and after imputation. PICR model

conducted genotype calling by clustering all SNPs into three

groups, corresponding to three possible genotypes, AA, AB and

BB. The genotyping error rate was calculated as the discordant

rate between PICR-genotype-calls and HapMap gold standards.

Before imputation, applying PICR yielded a genotyping error rate

of 2.54%, while the average genotyping error rate was 0.4%

among all 90 samples. After imputation, the genotyping error rate

was reduced by over 5 folds, to a normal level of 0.44%. The

genotyping error rates for all 12 problematic samples were listed in

Table 1. The results showed that the error rates were reduced for

all 12 samples, especially for those with an error rate greater than

1% before imputation. Further examination showed the estima-

Figure 2. CEL images before and after imputation. Left: before, Right: after.
doi:10.1371/journal.pone.0058677.g002

Figure 3. Allelic copy number abundance before and after imputation. Left: before, Right: after; Red: genotype AA, Blue: genotype BB,
Green: genotype AB
doi:10.1371/journal.pone.0058677.g003
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tion of allelic copy number abundance was substantially improved

after imputation.

According to the number (proportion) of affected probes, we

further classified all SNPs into four groups, including 0 affected

probe, 1–4 affected probes (,10%), 5–8 affected probes (10%–

20%) and .8 affected probes (.20%). The result was summarized

in Table 2. Most of the affected SNPs had 1–4 affected probes

(,10%). Before imputation, the error rates increased dramatically

with the number of affected probes, from 3.3% (1–4 affected

probes) to 9.19% (.8 affected probes). After imputation, the error

rates were significantly reduced for all groups. While the error rate

was still considerably lower for SNPs in ,10% group, no

significant difference was found between 10–20% group and

.20% group. The imputation appeared to be effective for all

groups, and was able to reduce the error rate by as high as 13

folds. For Affymetrix 500 K SNP arrays, we expected the number

of affected probes to be proportional. A similar defect area would

affect a lot more SNPs, but less number of probes for each SNP.

Discussion

In this study, we have proposed a multi-SNP approach for

imputing the intensities from defect areas on Affymetrix SNP arrays.

The approach can be viewed as an extension of previously proposed

PICR model. Similar to PICR, it is a single-array approach, which

does not require any biological replicate or between-array

normalization. It would be especially helpful for small studies with

limited sample sizes. Further, the results have showed that this

approach is effective to impute intensities from defect areas. The

genotyping error rates were significantly reduced.

In this article, we have focused on Affymetrix SNP arrays,

because the performance can be easily examined by genotyping

error rates. However, our approach models the fundamental

mechanism of physical binding between DNA nucleotides. It can

potentially be extended to other oligonucleotide microarrays with

a similar design. For example, the gene expression arrays have

similar PM/MM probe_sets, with the number of pairs ranging

from 11–16. To extend the proposed approach to gene expression

microarrays, the binding free energy will need to be re-calculated.

Zhang et al. have investigated the sequence-specific binding and

non-specific binding for gene expression data, and provided

estimation for the corresponding binding free energy [28,29].

Further adjustment will also be necessary to accommodate the

diverse number of probe_sets for each gene/transcript, and the

competing hybridization process of DNA sequences from various

experimental conditions.

In our study, we also found that the genotyping error rates for a

few arrays remained similar after imputation, e.g. NA10853. One

reason was that the defect area was relatively small and only a

small number of SNPs were affected. Given the large number of

total SNPs on the array, it did not have a great impact on the

overall genotype calling. Another possible reason is that the

genotyping errors can be caused by multiple sources. For those

arrays, there might be other possible factors affecting genotyping

accuracies.

Table 1. Genotyping error before and after imputation.

Sample ID # of SNP affected
Ave. # of probe affected/
SNP Error Rate Before Imputation Error Rate After Imputation

NA12812 20075 5.67 2.54% 0.45%

NA10835 20925 3.76 1.56% 0.32%

NA12239 12758 3.34 1.05% 0.26%

NA12144 7330 3.22 0.95% 0.24%

NA12005 4404 3.01 0.83% 0.65%

NA12056 7490 3.28 0.87% 0.85%

NA12146 7657 3.16 0.73% 0.25%

NA12155 9394 3.18 0.71% 0.71%

NA07056 2026 2.94 0.70% 0.54%

NA12236 8071 3.19 0.66% 0.65%

NA12813 4788 3.15 0.61% 0.25%

NA10863 5050 3.07 0.56% 0.55%

doi:10.1371/journal.pone.0058677.t001

Table 2. Genotyping error rates stratified by number of affected probes.

# of affected probes 0 1–4 (,10%) 5–8 (10%–20%) .8 (.20%)

# of SNPs 415417 (84.5%) 65458 (13.3%) 8313 (1.7%) 2688 (0.5%)

# of errors before imputation 1871 2165 504 247

Error rates before imputation 0.45% 3.33% 6.06% 9.19%

# of errors after imputation 1871 379 74 19

Error rates after imputation 0.45% 0.58% 0.89% 0.71%

Fold Change of Error rates 1 5.7 6.8 13

doi:10.1371/journal.pone.0058677.t002
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One remaining problem of the proposed approach is to

efficiently identify the boundary for defect areas. The defect areas

on an array may have irregular shapes. In this article, we have

used a rectangle area to cover the defect area for imputation.

However, these rectangles were slightly larger than the bright spots

and some unaffected intensities are set to missing as well. It will be

helpful to identify the boundary of defect areas effectively and

accurately. In addition, other studies have shown that some

outliers can not be easily identified by checking CEL images.

Several computational algorithms have emerged as promising

tools for detecting defect areas on a CEL image, such as

‘harshlight’ and ‘BRB’. These available packages are potentially

helpful to identify the outliers automatically.

Supporting Information

Figure S1 The CEL image before and after imputation
for sample NA07056.
(TIF)

Figure S2 The CEL image before and after imputation
for sample NA10835.
(TIF)

Figure S3 The CEL image before and after imputation
for sample NA10863.
(TIF)

Figure S4 The CEL image before and after imputation
for sample NA12005.
(TIF)

Figure S5 The CEL image before and after imputation
for sample NA12056.
(TIF)

Figure S6 The CEL image before and after imputation
for sample NA12144.

(TIF)

Figure S7 The CEL image before and after imputation
for sample NA12146.

(TIF)

Figure S8 The CEL image before and after imputation
for sample NA12155.

(TIF)

Figure S9 The CEL image before and after imputation
for sample NA12236.

(TIF)

Figure S10 The CEL image before and after imputation
for sample NA12239.

(TIF)

Figure S11 The CEL image before and after imputation
for sample NA12813.

(TIF)
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