
Aging is a multifaceted process associated with several 
functional and structural deficits in the retina, including 
changes in blood flow [1], mechanical damage and axonal 
flow [2,3], mitochondrial dysfunction [4,5], and increased 
reactive oxygen species and oxidative stress, which may 
lead to genomic instability and DNA mutations with reduced 
survival [6-11].

Improvements in health care have increased human life 
expectancy, and it is estimated that about 80 million people 
will have glaucoma worldwide by 2020 [12]. Our under-
standing of how old age predisposes people to glaucoma is 
poor. It affects 1 in 200 individuals up to 50 years of age, and 
1 in 10 individuals over 80 years of age. This age-associated 
increase in glaucoma prevalence is not accompanied by a 

corresponding increase in intraocular pressure (IOP) [13]. A 
few studies have suggested that age-related changes might 
play a role in glaucomatous optic neuropathy such that the 
retina itself and/or the optic nerve has an altered suscepti-
bility to elevated IOP or other stress injuries [14,15].

It was recently shown that susceptibility to axonal 
transport deficits increases with age in DBA/2 mice and that 
this change is not necessarily associated with elevated IOP 
[16,17]. It was also found that severity of injury from the same 
ischemic insult was greater in optic nerves of older mice (≥12 
months) compared to young optic nerves [18].

Aging is recognized as being a major risk factor for the 
development and progression of glaucoma, but the mecha-
nism underlining this finding remains unclear [19-21]. In this 
study, we investigated whether increased age predisposes 
retinal ganglion cells (RGCs) to increased glaucomatous 
damage. In addition, we explored potential predisposing 
factors in search of novel protective and therapeutic measures 
against these processes.
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Purpose: To investigate age-associated changes in retinal ganglion cell (RGC) response to elevated intraocular pressure 
(IOP), and to explore the mechanism underlying these changes. Specifically, the effect of aging on inhibitor of apoptosis 
(IAP) gene family expression was investigated in glaucomatous eyes.
Methods: IOP was induced unilaterally in 82 Wistar rats using the translimbal photocoagulation laser model. IOP 
was measured using a TonoLab tonometer. RGC survival was evaluated in 3-, 6-, 13-, and 18-month-old animals. 
Changes in the RNA profiles of young (3-month-old) and old glaucomatous retinas were examined by PCR array for 
apoptosis; changes in selected genes were validated by real-time PCR; and changes in selected proteins were localized 
by immunohistochemistry.
Results: There were no significant IOP differences between the age groups. However, there was a natural significant 
loss of RGCs with aging and this was more prevalent in glaucomatous eyes. The number of RGCs in glaucomatous eyes 
decreased from 669±123 RGC/mm2 at 3 months to 486±114 RGC/mm2 at 6 months and 189±46.5 RGC/mm2 at 18 months 
(n=4–8, p=0.048, analysis of variance). The PCR array revealed different changes in proapoptotic and prosurvival genes 
between young and old eyes. The two important prosurvival genes, IAP-1 and X-linked IAP (XIAP), acted in opposite 
directions in 3-month-old and 15-month-old rats, and were significantly decreased in aged glaucomatous retinas, while 
their expression increased significantly in young glaucomatous eyes. P53 levels did not vary between young glaucoma-
tous and normal fellow eyes, but were reduced with age. B-cell leukemia/lymphoma 2 (Bcl-2) family members and tumor 
necrosis factor (TNF)-α expression were unaffected by age. Immunohistochemistry results suggested that the sources of 
changes in IAP-1 protein expression are RGCs and glial cells, and that most XIAP secretion comes from RGCs.
Conclusions: Decreased IAP-1 and XIAP gene expression in aged eyes may predispose RGCs to increased vulnerability 
to glaucomatous damage. These findings suggest that aging impairs the endogenous neuroprotective mechanism of 
RGCs evoked by elevated IOP.
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MATERIAL AND METHODS

Experimental glaucoma: Wistar rats (3 to 18 months old) 
were used in accordance with the Association for Research 
in Vision and Ophthalmology Statement for Use of Animals 
in Ophthalmic and Vision Research in protocols approved and 
monitored by the Animal Care Committee of the Tel-Aviv 
University School of Medicine. Elevated IOP was induced in 
one eye of 82 animals using the translimbal photocoagulation 
laser model [22]. IOP measurements were taken immediately 
before and 1 day after each treatment, and then weekly with 
a TonoLab tonometer (TioLat, Helsinki, Finland).

Labeling and counting of retinal ganglion cells: Retrograde 
labeling of RGCs with f luorogold (Fluorochrome, Inc., 
Englewood, CO) was performed bilaterally into the superior 
colliculi, as described previously [23]. Briefly, the rats were 
anesthetized, the scalp was exposed and holes approximately 
2 mm in diameter were drilled in the skull 4 mm posterior 
to bregma, with a dentist’s drill (Dremel, Racine, WI) on 
both sides of the midline raphe. A stereotactical injection 
of FG was directly applied to each superior colliculus. The 
overlying skin was sutured and antibiotic ointment applied 
externally. The eyes were enucleated 10 days after labeling 
and 10 weeks after the first laser treatment, and flat retinal 
mounts were prepared.

Labeled RGCs were viewed with a fluorescence micro-
scope and counted with a 40 super wide field objective along 
eight radii in four directions centered on the position of the 
optic nerve head. Four fields were counted along each radius, 
yielding a total of 32 fields per retina. The counting process 
was carried out by a masked experienced observer. We refer 
here to the RGCs as those identified by their FluoroGold (FG) 
staining and by their size and morphology. It is possible that 
some of the cells identified as RGCs were non-neuronal cells, 
although we believe this rare occurred, given that blood vessel 
cells and astrocytes have very distinctive morphologies.

The area of each field in our microscope is 0.34 mm2, 
yielding a total counted area of 10.88 mm2, which is a 21% 
sample of the average 50.1 mm2 Wistar rat retina. The total 
number of surviving RGCs per retina was calculated by 
multiplying the mean density of RGCs by the total retinal 
area. The number of RGCs in each retina was compared to a 
control retina to yield the survival rate. Data are presented as 
means ± standard error of the mean.

Quantitative polymerase chain reaction array for apoptosis: 
RT [2] ProfilerTM PCR Arrays (Catalog # PARN-012 SABio-
sciences, Frederick, MD) was performed to check for expres-
sion of genes involved in facets of apoptosis. The array was 
done in glaucomatous eyes and control fellow eyes of young 

and old rats (3–18 months old; n=12 rats, pull of 4 animals 
for each PCR array). Each 96-well RT2 ProfilerTM PCR Array 
contains 84 wells for different genes related to apoptosis 
cascade, five wells with assays for different housekeeping 
genes, a genomic DNA (gDNA) control, three replicate 
reverse transcription controls, and three replicate positive 
PCR controls. Data were analyzed with the web-based PCR 
Array.

Total RNA was extracted from retinas dissected after 8 
days using the Qiagen RNeasy mini kit (Qiagen, Valencia, 
CA). RNA quantity and purity was determined using the 
Nanodrop ND-2000 (Nanodrop Technologies, Wilmington, 
DE). RNA was reverse transcribed using the RT2 First Strand 
Kit (SABiosciences), Real-time quantitative PCR (qPCR) was 
performed using the RT [2] SYBR Green qPCR Master Mix 
(SABiosciences). Next, samples were aliquoted on the rat 
apoptosis PCR array. All steps were carried out according to 
the manufacturer’s protocol for the ABI Prism 7000 Sequence 
Detection System.

Real-time reverse transcription polymerase chain reaction: 
Message levels of selected genes were examined by qPCR to 
verify array results. Several genes that were not on the micro-
array but were of particular interest to us were also examined. 
Total RNA was extracted from retinal samples of 3- and 
15-month-old rats using TRIZOL (Invitrogen, Frederick, 
MD). One microgram of extracted RNA was reverse tran-
scribed using an RT kit (Thermo Scientific, Epsom Surrey, 
UK), and real-time PCR was performed using the Platinum® 
SYBR® Green Two-Step qRT-PCR Kit with the ROX system 
(Invitrogen) in the ABI/Prism 7900HT Sequence Detector 
System (Applied Biosystem, Invitrogen). β-Actin messenger 
RNA (mRNA) was used as an endogenous control. Primers 
were purchased from Sigma (Sigma-Aldrich, Rehovot, Israel; 
Table 1.)

Immunohistochemistry: The eyes of each animal were enucle-
ated and cryopreserved in sucrose/ optimal cutting tempera-
ture (OCT) compound (Sakura Finetek, USA Inc., Torrance, 
CA). Ten micrometer thick cryosections were collected onto 
Superfrost Plus slides. At least three sections from each eye 
were examined. For IAP, X-linked IAP (XIAP), Thy 1, a 
marker of RGC, and glial fibrillary acidic protein (GFAP), 
sections were incubated with goat antirat IAP (1:100, Santa 
Cruz Biotechnology), goat anti-XIAP (1:100, R&D Systems, 
Minneapolis, MN), mouse antirat Thy 1 (1:100, Biolegend, 
San Diego, CA), and mouse anti-GFAP (1:500, mouse 
monoclonal: Sigma Aldrich; rabbit polyclonal: Millipore, 
Billerica, MA). The secondary antibody was Alexa Fluor 
633 or 488 conjugated antigoat IgG 1:500, Alexa Fluor 568 
antirabbit 1:500, or Alexa Fluor 488 or 633 antimouse 1:500 
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(Invitrogen). Negative controls included nonimmune serum 
of the same species as the primary antibody at the same 
protein concentration with secondary antibody only.

Confocal images were acquired with a Zeiss LSM 
750 (Carl Zeiss, Thornwood, NY) confocal microscope 
using objectives of 63X oil (numerical aperture [NA] 1.4). 
The pinhole was a 1.0 Airy unit. Images were acquired as 
confocal pictures of 1024×1024 pixels. The excitation light 
was provided by the 488 nm line of argon lasers for the 
Alexa-488 fluorophore, the 561 nm line of diode lasers for the 
Alexa-568 fluorophore, and the 633 nm line of HeNe lasers 
for the Alexa-633 fluorophore. The images were further 
improved by reducing blur with deconvolution [24,25]. The 
Huygens deconvolution software (Scientific Volume Imaging 
b.v., Netherlands) was used to perform adaptive point spread 
function deconvolution of the whole confocal picture using 

10 iterations. The resulting 32-bit float point two-dimensional 
image file was imported into Imaris software (64X, 6.1.5, 
Bitplane, Zurich, Switzerland); from this, a two-dimensional 
projection picture of the processed image was obtained.

RESULTS

This study included a total of 82 rats in different age groups. 
We defined young rats as 3 months of age and old rats as 13 
months of age and above.

The effect of aging on intraocular pressure: All experi-
mental eyes had significantly elevated IOP compared to their 
control fellow eyes (increase in IOP >10 mmHg; Figure 1A 
and 1B). The IOP returned to baseline by 2–3 weeks in most 
animals. The peak IOP was significantly increased in the 
glaucomatous eyes compared to the control eyes in each age 
group (n=4–8 rats in each age group, p<0.05, Figure 1A). 

Table 1. Primers used for qPCr analysis of gene exPression

Primer (5’-3’) Gene
F: ATAACCGGGAGATCGTGAG 

R: CAGGCTGGAAGGAGAAAGATG
Bcl-2 GeneID:24224

F: TGTGCATCTGGGCCCTG 

R: CTGACCGTCCTGTAGTTCTCA
IAP-1 GeneID:78971

F: GTTCCGAGAGCTGAATGAGG 

R: TTTTATGGCGGGACGTAGAC
p53 GeneID:24842

F: GGTGAGTCGGATTGCAAG 

R: GGCAGTTAGGGATCTCCA
Bcl-xl GeneID:24888

F: CTCCCAGAAAAGCAAGCA 

R: CCTCTGCCAGTTCCACAAC
TNF-α GeneID:24835

F: GACAAATGTCCCAT 

R: CTAATGGACTGCGA
XIAP GeneID:63897

F: GCTACAGCTTCTCCACCACA 

R: TCTCCAGGGAGGAAGAGGAT
β-Actin GeneID:81822

Figure 1. Intraocular pressure 
in eyes of young and old rats. A 
and B: All experimental eyes had 
significantly elevated intraocular 
pressure (IOP) compared to their 
control fellow eyes. There was no 
significant difference in mean or 
peak IOP between young and old 
rats. Data presented as SEM, n=8, 
*=p<0.05.

http://www.molvis.org/molvis/v19/2011
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The mean IOP was also elevated in the glaucomatous eyes 
of all age groups (n=4–8 in each age group, p<0.01 for the 3 
and 6 month olds and p=0.051 for 18 month olds, Figure 1B). 
There was no significant difference in mean IOP or peak IOP 
between the age groups.

The effect of aging on retinal ganglion cell survival: RGC 
survival was evaluated at 10 weeks after the induction of 
elevated IOP. There was a significant decrease in the RGC 
number with age in the control fellow eyes: It dropped from 
1049±26 RGC/mm2 at 3 months to 955±57.6 at 6 months and 
725±32 RGC/mm2 at 18 months (n=4–8 for each age group, 

Figure 2. Retinal ganglion cell loss increased with age in both glaucomatous and control fellow eyes. A: The mean retinal ganglion cell 
(RGC) survival 10 weeks after the induction of elevated intraocular pressure (IOP) is shown. There was a significant decrease in RGCs in 
the control fellow eyes with age (n=4–8 for each age group, data presented as SEM, p=0.002), as well as in the glaucomatous eyes (n=4–8, 
p=0.048). B: The amount of glaucomatous RGC loss increased with age (n=4–8, p=0.05). This progression in RGC loss due to age occurred 
under similar IOP levels. C-H: Representative fluorogold images of RGCs 10 weeks after induction of glaucoma in young and old eyes 
are shown. Magnification 40X. I: Labeled RGCs were counted with a 40 super wide field objective along two radii in four directions (i.e., 
superior, temporal, inferior, and nasal) centered on the position of the optic nerve head.

http://www.molvis.org/molvis/v19/2011
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p=0.002, analysis of variance [ANOVA], Figure 2A). In addi-
tion, elevated IOP induced a significant loss of RGCs in each 
age group: The number decreased from 669±123 RGC/mm2 
at 3 months to 486±114 RGC/mm2 at 6 months and 189±46.5 
RGC/mm2 at 18 months (n=4–8, p=0.048, ANOVA; Figure 
2A). Thus, there was greater glaucomatous RGC loss with 
age starting with a 35.8% ± 11.5% loss at 3 months of age to 
a 39.4% ± 11.7% loss at 6 months and progressing to a 74% 
± 6% loss at 18 months (n=4–8, p=0.055, ANOVA, Figure 
2B). This age-related progression in RGC loss occurred under 
similar IOP levels.

Quantitative polymerase chain reaction array for apoptosis 
in aged glaucomatous eyes: PCR array results revealed poten-
tial gene expression changes that can shed light on the causes 
for the increased susceptibility of aged RGCs to injury. Genes 
that were up- or downregulated with at least a twofold change 
are presented in bold in Table 2. Twenty genes were upregu-
lated in the 3-month-old rats, 8 genes in the 13 month olds, 
and 12 in the 18 month olds. Downregulation was observed in 
16 genes in the 3 month olds, 29 genes in the 13 month olds, 
and 4 genes in the 18 month olds.

The upregulated genes in the 3-month-old group 
included the Bcl-2 family (Bcl2, Bcl2l1), NLR family 
apoptosis inhibitory protein 2 (Naip2), caspase family (4, 6, 
and 7), Fas apoptotic inhibitory molecule (Faim), the tumor 
necrosis factor (TNF) family (Tnfrsf1a, Tnfrsf1b, and Traf4), 
and Tp53bp2. The downregulated genes were members of 
the caspase family (8, 14, and Casp8ap2), TNF family (Tnf, 
Tnfrsf10b, Tnfrsf11b), Tp63, and Tp73. The upregulated 
genes in the 13-month-old group were proapoptotic genes 
that included TNF family members (Tnf, Tnfrsf11b, Tnfsf10, 
and Fas) and caspase family members (4 and 12; Table 2). 
The downregulated genes were members of the Bcl-2 family, 
several caspase family members (1, 14, 7, and 8), and tumor 
protein p53 (p53) family members (Table 2). The upregulated 
genes in the 18-month-old group also included TNF family 
members (Tnf, Tnfrsf1a), several caspase family members (1 
and 4) and bcl-2. Among the downregulated genes were DNA 
fragmentation factor, beta subunit (DffB), and p53.

Validation of reverse transcription polymerase chain reac-
tion: The expressions of selected proapoptotic and prosurvival 
genes were determined using RT–PCR to validate the PCR 
array results (Figure 3). The most important (and unexpected) 
finding was the difference between young and old rats in 
expression levels of the two important prosurvival genes, 
IAP and XIAP. IAP-1 mRNA levels increased by 111.7±9.5% 
in the 3-month glaucomatous eyes compared to the fellow 
control eyes (n=5, p=0.0002), but it decreased by 31.0±8.9% 
in the 15-month-old rats (n=6, p=0.002; Figure 3A). Another 

IAP family member, the prosurvival XIAP gene, increased 
by 53.0±18.2% in the 3-month-old glaucomatous eyes (n=6, 
p=0.04), but decreased significantly (by 41.6±9.2%) in the 
15-month-old eyes (n=7, p=0.04; Figure 3B). There were no 
changes in P53 mRNA levels in the 3-month-old glaucoma-
tous rats; however, there was a trend toward decline in the 
15- month-old eyes (Figure 3C). The P53 mRNA level was 
reduced by 46.2±19.2% in the 15-month-old eyes (n=5–6, 
p=0.045) compared to the 3- month-old eyes (Figure 3C). 
In contrast to the PCR array analysis, Bcl-2 expression was 
reduced in both the 3- and 15-month-old rats compared to 
their fellow eye controls (n=5, p=0.00009 and n=7, p=0.0004, 
respectively, Figure 3D). Bcl-xl mRNA levels were also 
reduced in both the 3- and 15-month-old rats compared to 
their fellow eye controls (n=5, p=0.003 and n=7, p=0.007, 
respectively, Figure 3E). TNF-α mRNA levels increased by 
30.5±4.1% in the 3- month-old glaucomatous retinas (n=11, 
p=0.00003) and by 56.1±6.8% in the 15- month-old glauco-
matous retinas (n=6, p=0.04; Figure 3F).

Immunohistochemical analysis: Both IAP-1 and XIAP 
proteins were stained with Thy 1, a marker of RGC cells, and 
with GFAP, a marker of astrocytes, to investigate and localize 
any changes that occurred at their protein level. Labeling for 
IAP-1 was detected in the RGC layer, as well as in other 
layers of the retina. The intense labeling for IAP in the RGC 
layer increased in the glaucomatous eyes of 3-month-old 
rats compared to fellow control eyes and decreased in the 
13-month-old rats (Figure 4). Staining for IAP-1, Thy 1, and 
GFAP suggested that RGCs are the main source for changes 
in IAP-1 expression. The merged image demonstrated colo-
calization of IAP-1 with Thy 1 (yellow) and with GFAP 
(purple). Similarly, staining for XIAP, another member of 
the IAP family, exhibited an increased in the 3-month-old 
glaucomatous eyes (Figure 5), but not in the 13-month-old 
eyes, supporting our RT–PCR data. Staining for XIAP, Thy 
1, and GFAP suggested that most of the XIAP secretion came 
from RGCs (Figure 5). There is clear colocalization of XIAP 
and Thy 1 (yellow) in the merged image but almost no colo-
calization of XIAP and GFAP (purple).

DISCUSSION

The results of this study demonstrated that the rate of RGC 
damage in glaucomatous eyes increased with age under 
conditions of similar IOP levels. There was a significant 
natural loss of RGCs with age in the normal eyes, but this 
loss increased significantly when glaucoma was induced. 
This study also contributed novel information on the patho-
genesis of glaucoma. We found that the expression of IAP-1, 
a major prosurvival gene and a potent caspase inhibitor, acts 
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in opposite directions in young and old glaucomatous rat 
eyes: It increased significantly in the former and decreased 
significantly in the latter. Another member of the IAP family, 
XIAP, showed similar age-related behavior in its expression 
in glaucomatous rat eyes. These data suggest that aging 
impairs the existing endogenous neuroprotective mechanism 
that is evoked in response to elevated IOP [26,27].

It is well known that a significant decline in the number 
of RGCs and their axons occurs with aging [28-30], and thin-
ning of the nerve fiber layer with aging has been recorded by 
optical coherence tomography [31]. There is limited informa-
tion about glaucomatous damage with aging, but the current 
study confirmed that glaucomatous loss of RGCs with age is 
accelerated beyond the effect of natural RGC loss.

We showed previously that there is simultaneous upregu-
lation of proapoptotic and prosurvival genes, including 
upregulation of the prosurvival gene IAP-1 and p53 family 
proapoptotic genes, in glaucoma and optic nerve transection 
[26]. IAP proteins, as their name implies, confer protection 
from death-inducing signals by inhibition of diverse apoptosis 
mediators such as caspase, 3, 6, 7, and 9 [32]. XIAP is the 
best characterized IAP and the most powerful suppressor 
of apoptosis [33,34]. In the current study, XIAP and IAP-1 

expressions decreased in the glaucomatous retinas of the 
older eyes, whereas XIAP and IAP-1 expressions increased 
in the younger eyes, suggesting that inhibition of apoptosis 
is compromised with age. Members of the IAP family were 
suggested to play a role in aging [35]. Lymphocytes from 
elderly humans have been found to express significantly less 
cellular IAP2 (cIAP2) [35], suggesting that decreased cIAP2 
may play a role in increased apoptosis in aged humans. In 
addition, IAP proteins have been associated with neuro-
degenerative diseases: NAIP was found to be decreased in 
Alzheimer disease patients, suggesting that decreased NAIP 
may place neurons at risk for the development of tangles and 
apoptosis [36].

IAP family members were found to regulate signaling 
pathways that activate nuclear factor κB (NFκB), which in 
turn drives the expression of genes involved in inflammation, 
immunity, cell migration, and cell survival [37]. IAPs were 
also identified as ubiquitin-binding proteins contributing to 
cell survival through NFκB [38]. The connection between 
NFκB and IAP was further supported by data from studies 
showing that members of the IAP family of proteins, specifi-
cally c-IAP2 and XIAP, are downstream targets of activated 
NFκB and play a role in antiapoptotic activity [39]. Our PCR 

Figure 3. Effect of aging on selected proapoptotic and prosurvival genes. Real-time PCR analysis of selected genes was performed in young 
(3 months) and old (15 months) rats. The following genes are presented: Inhibitor of apoptosis (IAP)-1 gene (A), X-linked IAP (XIAP) gene 
(B); p53 gene (C), Bcl-2 gene (D), Bcl-xl gene (E), tumor necrosis factor (TNF)-α gene (F). Interestingly, IAP-1 and XIAP expression was 
significantly downregulated in the glaucomatous eyes of old rats, but upregulated in young rats. Data represent mean ± standard error of 
the mean (SEM); n=8; *p<0.05.
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array results demonstrated that Nfkb1 levels increased in 
3-month-old glaucomatous eyes and decreased in 13-month-
old glaucomatous eyes, with no change in 18-month-old glau-
comatous eyes. This increase in Nfkb1 observed in the young 
retinas could have derived from activation of the immune/
inflammatory response in glaucoma. It is suggested that this 
signaling pathway is impaired with age, resulting in a loss of 
IAP expression and increasing the extent of glaucomatous 
damage.

Retinal changes in gene expression in glaucoma can 
originate from various cells types. It is well known that glial 
and other inflammatory cells are involved in glaucomatous 
damage. The results of our immunohistochemistry analysis 
suggest that the changes in IAP-1 and XIAP protein expres-
sion were localized to the RGCs and glial cells.

It is now believed that inflammation plays an impor-
tant role in the development and progression of glaucoma, 

and several reports have linked TNF-α to glaucoma injury 
[40-42]. In the current study, the TNF-α expression level 
increased significantly in the glaucomatous eyes of both the 
young and old rats, with no effect of aging on TNF-α itself. 
Our PCR array results yielded no consistent data to suggest 
any involvement of the TNF family or receptors predisposing 
RGCs to increased damage with age.

Another interesting signaling pathway that was of partic-
ular interest to us was the p53 pathway. We found that p53 
gene levels decreased in the glaucomatous eyes of old animals 
compared to young animals. Studies on the role of p53 in 
glaucoma suggested that it was involved in the pathogenesis 
of glaucoma [26,43-45]. We had earlier reported that proapop-
totic genes from the p53 pathway, Ei24 and Gadd45a, were 
upregulated, but that the p53 gene itself stayed unchanged in 
optic nerve transection and experimental glaucomatous eyes 
[23]. Thus, the reduced levels of p53 found in this study in 
the glaucomatous eyes of older rats could be related to the 

Figure 4. Immunohistochemistry for inhibitor of apoptosis 1, the retinal ganglion cell marker Thy 1, glial fibrillary acidic protein, and 
4’,6-diamidino-2-phenylindole in retinal cryosections of young and old rats at 8 days after induction of elevated intraocular pressure (IOP). 
The merged image shows colocalization of IAP with Thy 1 (yellow) and with glial fibrillary acidic protein (GFAP; purple), suggesting that 
the source for changes in IAP expression is from retinal ganglion cells (RGCs) and glial cells. A: In 3-months-old rats, IAP levels increased 
in glaucomatous eyes as well as staining for GFAP. B: IAP-1 staining decreased in old glaucomatous 13-month-old eyes as compared to 
fellow eyes. Magnification 40X, scale bars: all panels 20 μm.
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parameter of aging. Indeed, other researchers showed that 
p53 could act as a potential regulator of organismal aging 
in mice [46,47]. The low expressions of the DffB and p53 
genes in the glaucomatous eyes of the old rats in this study 
suggest impairment of survival signals in the progression of 
glaucoma.

Members of the Bcl-2 family are pivotal regulators of the 
apoptotic process [48], and they play a major role in the apop-
tosis process of RGCs in glaucoma. However, their expression 
levels were found to be unaffected by age in glaucoma.

To summarize, this study targeted potential the prosur-
vival and proapoptotic signaling pathways, which play major 
roles in glaucomatous damage in young and old rats. Our 
finding that aging impairs the existing endogenous neuro-
protective mechanism of RGCs in glaucoma is novel and 
opens new directions for further investigations. This enables 
targeting of specific prosurvival factors or signaling path-
ways with impaired activity in the retina of old glaucomatous 

rats to rescue the optic nerve in glaucoma. Further studies on 
the augmentation of the expression of IAP family members 
in old glaucomatous rats are underway.
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