
biomolecules

Review

Natural Bioactive Cinnamoyltyramine Alkylamides
and Co-Metabolites

Antonio Evidente * and Marco Masi

����������
�������

Citation: Evidente, A.; Masi, M.

Natural Bioactive

Cinnamoyltyramine Alkylamides and

Co-Metabolites. Biomolecules 2021, 11,

1765. https://doi.org/10.3390/

biom11121765

Academic Editor: Anna Sparatore

Received: 8 November 2021

Accepted: 21 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant’Angelo,
Via Cintia 4, 80126 Naples, Italy; marco.masi@unina.it
* Correspondence: evidente@unina.it; Tel.: +39-081-2539178

Abstract: Natural products are a vital source for agriculture, medicine, cosmetic and other fields.
Among them alkylamides are a broad and expanding group found in at least 33 plant families.
Frequently, they possess a simple carbon skeleton architecture but show broad structural variability
and important properties such as immunomodulatory, antimicrobial, antiviral, larvicidal, insecticidal
and antioxidant properties, amongst others. Despite to these several and promising biological
activities, up to today, only two reviews have been published on natural alkylamides. One focuses on
their potential pharmacology application and their distribution in the plant kingdom and the other
one on the bioactive alkylamides specifically found in Annona spp. The present review is focused
on the plant bioactive cinnamoyltyramine alkylamides, which are subject of several works reported
in the literature. Furthermore, the co-metabolites isolated from the same natural sources and their
biological activities are also reported.

Keywords: alkylamide; cinnamoyltyramine; plant sources; different carbon skeleton; biological activity

1. Introduction

Alkylamides are a broad and expanding group of bioactive natural compounds
grouped at least in 33 plant families as Aristolochiaceae, Asteraceae, Brassicaceae,
Convolvulaceae, Euphorbiaceae, Menispermaceae, Piperaceae, Poaceae, Rutaceae and
Solanaceae [1]. Many of these species were used in folk medicine for the broad spectra of
biological activities as immunomodulatory, antimicrobial, antiviral, larvicidal, insecticidal,
diuretic, analgesic, cannabimimetic and antioxidant activities. They are also involved in
the antibiotic’s potentiation, the prostaglandin biosynthesis inhibition, RNA synthesis and
the arachidonic acid metabolism. Alkylamides possess a broad range of pharmacological
effects [2] and thus their potential application in the pharmaceutical, cosmetic and food
industries could be planned. Alkylamides are found in different organs of the plants such
as roots, leaves, stems, fruits, flowers, seeds and tubers. Alkylamides were also formulated
as plant growth regulators, which affect the growth, roots development and inducing of
plant biomass production [3].

Natural alkylamides are constituted by an aliphatic, cyclic or aromatic amine residue
(R1), and a C8 to C18 saturated or unsaturated chain acid, which can also be aromatic (R2).
The structural formula representing all the alkylamides is reported in Figure 1.
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The structural formula representing all the alkylamides is reported in Figure 1. 

R2 N
H

O

R1

 
Figure 1. General structure of an alkylamide. 
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Figure 1. General structure of an alkylamide.

The nature of the acid and the amine residues are characteristic of each plant family
and species. They are also classified as protoalkaloid or pseudoalkaloid compounds and
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represent a group of lipidic compounds structurally related to animal endocannabinoids
and are strongly active metabolites in the central nervous system. Some previous reviews
reported the chemistry and the biological activity of alkylamides, and although they cover a
broad range of literature, they are organized differently. One was organized accordingly to
the family of the plant source [4], and another one reported the chemistry and the detailed
description of their biological activities [5].

The present review is focused on the cinnamoyltyramine subgroup of the alkylamides,
reporting their biosynthesis, chemical structures, biological activities, hemisynthetic deriva-
tives and structure activity studies. Furthermore, the co-metabolites isolated from the same
natural sources and their biological activity are also described.

2. Biosynthesis of N-trans-Cinnamoyltyramine

The biosynthesis of N-trans-cinnamoyltyramine (1) in plants could occur in several
steps. The biosynthetic pathway starts from trans-cinnamic acid and tyramine, which
were, respectively, generated from phenylalanine (L-Phe), as were the other cinnamic acids
(i.e., p-coumaric, caffeic, ferulic, 5-hydroxyferulic and sinapic acids) and tyrosine (Tyr),
as reported in Scheme 1.
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Scheme 1. Biosynthesis of cynnamic acids and tyramine from phenylalanine and tyrosine, respectively.

Both aromatic amino acids (Phe and Tyr) were synthesized from prefenic acid, which
was, in turn, generate from shikimic acid according to the shikimate pathway [6,7] reported
in Scheme 2.

In particular, Phe was converted by phenylalanine ammonia-lyase into cinnamic
acid according to [7,8], and tyramine was synthesized by decarboxylation of tyrosine as
reported in Scheme 1 [7,9]. As reported in Scheme 3, cinnamic acid was converted by COA
ligase into the corresponding activate form [10]. The final step provides the conjugation of
cinnamoylCoA and tyramine catalyzed by the tyramine n-hydroxycinnamoyl transferase
(THT): this enzyme is not specific to cinnamoylCoA and tyramine, but also catalyzes the
conjugation of tyramine with the other CoA-activated cinnamic acids cited above [11,12].
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3. Structure and Biological Activity of Cinnamoyltyramine Alkylamides and of
Co-Metabolites Isolated from the Same Natural Sources

This section describes the structure and stereostructure determination of both E- and
Z-diastereomers of p-coumaroyl-, caffeoyl-, feruloyl-, 5-hydroxyferuloyl- and sinapoyl-
tyramine alkylamides, including a few uncommon analogues and their biological activities.
Their promising practical applications are also described. Furthermore, chemical and
biological aspects of the co-metabolites isolated from the same sources are described.

N-cis-feruloyltyramine (NCFT) and grossamide (2 and 3, Figure 2), two previously
undescribed phenolic amides, were isolated from the roots of bell pepper (Capsicum annuum
var. grossum, Solanaceae) together with p-aminobenzaldehyde and other alkylamides as
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N-trans-p-coumaroyltyramine (NTCT, also called prapazine), N-trans-feruloyltyramine
(NTFT), N-trans-p-coumaroyloctopamine (NTCO) and N-trans-feruloyloctopamine (NTFO)
(4–7, Figure 2) [13,14]. These latter compounds were previously isolated from the roots of
eggplant (Solanum melongena L., Solanacee) [15]. The structure of grossamide was confirmed
by its synthesis starting from N-trans-feruloyltyramine by an oxidative radical coupling.
It is classified into a group of lignin accordingly McCredie et al. (1969) [16], who suggested
to include in the lignin group all low molecular weight natural compounds that were
generated from the oxidative coupling of p-hydroxyphenylpropene [13].
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Very few studies have been reported on oxidative coupling products possessing amide
groups. Among them there are hordatines A, B and M (8–10, Figure 2) found as antifungal
factors in barley (Hordeum vulgare, Graminacee) [17]. Hordatin M is a mixture of glucosides
of hordatins A and B. Hordatins belong to polyammide, whose biosynthesis started from
p-hydrocynnamic acid CoA and agamatine obtained from decarboxylation of arginine.
Then agmatinecoumaroyl transerase (ACT) catalyzes agamatine conjugates from coumaroyl-
or feruloyl-CoA to give the corresponding p-hydrocinnamoylagamantine amide. The latter
generate the dimeric hordatines by peroxidase oxidation [18]. Hordatines showed signif-
icant antifungal activities [19,20] and are biosynthesized as pro-defense compounds in
barley seedlings or are accumulated in plants after a pathogen attack [21,22].
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NTCT and N-cis-p-cumaroyltyramine (NCCT, 11, Figure 2), lunularic acid (12, Figure 2)
and p-coumaric acid were isolated from bulbs of Allium chinense (Amaryllidaceae), which is
used in Chinese folk medicine [23]. They are well known as inhibitors of prostaglandin (PG)
and thromboxane synthetases. Rhapontigenin, piceatannol, rhaponticin and piceatannol
glucoside (13–16, Figure 2) are stilbene derivatives structurally related to lunularic acid and
obatined from rhubarb (Rheum rhabarbarum, Polygonaceae) [24]. They were tested among
other analogues to evaluate their effect on prostaglandin synthetase, using platelet-rich
plasma (PRP) obtained from blood collected from the main leg artery of a male albino
rabbit. Rhapontigenin showed the most potent inhibition on PG-ase and strongly inhib-
ited platelet aggregation induced by arachidonic acid and collagen. Platelet aggregation
was demonstrated in in vivo studies. The balance between thromboxane (TX) A2 and
prostaglandin (PG) I2 (prostacyclin) plays a very important role in the regulation of blood
flow. In fact, an excessive platelet aggregation is responsible to co-cause thrombosis and
arteriosclerosis. Consequently, the inhibitory effect against PG or TX biosynthesis showed
by the stilbene metabolites isolated from A. chinese could have an important therapeutic
potential [23].

NTFT was successively isolated together with new alkaloids, papracinine and pa-
prazine, and six already known ones, fumaritine N-oxide, parfumine, lastourvilline,
fumariflorine and N-methyl corydaldine from the aerial parts of Fumaria indica (Papaver-
aceae), which is diffused in Europe, Central Asia and Africa. However, no activity was
reported [25]. In the same year, but from the bark ethanolic extract of Asimina triloba
L. (Annonaceae), NTCT and NTFT were isolated by a bio-guided fractionation testing
brine shrimp lethality, together with a previously undescribed cytotoxic compound named
acetogenin, and some known compounds such as asimicin, bullatacin, bullatacinone and
(+)-syringaresinol. A. triloba L., an Annonaceae, commonly known as the pawpaw tree,
which is native to the United States and spread in Europe, has been prized for its delicious,
custard-like fruit. Trilobacin is a diastereomer of asimicin and both compounds showed
potent and selective cytotoxicities in the NCI human tumor cell line screen [26].

NTCT was isolated from the stem bark extracts of Isolona maitlandii (Annonaceae),
together with hexalobine-type, aporphinoids, amides and sterols. The leaf extract contained
only hexalobines including ent-hexalobine C and five previously undescribed hexalobines.
Any biological activity was reported [27].

NTCT and NCCT were isolated also from Aristolochia mollissima belong to Aristolochi-
aceae. Aristolochia is a genus constituted by ca. 400 species that are widely distributed from
the tropics to temperate regions. The roots and fruits of A. mollissima are used in Chinese
folk medicine as analgesic, anticancer, antimalarial and anti-inflammatory agents, and also
for the treatment of stomachache, abdominal pain and rheumatism. New sesquiterpenes,
named mandolins S, R, U (17–19, Figure 2), W and X (20 and 21, Figure 3), together with
38 already known compounds belonging to different groups of natural compounds, were
isolated from this plant [28].

NCFT, NTCT and NTFT were again isolated together with NCCT (11) and the already
known lariciresinol, 13-hydroxycapsidiol, lubiminol and drummondol from red pepper
(Capsicum annuum) (Solanaceae). However, the main metabolite isolated from C. annnum
was capsaicin, a compound known to be responsible of pungent activity, and the plant
was studied for its components, dietary effects and analgesic antioxidant activity [29,30].
Furthermore, 10 previously undescribed co-metabolites (eight bicyclic and two spiranic
sesquiterpenes) were isolated from the same plant and named canusesnol A–J (22–31,
Figure 3). The sesquiterpenes and the known compounds showed scant cytotoxic and
anti-HIV activity [31].

NTFT and NTCT were isolated together with an azanthracene alkaloid, characterized
as 1-aza-9,10-dimethoxy-4-methyl-2-oxo-1,2-dihydroanthracene and named kalasinamide,
from the stems of Polyalthia suberosa (Annonaceae), which is a shrubby tree spread be-
tween southeast Asia and south China [32]. From the organic extract of its stems and
leaves collected in China, a triterpene was previously isolated, named suberosol, with anti-
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HIV activity [33]. Successively, from the same plant together with NTFT and NTCT, two
undescribed 2-substituted furans, 1-(2-furyl)pentacosa-16,18-diyne and 23-(2-furyl)tricosa-
5,7-diynoic acid [34], were also isolated. As NTCT was isolated in limited amount not
sufficient to investigate its biological activity, its synthesis was realized in one step starting
from coumaric acid and tyramine with a final yield about of 55%. It showed suppression
of growth of human tumor cells, such as U937 and Jurkat cells, which appeared asso-
ciated with an increased percentage of cells in the S phase of the cell cycle progression.
Furthermore, NTCT was able to inhibit the protein tyrosine kinases including epidermal
growth factor receptor (EGFR) [35].
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NTCT was isolated from twigs of Celtis chinensis, which was used in folk medicine in
Korea, Japan and China to treat lumbago, irregular menstruation and gastric diseases [36].
Furthermore, NTCT inhibited acetylcholinesterase (ACHE), a well-known enzyme that
plays an important role in Alzheimers disease [37].

The same four alkymides, NCFT, NTCT, NTFT and NCCT, were again isolated to-
gether with other already known compounds, belonging to different classes of naturally
occurring compounds, from the root and stem of Aristolochia elegans [38]. A. elegans belong
to the genus Aristolochia (Aristolochiaceae), and the alcoholic extracts of some species
were investigated for their uterus contraction stimulating [39], antimitotic and antiviral
properties [40]. A. elegans also produced previously undescribed compounds characterized
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as two aristolactams, aristolactam E and aristolactam-AIIIa-6-O-β-D-glucoside (32 and
33, Figure 3), three benzoyl benzyltetrahydroisoquinoline ether N-oxide alkaloids, aristo-
quinolines A–C (34–36, Figure 3), as well as a biphenyl ether, aristogin F (37, Figure 3). All
the metabolites were tested to evaluate their potential antioxidative and antityrosinase
properties, but neither the four alkylamines or the new metabolites showed activity [38].

NTCT and NTFT were isolated from the organic extract of leaves and stems of Piper
sanctum (Piperaceae) collected in Mexico together with nine monosubstituted 8-benzo[d][1,
3]dioxole (38–46, Figure 4), three monosubstituted alkylbenzene, a 2,6-disubstituted tetrahy-
dropyranone and a 2,5-disubstituted tetrahydrofuranone. From the same extract were also
isolated p-eugenol, methyleugenol, Z-piperolide, demethoxyyangonin 5,6-dehydro-7,8-
dihydromethysticin, cepharanone B, piperolactam A, cepharadione B and safrol, which
was the major component of the oily extract. Compounds 38, 39, 43, demethoxyyangonin,
5,6-dehydro-7,8-dihydromethysticin, cepharanone B, piperolactam A and NTCT inhibited
the growth of Mycobacterium tuberculosis when tested by the Microplate Alamar Blue Assay
(MABA), with MIC values ranging from 4 to 64 µg/mL [41].
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N-trans-sinapoyltyramine (NTST, 52, Figure 4), NCFT, NTFT and NTCT were iso-
lated together with 23 known compounds from the bark stems of Polyalthia longifolia var.
pendula [40], while NTFT and NTCT were also isolated from Sparattanthelium tupiniquinorum
(Hernandiaceae) collected in Brazil [42,43].

NTCT, NCCT and NTFT were isolated together with six previously undescribed
lignans (53–58, Figure 5), and 11 other types of known compounds from Peperomia duclouxii
(Piperaceae), which is a plant used in folk medicine as an anticancer agent in mainland
China. When these compounds were tested in cytotoxic and MDR (multidrug resistance)
reversal cell activity assays, only compound 55 inhibited the growth of VA-13 and HepG2
cancer cells, with IC50 values of 5.3 and 13.2 µg/mL, respetively. Compound 55 also
showed potent effects on calcein accumulation in MDR 2780AD cells than verapamil,
which was used as a positive control. Compound 58 exhibited anti-inflammatory activity
using an ICAM-1 assay (induction of the intercellular adhesion molecule-1) and stimulated
IL-1α (Interleukin 1 alpha) and TNF-α (tumor necrosis factor alpha) with IC50 values of
107 and 13.4 µM, respectively, and without cytotoxicity against A549 cells [44].
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NTCT was isolated together with cannabisin G and (±)-lyoniresinol from the or-
ganic extract of the root bark of Berberis vulgaris L. (Berberidaceae). Different parts of
this species were used for the treatment of diarrhea, gallbladder and liver dysfunctions,
leishmaniasis, malaria, stomach problems and urinary tract diseases [45]. Cannabisin G
and (±)-lyoniresinol, using a hydroxyl radical scavenging assay, exhibited antioxidant
activity, while cannabisin G showed cytoprotective activity in cultured MCF-7 cells [46].

NTCT and N-trans-caffeoyltyramine (NTCAT, 59, Figure 5) were isolated together with
two new alkaloids, named asiaticumines A and B (60 and 61, Figure 5), and
18 other known compounds from the CHCl3 and EtOAc extracts of Crinum asiaticum
var. sinicum Baker bulbs. This plant belongs to a well-known subgroup of Amaryllid-
ceae, which synthesize alkaloids with several biological activities [47–51]. This species
was used in traditional Chinese medicine for the treatment of abscesses, aching joints
and sores. The already known metabolites were identified as the alkaloids crinumaquine,
lycorine, hippacine, ungeremine, 11-O-methylcrinamine, 3-O-acetylhamayne, crinamine,
criwelline and 4-hydroxystyryolamine. The other metabolites were identified as follows:
4-aminobenzaldehyde; the three flavonoids, such as (2S)-3′,7-dihydroxy-4′-methoxyflavan,
7-hydroxyflavanone and 4′,7-dihydroxyflavone; and the five phenolic compounds, such
as trans-caffeic acid, 4-coumaric acid, 4-hydroxybenzonic acid, ethyl 4-hydroxybenzoate
and 2-(3,4-dihydroxyphenyl)-1,3-benzodioxole-5-carboxaldehyde. When the alkaloids
60 and 61 and the other alkaloids were assayed for their cytotoxic activities against the
human tumor cell lines A549, LOVO, HL-60 and 6T-CEM, only crinumaquine, lycorine,
ungeremine, 11-O-methylcrinamine, 3-O-acetylhamayne and crinamine showed inhibition
against one or more of the tested cell lines [52].

NTCT was isolated together with two previously undescribed compounds, namely
4-methyl-heptadec-6-enoic acid ethyl ester and 3-hydroxy-2,9,11-trimethoxy-5,6-dihydro
isoquino[3,2-a]isoquinolinylium (62 and 63, Figure 5), and other five already known
metabolites from an ethanolic extract of the stems of Tinospora sinensis (syn: Tinospora
malabarica) (Menispermaceaeis). This plant is well known for its therapeutic value in treat-
ing debility, dyspepsia, fever, inflammation, syphilis, ulcers, bronchitis and immunomod-
ulatory properties, as well as urinary, skin and liver diseases [53]. The five known com-
pounds were identified as lirioresino-β-dimethyl ether, β-sitosterol, palmatine, palmatrubin
and jatrorrhizine. All the compounds were assayed for antileishmanial activity against
Leishmania donovani testing the effects of promastigotes and intracellular amastigotes, and
only compound 63 exhibited the highest in vitro antileishmanial activity, whereas com-
pounds 62, palmatine and palmatrubin showed moderate activity. The other compounds
were found to be inactive [54].

Piper sarmentosum and Piper nigrum (Piperaceae) are well known for their therapeutic
effects and content of alkaloid and amides [55]. P. nigrum has showed CNS (central
nervous system) stimulant, analgesic, antipyretic and antifeedant activities [56], while the
P. sarmentosum leaves were used to treat malaria, coughs and colds, as well as toothache,
and showed antituberculosis and antiplasmodial activities [57]. NTCT was isolated together
with five known amides, namely pellitorine (E)-1-[30,40-(methylenedioxy)cinnamoyl]pipe-
ridine 2,4-tetradecadienoic acid isobutyl amide, piperine, sylvamide, cepharadione A
and piperolactam D from P. nigrum, while a previously undescribed aromatic compound
characterized as 1-nitrosoimino-2,4,5-trimethoxybenzene (64, Figure 5) was obtained from
P. sarmentosum. The organic extracts of both plants showed cytotoxic activity against HeLa
and MCF-7v cancer cell lines, with a significant contribution of compound 64 for the
activity of the extract of P. sarmentosum [58].

NTCT and NTFT were isolated together with four previously undescribed alkaloids,
namely 3-(2-(7,7-dimethyl-3,7-dihydropyrano[3,2-e]indol-1-yl)ethyl)quinazoline-2,4(1H,3H)-
dione, 3-(2-(7,7-dimethyl-3,7-dihydropyrano-[3,2-e]indol-1-yl)ethyl)-1-hydroxyquinazoline-
2,4(1H,3H)-dione, 3-(2-(7,7-dimethyl-3,7-dihydropyrano [3,2-e]indol-1-yl)ethyl-1-methylqu-
inazoline-2,4(1H,3H)-dione and (E)-3-(6,7-dihydroxy-3,7-dimethyloct-2-enyl)-4-methoxy-
1-methylquinolin-2(1H)-one (65–68, Figure 5), from the methanol extract of Conchocarpus
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gaudichaudianus stems (Rutaceae). This tree is used by the native people in northern
Brazil [59].

NTCT and NTFT were isolated together with 11 new diglycosides, named erycibo-
sides A–L (69–80, Figure 6), 4 new chlorogenic acid derivatives (81–84, Figure 6), a new
biscoumarin (85, Figure 6), and 21 other known compounds, from the roots and stems
ethanol extract of Erycibe hainanesis (Convolvulaceae) [60]. This genus consists of about
66 species, with 11 species found in China. Compounds belonging to flavonoids, coumarins,
chlorogenic acids, alkaloids and several other components were previously extracted
from Erycibe species [61]. Some of them have been shown to exhibit anti-inflammatory,
muscarinic agonistic and cytotoxic activities and have been used in Chinese folk medi-
cine [62,63]. Erycibosides B, F and L (70 and 74, Figure 6) and the new biscoumarin
(85, Figure 6) showed strong hepatoprotective activities at concentrations of 1 × 10−5 to
1 × 10−4 M [58].
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NTCT and NCCT, 1,7-bis(4-hydroxyphenyl)heptane-3,5-diol and 6-hydroxy-2,4,7-
trimethoxyphenanthrene were isolated from the fresh tuberous rhizomes of Chinese yam
(Dioscorea opposita Thunb.) (Dioscoreaceae) [64]. This plant has a noteworthy interest in
agriculture, food and pharmaceutical fields [65,66]. NTCT, NTCT and the hepatanediol
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derivative were isolated for the first time from D. opposita. The inhibitory activities of crude
extracts as well as those of purified constituents were evaluated against yeast α-glucosidase
to search for the active principles for treatment of diabetes. NTCT, the heptanediol and the
phenanthrene derivative showed a significant activity with IC50 = 0.40, 0.38 and 0.77 µM,
respectively, while NCCT was inactive suggesting that the stereochemistry of the double
bond of this alkylamide is a structural feature important for the activity [64].

NTFT, NTCT and 3′methoxy-NTFT and kaempferol (86 and 87, Figure 7) were
isolated from Welsh onion (Allium fistulosum L.) (Amaryllidaceae) organic extracts [67].
A. fistulosum L. is a perennial herb that is classified as an Allium species, which is a popular
flavoring vegetable in China, Japan and Korea [68]. This plant is widely cultivated in south-
ern areas of Korea and is traditionally used for salads and cooking. In the same country,
its roots and trunks were used in traditional folk medicine for the treatment of febrile
disease, headache, abdominal pain, diarrhea and habitual abortion [69]. Successive studies
reported that Welsh onion showed anti-aggregation [70,71] and anti-hypertensive [70–74]
activities. The three alkylamides NTFT, NTCT and N-cis-feruloyl-3’-methoxytyramine
were isolated for the first time from the Welsh onion. NTFT and its 3′-methoxy analogue
exhibited significantly (p < 0.05) higher DPPH (2,2-diphenyl-1-picrylhydrazyl) radical
scavenging activity than the compound NTCT [67].
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NTCT and NTCAT were isolated together their 4′-O-methyl derivatives (88 and 89,
Figure 7), β-sitostenone, ferulic, hydroferulic, 5-hydroxy-3,4-dimethoxycinnamic veratic,
vanillic, isovanillic and syringic acids, as well as (+)-syringaresinol and pheophorbide D
from the stems of Capsicum annuum (Solanaceae) [75]. Compound 88 was isolated for the
first time as a naturally occurring compound [75].

NTCT, NCCT and NTFT were isolated together with ferul aldehyde, 6,7-dimethoxyco-
umarin and ficusal from the organic extract of Solanum melongena L. (Solanaceae) root [76].
The roots of this plant, called “Qie gen” in China, were used in folk Chinese medicine for
the treatment of toothache, chilblains and beriberi. Other studies showed that the extracts
of S. melongena had anti-inflammatory, analgesic and antiatherosclerosis activities [77,78].
Only the three alkylamides NTCT, NCCT and NTFT inhibited α-glucosidase with IC50 values
of 500.6, 5.3 and 46.3 µM, respectively, and they were not competitive inhibitors. Thus, the
plant could be proposed for pharmacological application [76].

NTCT, NTFT and NTCAT were isolated as the main component from the organic
extract of Polygonum hyrcanicum (Polygonaceae) aerial parts, which showed high activity
against Trypanosoma brucei rhodesiense (IC50 = 3.7 µg/mL). This protozoan parasite induces
sleeping sickness, also known as human African trypanosomiasis (HAT). HAT infects more
than 50,000 people each year and about 60 million people are at risk of trypanosomiasis [79].
The three alkylamides, NTCT, NTFT and NTCAT, showed activity with C50s ranging
from 2.2 to 13.3 µM [80]. P. hyrcanicum is an endemic plant growing in northern areas
of Iran and is known as Gheq-buqun in the Turkmen Sahra region, where its decoction
has been used for the treatment of liver problems, anemia, hemorrhoids and kidney
stones [81]. From the same organic extract, some other known and lesser active compounds
were also isolated as cannabisin B, tyrosol, p-coumaric and ferulic acids, and NCFT and
N-trans-3,4-dimethoxycinnamoyldopamine (90, Figure 7). This data again showed that
E stereoisomer is more active than the Z one (NCFT). However, it is important to remember
that cinnamoylphenethyl amides rapidly isomerize when exposed to UV light and therefore
NCFT could be an artifact formed during the isolation procedure [82].

NTCT, NTFT, NTCAT and N-cis-feruloyloctopamine (NCFO (91, Figure 7)) were
isolated together with 7 new neolignanamides (92–98, Figure 7), a new lignanamide
(99, Figure 8) and 17 known phenolic compounds from the organic extract of Lycium
chinense [83]. This plant belongs to genus Lycium (Solanaceae family) mainly distributed in
South America, South Africa and temperate Europe and Asia. It was used in traditional
Chinese medicine as an antipyretic and for the treatment of pneumonia, night-sweats,
cough, hematemesis, inflammation and diabetes mellitus [84]. The known compounds
were identified as thoreliamide B, gentisic, vanillic, p-coumaric caffeic, ferulic, sinapic
and dihydrocaffeic acids, as well as isoscopoletin, fraxidin, aquillochin, scopolin,
kaempferide, apigenin and luteolin. The cinnamic acid amides, neolignanamides and
lignanamides showed moderate radical scavenging activity towards the DPPH and
superoxide radicals [83].

NTCT and NTFT were isolated from the organic extract of P. oleracea (Portulacaceae)
together with a pyrrole alkaloid named portulacaldehyde (100, Figure 8), N-(E)-feruloyl-
4-O-methyldopamine (101, Figure 8) and the well-known (E)-p-coumaric and (E)-ferulic
acids, 4-hydroxybenzaldehyde, 2,4-dihydroxybenzaldehyde, 2-hydroxy-4-methoxybenzoic
and syringic acids [85]. P. oleracea, commonly named purslane, is an annual, semi-succulent,
trailing herbaceous plant used in folk medicine for its analgesic and wound-healing,
anti-inflammatory properties [86,87]. N-(E)-feruloyl-4-O-methyldopamine (101), NTFT,
4-hydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde were involved in the regulation
in the inflammatory activity of the plant extract [83].
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NTCT, NCCT, NTFT and NCFT were isolated together with 13 megastigmanes,
including a new megastigmane, nelumnucifoside A (102, Figure 8), and a new eudes-
mane sesquiterpene, nelumnucifoside B (103, Figure 8), as well as 8 alkaloids and
11 flavonoids from Nelumbo nucifera Gaertn. (Nymphaeaceae) [88]. This is a peren-
nial aquatic herb commonly called lotus. This plant is widely diffused in Eastern Asia
and used for food and medicine for a long time. The fruits, seeds, roots and leaves of
N. nucifera are edible and have been not only used as food for a long time, but also used as
antifebrile, sedative, antibacterial, antidiarrheal and hemostatic agents in folk medicine [89].
The other known compounds were identified as (E)-3-hydroxymegastigm-7-en-9-one,
(−)-boscialin, (+)-dehydrovomifoliol, vomifoliol, 3-oxo-retro-α-ionol I, byzantionoside A,
5,6-epoxy-3-hydroxy-7-megastigmen-9-one, annuionone D, icariside B2, grasshopper ke-
tone, 3S,5R-dihydroxy-6S,7-megastigmadien-9-one, (+)-epiloliolide, (6R,6aR)-roe-merine-
Nβ-oxide, liriodenine, pronuciferin, oleracein E, quercetin, kaempherol, luteolin, quercetin
3-O-glucopyranoside, kaempherol 3-O-glucopyranoside, chrysoeriol 7-O-glucopyranoside,
taxifolin, epitaxifolin, 5,7,3′,5′-tetrahydroxyflavanone, (−)-catechin and elephantorrhizol.
NTCT and NCFT inhibited pancreatic lipase, while (6R,6aR)-roemerine-Nβ-oxide and
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liriodenine showed a strong inhibition on adipocyte differentiation. Therefore, the extract
of N. nucifera leaves has potential as an anti-obesity agent [88].

NTCAT, NTFT, NTCT and N-trans-feruloyldopamine were isolated together with the
well-known 13-hydroxysolavetivone, betulinic acid, 3′-O-methoxydopamine, alangiligno-
side C, isolariciresinol, polistachiol, (+)-(8R,7′S,8′S)-3α-O-(β-D-glucopiranosyl)-lioniresinol,
(−)-(8S,7′R,8′R)-3α-O-(β-D-glucopiranosyl)-lioniresinol and solamargine from the organic
extract of Solanum buddleifolium Sendtn (Solanaceae) stems [90]. S. buddleifolium is widely
distributed in the northeast of Brazil, where it is used in folk medicine [91].

NTFT was isolated together with two bis-alkaloids, flavifloramides A and B (104
and 105, Figure 8), and paprazine from the aerial part of Piper flaviflorum [92]. This plant
belongs to the Piper genus, which is well known as a rich source of a variety of alkaloids,
having interesting pharmacological activities, such as anti-inflammatory, antino-ciceptive,
anticancer and antidepressant properties [92–94].

N-trans-Cinnamoyltyramine (1, Scheme 3) and NTCT were isolated together with
two sesquiterpenes, named aristoyunnolins I and J (106 and 107, Figure 8), and six other
known compounds from the roots of Aristolochia yunnanensis (syn. Aristolochia griffithii)
(Aristolochiaceae) [95]. This plant is endemic to Yunnan Province of China, known as
“Nan Mu Xiang”, and is used in Chinese medicine for the treatment of trichomoniasis,
gastrointestinal diseases and rheumatic pain [94]. All the compounds were evaluated
against P-388 and A-549 cell lines, and among them costunolide (108, Figure 8) exhibited
moderate activity [95].

NTCT, NTFT, NTCAT, dihydro-NTCAT and three neolignanamides and two lig-
nanamides were isolated from the root bark of Lycium chinense Miller, Lycii Radicis Cortex
(Solanacee). This plant was used in traditional Chinese medicine to treat different inflam-
mation symptoms and diabetes mellitus [96]. The results of biological assays showed that
akylamides, as main components of L. chinese, were responsible for NF-κB inhibition. The
SAR study also suggests that the NF-κB inhibitory activity of NTCAT could be due to its
Michael acceptor-type structure (α,β-unsaturated carbonyl group) [97].

NCCT, NTCT, 8 carbazole alkaloids, claulamines C, D and E (109–111, Figure 8)
and clausenalines B−F (112–114, Figure 8, 115–116, Figure 9), as well as 4 coumarins,
clausemarins A−D (117–120, Figure 9), and 41 already known compounds were isolated
from the roots of Clausena lansium (Rutaceae) [98]. This plant, also known as “wampee”,
is a native species of southern mainland China and it was used in folk medicine in
China, Taiwan and the Philippines. Its leaves and roots are used for coughs, asthma,
dermatological diseases, viral hepatitis and gastrointestinal ailments [99], while the seeds
are used for acute and chronic gastrointestinal inflammation and ulcers [100]. Several
known compounds were also identified as wampetin, 8-geranyloxypsolaren, imperatorin,
osthenol, isoimperatorin, O-demethylmurrayanine O-demethylmurrayanine, clausine D,
methyl carbazole-3-carboxylate, murrayanine, O-methyllansinexanthotoxol, heraclenol,
anisolactone, claulansine A, O-methylmukonidine, 3-formyl-9H-carbazole, claulansine
F, claulansine C, 9H-carbazole-3-carboxylic acid, 1-methoxycarbazole-3-carboxylic acid,
4-methoxy-1-methyl-2(1H)-quinolinone, vanillic acid, 2,6-dimethoxy-p-benzoquinone,
4-hydroxybenzoic acid, N-phenethylcinnaamide, (E)-coniferaldehyde, claulansine J,
3-formyl-6-methoxycarbazole, tertmethoxyheraclenol, isogospherol, indicolactonediol,
lucidafuranocoumarin B, mafaicheenamine C, syringaresinol, mafaicheenamine A, mukonine,
dihydroalatamide, α-santalol, β-sitosterol, platydesmine and γ-fagarine. Clausemarin A
(117), wampetin, 8-geranyloxypsolaren, imperatorin, osthenol, isoimperatorin and
O-demethylmurrayanine showed strong inhibition of superoxide anion generation with
IC50 values ranging from 1.9 to 8.4 µM, while compounds O-demethylmurrayanine,
clausine D and murrayanine inhibited elastase release with IC50 values in the range from
2.0 to 6.9 µM [98].
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NTCT and NTFT were isolated together with the well-known 4-hydroxybenzaldehyde,
N-p-coumarylserotonine (NTCS, 121, Figure 9) and N-p-coumaryl-tryptamine (NTCTR, 122,
Figure 9) from the stem of Zea mays, which is cultivated worldwide as grain and feed, and
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its seeds, oil, stigma, spike, leaf and root have been used in Chinese traditional medicines.
Z. mays chloroformic extract showed antiacetylcholinesterase activity [101].

NTCT and NCCT were isolated together with the already known methyl-10,10-
dimethoxydecanoate, methyl-10-hydroxy-8E,12Z-octadecadienoate, methylcoriolate,
trans-phytol, phytene-1,2-diol, phyton, (3S,5R,6S,7E,9R)-7-megastigmene-3,6,9-triol, (3S,5R,
6S,9R)-3,6,9-trihydroxymegastigman-7-ene, shikimic acid, p-coumaramide, tryptophan,
thymidine, adenosine and deoxyadenosine from the aqueous methanol extract of Hosta
longipes (Liliaceae) [102]. This is an edible plant widely distributed in Korea, China and
Japan and has been used in traditional Korean medicine for treating cough, laryngopharyn-
gitis, burns, swelling, snake bites and inflammation.

Further studies on the chemical metabolites produced by S. melongena, in addition to
the three alkylamides NTCT, NCCT and NTFT [76] reported above, showed that it also
produced other interesting amides. In particular, N-trans-sinapoyloctopamine (NTSO),
N-trans-caffeoyloctopamine (NTCAO), N-trans-feruloylnoradrenline (NTFA) and N-cis-
feruloylnoradrenline (NCFA) (123–124, 126, Figure 9) were isolated for the first time as
naturally occurring compounds together with the already known 3-(4-hydroxyphenyl)-
N-[2-(4-hydroxyphenyl)-2-methoxyethyl] acrylamide, 3-(4-hydroxy-3-methoxyphenyl)-N-
[2-(4-hydroxyphenyl)-2-methoxyethyl] acrylamide and N-trans-p-coumaroylnoradrenline
(NTCA, 127, Figure 9) [103].

NTFT, NTCT, NCFT and NTFO were isolated together with (3R)-3,7-dihydroxy-
8-methoxy-3-(4′-methoxybenzyl)-4-chromanone (128, Figure 9), four flavonoids, three
steroids, pinoresinol and lanost-9-en-3β-ol from the leaves of Dracaena cochinchinensis
(Lour.) S. C. Chen (Asparagaceae). The four flavonoids and the three steroids were iden-
tified as (2S)-4′, 7-dihydroxy-3′-methoxy-8-methylflavan (2S)-3′,7-dihydroxy-4′-methoxy-8-
methylflavan, 7-hydroxy-3-(4′-methoxybenzyl)-4-chromanone and 2′,4′,4-trihydroxychalcone
and (22E)-3β-acetoxystigmasta-5,22-diene, β-sitosterol andβ-daucosterol, respectivelt [104].

NTCT was isolated together with 5 phenolic glycosides, named sargentodosides
A-E (129–133, Figure 9), 2 dihydronaphthalene lignans, named sargentodognans F and
G (134 and 135, Figure 9) and 31 known phenolic compounds from the ethanolic ex-
tract of Sargentodoxa cuneata (Oliv.) Rehd. Et Wils (Lardizabalaceae) [105]. This plant
is diffused in south, east, central and southwest China, and its stems are used in Chi-
nese folk medicine for the treatment of rheumatic arthritis, abdominal pain, acute ap-
pendicitis, trauma, dysmenorrhea, amenorrhea and painful menstruation. The known
compounds were identified as (+)-isolariciresinol-9′-O-β-D-glucopyranoside, slvadoraside,
glehlinoside C7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-N2,N3-bis(4-hydroxyphenethyl)-
6-methoxy-1,2-dihydro-naphthalene-2,3-dicarboxamide, sargentol, cuneataside C, osman-
thuside H, crosatoside B, echipuroside A, 6-(β-D-glucopyranosyloxy)-2R,4-dihydroxy-2-[(4-
hydroxyphenyl)methyl]-3(2H)-benzofuranone, 6-(β-D-glucopyranosyloxy)-2S,4-dihydroxy-
2-[(4-hydroxyphenyl)methyl]-3(2H)-benzofuranone, 1-O-α-rhamnopyranosyl-(1”→6′)-O-
β-D-glucopyranosyl-2-methoxy-4-acetylphenol, 1-O-α-L-rhamnosyl(1”-6′)-β-D-glucopyra-
nosyloxy-3,4,5-trimethoxybenzene, 4-O-β-D-glucopyranosyl-3-hydroxylbenzoic acid,
protocatecheuic acid 3-O-β-D-glucoside, caffeic, protocatechuic, vanillic and 3-O-caffeoylq-
uinic acids, catechin, (−)-epicatechin, dulcisflavan, cinchonains Ia, hydroxytyrosol, acid,
calceolarioside B, 2-(4-hydroxyphenyl)ethyl-[6-O-(E)-caffeoryl]-O-β-D-glucopyranoside,
salidroside, 2-(3,4-dihydroxyphenyl)ethyl-O-β-D-glucopyranoside, icariside D2, methyl
3-O-caffeoylquinate and procyanidin B-2 [105]. Catechin, (−)-epicatechin, dulcisflavan,
cinchonains Ia, caffeic acid, 2-(4-hydroxyphenyl)ethyl-[6-O-(E)-caffeoryl]-O-β-D-glucopyr-
anoside, 2-(3,4-dihydroxyphenyl)ethyl-O-β-D-glucopyranoside and methyl 3-O-caffeoylqu-
inate showed antibacterial activities against Staphylococcus aureus ATCC 29213 with MIC
values in the range of 2–516 µg/mL. Hydroxytyrosol showed the highest activity against
the same bacterium with an MIC value of 2 µg/mL, while no compound exhibited an-
timicrobial activities against C. albicans ATCC 10231. Sargentol, cinchonains Ia and 2-(3,4-
dihydroxyphenyl)ethyl-O-β-D-glucopyranoside significantly inhibited the proliferation in
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the two cancer cell lines as Hela and Siha, showing stronger activity than cisplatin in the
cytotoxic assay [105].

NTCT, NTFT, NTCO and NTFO, were isolated together with two C-methylated flavonoids,
namely 5,6-dimethoxy-7-hydroxy-8-methyl-flavone and 5,6-dimethoxy-8-methyl-2-phenyl-
7H-1-benzopyran-7-one (136 and 137, Figure 9), and an α-pyrone, namely 4-methoxy-6-
(2-hydroxy-4-phenylbutyl)-2H-pyran-2-one (138, Figure 10). They were also isolated with
13 known compounds, including five amides, from Talinum triangulare (Portulacaceae) [106].
This plant, probably native to tropical America, was introduced to Nigeria and other tropi-
cal regions in Africa as a leaf vegetable. Now it is one of the most important vegetables
in Nigeria known as the “waterleaf” [107]. However, its leaves were also used for the
treatment of peptic ulcer, cuts, wounds and scabies, and the roots’ decoction for hyperten-
sion [108,109]. The other known compounds were identified as cannabisin F, grossamide,
aurantiamide, aurantiamide acetate, aurantiamide benzoate, indole-3-carboxylic acid,
p-hydroxy benzoic acid, 3β-hydroxystigmast-5,22-dien-7-one and 3β-hydroxystigmast-5-
en-7-one. Any compound showed cytotoxic activity against L5178Y mouse lymphoma cell
line [106].
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NTCT was isolated together with 9,10-dihydrophenanthrene-1,5-dihydroxy-3,4,7-
trimethoxy-9,10-dihydrophenanthrene (139, Figure 10) and 24 known compounds from
the whole plants of Dendrobium moniliforme (Orchidaceae) [110]. This plant is widely
distributed in China, India, Korea and Japan, and its constituents showed different bio-
logical activities including antitumor, anti-inflammatory, antiplatelet and anti-aggregation
activities [111,112]. The other known compounds were identified as ashircinol, (2R*,3S*)-3-
hydroxymethyl-9-methoxy-2-(4′-hydroxy-3′,5′-dimethoxyphenyl)-2,3,6,7-tetrahydrophe-
nanthro[4,3-b]furan-5,11-diol, diospyrosin, aloifol I, moscatilin, 3,4′-dihydroxy-3′,4,5-trime-
thoxybibenzyl, gigantol, 3,3′-dihydroxy-4,5-dimethoxybibenzyl, longicornuol A, paprazine,
N-trans-feruloyl 3′-O-methyldopamine, moupinamide, dihydroconiferyldihydro-p-couma-
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rate, dihydrosinapyl dihydro-p-coumarate, 3-isopropyl-5-acetoxycyclohexene-2-one-1,
p-hydroxybenzaldehyde, vanillin, p-hydroxyphenylpropionic, vanillic and protocatechuic
acids , (+)-syringaresinol, β-sitosterol and daucosterol [110].

NTCT, NTFT and NCFT were isolated together with 12 known compounds from
sweet potato (Ipomoea batatas) leaf. The other known compounds were identified as 3,4,5-
tricaffeoylquinic (3,4,5-triCQA), 3,4-dicaffeoylquinic (3,4-diCQA), 3,5-dicaffeoylquinic (3,5-
diCQA), 4,5-dicaffeoylquinic (4,5-diCQA), 4,5-feruloylcourmaoylquinic and caffeic acids,
caffeic acid ethyl ester, 7-hydroxy-5-methoxycoumarin, quercetin-3-O-α-D-glucopyranoside,
7,3′-dimethylquercetin, rhamnetin and indole-3-carboxaldehyde. NTCT, NTFT, NCFT and
3,4,5-triCQA showed the strongest α-glucosidase inhibition, while 3,4,5-triCQA and diC-
QAs were the dominant antioxidants. The results of a SAR study demonstrated that higher
caffeoylation of quinic acid and lower methoxylation of flavonols induced stronger antioxi-
dant activity, while methylation and cis-configuration of phenethyl cinnamides weaken the
α-glucosidase inhibition [113].

NTFT, NTCAT and NTCT were isolated from the leaves Miliusa cuneata (Annonaceae)
organic extract together with five oxoprotoberberine alkaloids, named miliusacunines A–E
(140–144, Figure 10). The twig extract of the same plant allowed researchers to identify five
known metabolites as 5-hydroxy-3,7-dimethoxy-3′,4′-methylenedioxyflavone, pachypodol,
4′-hydroxy-3,5,7,3′-tetramethoxyflavone, (+)-miliusol and (+)-syringaresinol [114]. This
plant as well as others belonging to the same genus are distributed from the Indian
subcontinent to Indochina, the Malaysia Peninsula and the southeast Asian islands, to New
Guinea and northern Australia. Some species are used in traditional medicine as a tonic
and aphrodisiac and for gastropathy. All the compounds were assayed for cytotoxic activity
against KB and Vero cancer cell lines and for antimalarial activity against the Plasmodium
falciparum. Miliusacunine A (138) showed in vitro antimalarial activity against the TM4
strain, with an IC50 value of 19.3 ±3.4 µM, while miliusacunine B (139) exhibited strong
activity against the K1 strain, with an IC50 value of 10.8 ± 4.1 µM. No compound showed
cytotoxic activity [114].

NTFT and NTCT were isolated together with 5 7-methoxyflavonols with pyrogallol
B-ring moieties (145−149, Figure 10), a fisetinidol glucoside (150, Figure 10), a benzyl
glycoside (151, Figure 10), and 23 known compounds [115] from Atraphaxis frutescens (L.)
K. Koch (Polygonaceae). This is a shrub found in the Mongolian Gobi [116] and its dried
aerial parts are used in traditional Mongolian medicine for detoxification and to treat lymph
disorders, bacterial fevers, throat infections and eye diseases, including cataracts [117]. The
known compounds were identified as europetin 3-O-α-L-rhamnopyranoside, myricitrin,
fisetinidol, gallocatechin, catechin, afzelechin, aromadendrin, epigallocatechin, epicate-
chin, nikoenoside, emodin 8-O-β-D-glucopyranoside, emodin 8-O-(6′-O-malonyl)glucoside,
torachrysone 8-O-β-D-(6′-O-malonyl) glucopyranoside, syringaresinol, dehydroconiferyl
alcohol, 3,4,5-trimethoxyphenyl 1-O-β-D-glucopyranoside and methyl syringate [115].
Compounds containing either a pyrogallol or a catechol B-ring moiety showed potent radi-
cal scavenging activity, while insect phenoloxidase and mushroom tyrosinase were, respec-
tively, inhibited by phenylpropanoid amides and by the characteristic 7-methoxyflavonol-
3-O-rhamnopyranosides [115].

NCFT, NTCAT and NTCT were isolated together with 11 new octahydroxylated
C21 steroids, named with lyciumsterols A–K (152–162, Figure 11), and 13 already known
compounds from the root bark of Lycium chinense, a plant used in Chines folk medicine as
described above. Lyciumsterols B, C and G (153, 154, and 157) showed protective effects
on pancreatic islet cells but were dose dependent, while lyciumsterols G–I and K, (158–160
and 162) exhibited autophagy activation [118].
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NCCT and NTCT were isolated together with 13 already known compounds from
Coixlachryma-jobi var. mayuen (Gramineae). The already known compounds were identified
as (7R,8S)-3′-demethyl-dehydrodiconiferyl alcohol-3′-O-β-glucopyranoside, (7R,8S)-3′-
demethyl-9′-butoxy-dehydrodiconiferyl-3′-O-β-glucopyranoside, adenosine 2-O-caffeoyl
isocitricacid, pseudolaroside, 2-hydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one, 2-O-β-
glucopyranosyl-7-methoxy-2H-1,4-benzoxazin-3(4H)-one, 2-O-β-glucopyranosyl-4-hydroxy-
7-methoxy-2H-1,4-benzoxazin-3(4H)-one, 2-O-β-D-glucopyranosyl-7-hydroxy-2H-1,4-ben-
zoxazin-3(4H)-one, p-coumaric acid and caffeic acid ethyl ester, p-coumaric acid and
coixol [119]. C.-joby var. mayuen, which is an annual, tropical plant native of Asia, namely
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from India to peninsular Malaysia, and it is now diffused in southeast Asia and the USA,
is used in folk Chinese medicine to treat inflammation, dysfunctions of the endocrine
system, chapped skin, warts, arthritis and neuralgia [120].

NTCT, NTFT, NTCAT and NCFT were isolated together with two new phenolic
amides, characterized as (7R,8S)-7-(4-hydroxy-3,5-dimethoxyphenyl)-8-hydroxy methyl-
10-[N-7”-(4”-hydrxyphenyl)ethyl]carbamoylethenyl-3′-methoxybenzodihydrofuran and
cis-N-p-hydroxycinnamoyl-7′-methoxyethyltyramine (163 and 164, Figure 11), together
with eight known compounds from Nicandra physaloides (Solanaceae) [121]. This is an
annual herb native to Peru, but it is diffused in Yunnan, Guangxi, Guizhou and some other
Chinese provinces, where it is used in traditional folk medicine as sedative, expectorant,
antipyretic and as an antidote. Its leaf extracts induced decrease blood sugar but also
showed antitumor and insect antifeedant properties [122–124]. The other known com-
pounds were identified as trans-N-feruloyloctopamine (NTFO), trans-N-feruloyl-7′-methox-
yltyramine, cannabisin D, grossamide K, trans-N-hydroxycinnamoyl-7′-methoxyltyramine,
erythro-canabisine H and cannabisin E. NCFT, NTFO and NTCAT showed significant pro-
tective activities on 1-methyl-4-phenylpyridiniumion (MPP+)-induced damage in human
dopaminergic neuroblastoma cells (SH-SY5Y). The cell protection mechanism of NCFT was
due to its ability to inhibit apoptosis and inducing cytoprotective autophagy in Parkinson’s
disease (PD) [121].

NTCT, the aristolochic acid II alanine amide (165, Figure 11) and other known com-
pounds were isolated from Aristolochia maurorum (Aristolochiaceae) [125]. This latter is a
perennial herb that widely grows in Jordan [126]. The other known compounds were iden-
tified as palmitic acid, β-sitosterol, E-ethyl-p-coumarate, Z-ethyl-p-coumarate, aristolochic
acid IV methyl ester, aristolactam I, loliolide, (+)-dehydrovomifoliol, glycerol-1-palmitate,
aristolochic acid I, E-p-coumaric acid, β-sitosterylglucoside, aristolochic acid IV, aristolochic
acid III, esculetin, uracil, shepherdine and adenosine [125].

NTFT and NTCT were isolated together with phenolic amide, named cis-terrestriamide
(166, Figure 11), and seven known compounds from the fruits’ organic extract of Tribulus
terrestris (Zygophyllaceae) [127]. This is an annual creeping plant is widely diffused in tropi-
cal regions, including Korea, China and Japan, and its fruits have been used in folk medicine
to treat dizziness, headache, high blood pressure, menstrual irregularity, pruritus, eye prob-
lems, edema, abdominal distention, sexual dysfunction and cardiovascular diseases [128].
The known compounds are essentially the alkylamides N-trans-cinnamoyltyramine (1),
N-trans-feruloyloctopamine and N-(2-(4-hydroxyphenyl)-2-methoxyethyl)cinnamamide,
terrestriamide and ferulamide [127].

NTCT, NTFT, NCCT, NCFT and a flavonoid glucoside, named ruthenicunoid A (167
Figure 11), were isolated together with five known compounds from the fruits of Lycium
ruthenicun Murr. (Solanacea) [129]. This plant is diffused in the northwest regions of
China, and its edible fruits are used for the treatment of hypertension, ureteral stones, tinea,
furuncle and gingival bleeding [130–132]. The other known compounds were identified as
N1,N10-bis(dihydrocaffeoyl)spermidine, N-trans-feruloyl-3′-O-methyldopamine N-trans-
feruloyloctopamine (NTFO) and N-cis-feruloyloctopamine (NCFO) [129]. Ruthenicunoid
A (167) and N1,N10-bis(dihydrocaffeoyl)spermidine showed the concentration-dependent
inhibition of SIRT1 (full-length human protein/cytokine/chemokine/growth factor) [129].

NTFT, NTCT and the benzophenone C-glucoside, named pseuduvarioside (168,
Figure 12), were isolated together with four known compounds from the leaves and stems
of Pseuduvaria fragrans Y. C. F. Su, Chaowasku and R.M.K. Saunders (Annonaceae) [133].
This species was collected in peninsular Thailand [134]. The other known compounds were
identified as (−)-guaiol, (+)-isocorydine, cyathocaline and isoursoline. NTFT and NTCT
were noncompetitive inhibitors of α-glucosidase [133].



Biomolecules 2021, 11, 1765 21 of 43
Biomolecules 2021, 11, x FOR PEER REVIEW 22 of 42 
 

 
Figure 12. The structures of compounds 168–182. 

NTCT and cadinane sesquiterpenoid glucoside, characterized as 2β,7,3-trihy-
droxycalamenene 3-O-β-D-glucoside (170, Figure 12) were isolated together with five 
known compounds from the stem bark of Abelmoschus sagittifolius (Malvaceae) [136]. This 
plant is considered an edible food in Hainan Island of China and southeast Asian coun-
tries and widely used in folk medicine for the treatment of phthisis, cough, constipation, 
neurasthenia, carbuncle sore swollen poison, dizziness and lumbocrural and stomach 
pains. The already known compounds were identified as N-(p-trans-coumaroyl)-N-me-
thyltyramine, cleomiscosin A, 9,12,13-trihydroxy-10,15-heptadecadienoic acid, cyto-
chalasin B and marmesinin. All the isolated metabolites showed moderate cytotoxicity 
against Hela and HepG-2 human cancer cell lines [136]. 

NTCT and two new phenylpropanoid esters, named bobulretulates A (171 and 172, 
Figure 12) were isolated together with 10 known compounds from the whole plants of 
Bulbophyllum retusiusculum (Orchidaceae) [137]. This plant is widely diffused in China, 
Nepal, Sikkim, Bhutan, India, Burma, Laos and Vietnam. The other already known com-
pounds were identified as paprazine, dihydro-feruloyltyramine, guaiacylglycerol, 
erythro-guaiacylglycerol, 4-(2-hydroxyethyl)-2-methoxyphenyl-β-D-glucopyranoside, 

Figure 12. The structures of compounds 168–182.

NTFT and NTCT were isolated together with an isoindole alkaloid, named oleraisoin-
dole (169, Figure 12), together with four known compounds, from Portulaca oleracea L.
(Portulacaceae) [135]. The known compounds were identified as 7′-ethoxy-trans-feruloylty-
ramine, N-trans-feruloyl-3-methoxytyramine, aurantiamide and ferulic acid methyl ester.
Oleraisoindole (169) inhibited NO production in RAW 264.7 cells induced by LPS [135].

NTCT and cadinane sesquiterpenoid glucoside, characterized as 2β,7,3-trihydroxycala-
menene 3-O-β-D-glucoside (170, Figure 12) were isolated together with five known com-
pounds from the stem bark of Abelmoschus sagittifolius (Malvaceae) [136]. This plant is con-
sidered an edible food in Hainan Island of China and southeast Asian countries and widely
used in folk medicine for the treatment of phthisis, cough, constipation, neurasthenia,
carbuncle sore swollen poison, dizziness and lumbocrural and stomach pains. The already
known compounds were identified as N-(p-trans-coumaroyl)-N-methyltyramine, cleomis-
cosin A, 9,12,13-trihydroxy-10,15-heptadecadienoic acid, cytochalasin B and marmesinin.
All the isolated metabolites showed moderate cytotoxicity against Hela and HepG-2 human
cancer cell lines [136].
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NTCT and two new phenylpropanoid esters, named bobulretulates A (171 and 172,
Figure 12) were isolated together with 10 known compounds from the whole plants of
Bulbophyllum retusiusculum (Orchidaceae) [137]. This plant is widely diffused in China,
Nepal, Sikkim, Bhutan, India, Burma, Laos and Vietnam. The other already known com-
pounds were identified as paprazine, dihydro-feruloyltyramine, guaiacylglycerol, erythro-
guaiacylglycerol, 4-(2-hydroxyethyl)-2-methoxyphenyl-β-D-glucopyranoside, thymidine,
uridine, roseoside, 6,9-dihydroxy-4,7-megastigmadien-3-one and β-sitosterol [137].

NTCT, NTFT and NTCAT were isolated together with 17 already known compounds,
including three sterols, three phenols, four anthraquinones, one chromone, two stilbenes,
three flavonoids and one organic acid from Fallopia convolvulus (L.) A. Löve (Fallopia) [138].
This is an annual herbaceous plant distributed in different Chinese districts, and its roots
were used to treat inflammation, insomnia, infection and arthritis. The known compounds
were identified as stigmast-4-en-3-one, stigmast-4-en-3,6-dione, stigmast-4-en-3β,6α-diol,
ethyl-p-hydroxybenzoate, emodin-1,6-dimethylether, 7-hydroxy-2,5-dimethylchromone,
physcion, citreorosein, trans-resveratrol, piceatannol, p-hydroxybenzaldehyde, protocate-
chuic acid, rhein, tricin, luteolin, myricetin and succinic acid [138].

NTCT, two lignanamides, named majusamides A and B (173 and 174, Figure 12),
and two alkaloids, named chelidoniumine and tetrahydrocoptisine-N-oxide (175 and 176,
Figure 12), were isolated together with five known hydroxycinnamic acid amides (HCCA)
from Chelidonium majus (Papaveraceae) organic extract [139]. This plant is widely dif-
fused in the south and northeast of China, including Inner Mongolia, Jilin, Heilongjiang,
Liaoning, Henan and other places. The main active components of C. majus are alka-
loids that exhibited analgesia, anti-inflammatory, anti-microbial, antineoplastic, insec-
ticidal and antioxidant activity [140,141]. The already known compounds were identi-
fied as N-trans-feruloyldopamine, N-trans-feruloyl-3-methoxytyramin, (E)-3-(4-hydroxy-3-
methoxybenzylidene)-4-(4-hydroxyphenyl)pyrolidin-2-one and ferulamide [139]. Among
all the metabolites tested, only N-trans-feruloyldopamine and (E)-3-(4-hydroxy-3-methoxy-
benzylidene)-4-(4-hydroxyphenyl) pyrrolidin-2-one showed moderate anti-inflammatory
activity on the NO production in lipopolysaccharide (LPS)-induced macrophages’ activities
with IC50 values of 25.3 ± 0.5 and 23.5 ± 1.7 µM, respectively [139].

NTFT was isolated together with 5 aristolactam alkaloids named dasymaschalolac-
tams A−E (177–181, Figure 12), dasymaschalolactone (182, Figure 12) and 18 other known
compounds from the twig extract of Dasymaschalon dasymaschalum (Annonaceae). This plant
is distributed worldwide in tropical countries in Asia (Thailand and the Malaysian peninsu-
lar) and Africa [142]. The known compounds were identified as oldhamactam, velutinam,
enterocarpam-III, griffithinam, goniopedalin, taliscanine, duguevalline, desmethoxykanu-
gin, 7,8-dimethoxy-5-hydroxyflavone, alpinetin, 8-hydroxynaringenin-4′-methyl ether,
7-methoxyisobenzofuran-1(3H)-one benzyl benzoate, 2-methoxybenzyl benzoate paprazine,
(−)-zeylenol and (+)-crotepoxide 4-hydroxybenzaldehyde. NTFT and paprazine showed
α-glucosidase inhibition with IC50 values of 4.5 and 24.7 µM, respectively [142].

NTCT, NTFT, five rearranged clerodane diterpenoids, named 4-epi-baenzigeride A,
its 4-O-D-glucoside, 4,12-di-epi-baenzigeride A, tinobaenzins A and B (183, 187, 184–1864,
Figure 13), along with four known compounds were isolated from Tinospora baenzigeri
(Menispermacae) stem organic extract [143]. This plant is widely diffused in Asia, Africa,
Australia and the Pacific [143–145] and in Thailand its decotion is used in traditional
medicine for antipyretic and antimalarial treatment as well as its root extract. The other
already known compounds were identified as baenzigeroside B, (+)-lariciresinol, caruilig-
nan D and the aglycone of breyniaionoside D. Only the last two compounds and NTCT
showed hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2
cell damage at 10 µM with 17.0%, 19.2% and 39.0% inhibition, respectively [143].
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NTCT, NCCT, NTFT, NCFT and some of their derivatives as well as that of NCAT
were identified in fruits, leaves and root barks of Lycium barbarum (Solanaceae) by UPLC-
Q-Orbitrap-MS/MS [146]. They are widely used in traditional Chinese prescriptions and
patent medicines [147–149]. The other 131 known compounds were identified using the
same method and among them, 98, 28 and 35 constituents were detected in L. barbarum
fruits, leaves and root barks, respectively. Dicaffeoylspermidine/sperminidine derivatives
were the most detected compounds (74/131) while six saponins and 5,6-dihydrosolasonine
were reported for the first time in this plant. The root bark extract possessed the strongest
antioxidative and cytotoxic activity [146].

NTCT, NTFT, 4 alkaloids named goniochelienic acids A and B, methyl goniochelienate
and goniochelieninone (188–191, Figure 13), 4 styryllactones, named (−)-(4S,5S,6R,7S,8S)-
goniochelienlactone, its 7-O-acetyl derivative, (+)-(7S,8S)-goniochelienbutenolide A and
(−)-(7S,8R)-goniochelienbutenolide B (192–195, Figure 13), together with 13 known com-
pounds, were isolated from the twig and leaf extracts of Goniothalamus cheliensis
(Annonaceae) [150]. This large tree is distributed throughout the world, but it is present es-
sentially in southeast Asia [151] and is used in folk medicine to treat fever, scabies, edema,
rheumatism, tympanites and typhoid fever [151,152]. The other already known com-
pounds were identified as 3-methyl-1H-benz[f]indole-4,9-dione, (−)-goniobutenolide B,
7-epi-(−)-goniobutenolide B, (+)-goniodiol, goniodiol-8-monoacetate, (+)-7-O-acetylgoniodiol,
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8-acetoxy goniofufurone, isoaltholactone, (+)-glaberide I, (−)-glaberide I, (+)-syringaresinol,
(+)-medioresinol, (+)-episyringaresinol, (−)-syringaresinol, (−)-episyringaresinol, (−)-pin-
oresinol, griffithazanone A, cleistopholine, vanillic, p-hydroxybenzoic, p-methylbenzoic
and trans-ferulic acids, 4-hydroxy-3-methoxypropiophenon, 3,5-dimethoxy-4-hydroxypro-
piophenone, p-hydroxybenzaldehyde, ethyl-4-hydrozybenzoate, (−)-(3R)-mellein methyl
ether, derrusnin, 5-hydroxy-7-methoxy-3′,4′-methylene dioxy isoflavone, derrustone,
robustone methyl ether, derrugenin, robustigenin and methyl-BRM-5 [150]. Among all
the compounds tested for cytotoxicity against human colorectal cancer cells (HCT-116),
griffithazanone A was the most potent with an IC50 value of 2.39 µM [150].

NTCT was isolated together with 14 alkaloids, including 2 indole alkaloids, 1 quino-
line alkaloid, 2 pyridine alkaloids, 4 carbazole alkaloids and 3 amides from the aerial
parts of Clausena lansium Lour. Skeels (Rutaceae). These metabolites were identified as
3-oxoindole and indole-3-carboxaldehyde, dictamine, murrayanine, claulansine G, clau-
sine I, O-demethylmurrayanine, atanine, 4-methoxy-1H-quinolin-2-one and 4-methoxy-
1-methylquinolin-2-one. Among all the compounds assayed for their cytotoxic activity
against Hela cancer cell line, four carbazole alkaloids, murrayanine, claulansine G, clausine
I and O-demethylmurrayanine, showed weak cytotoxicity with IC50 values ranging from
69.31 to 138.32 µM [153].

NTCT was isolated together with speretin, 4-methoxyquinolin-2-one, pinoresinol,
medioresinol, syringaresinol, N-benzoyl-L-phenylalaninol, L-sesamin, diosmetin,
zhebeiresinol, vitexin and isoscopletin from the organic extract of Zanthoxylum nitidum
(Roxb.) DC. (Rutaceae) leaves. Z. nitidium is widely used in traditional Chinese herbal
medicines [154].

NTCT, NTCAT and two ceramides, named celtisamides A and B (196 and 197, Figure 13)
were isolated together with platanic and betulinic acids, the (0.6:0.4) mixture of oleanolic
and ursolic acids, friedelin, β-sitosterol, and β-sitosterol 3-O-β-D-glucoside and betulinic
acid from the stem bark of Celtis tessmannii Rendle (Cannabaceae). p-Hydroxybenzoyl,
p-coumaric acid anhydride, glucosyringic acid, cis-1-O-methyl-inositol and succinic acid
were isolated from the root organic extract of the same plant [155]. C. tessmannii is used
as analgesic and for the treatment of diarrhea, fever, inflammation of respiratory organs,
tachycardia, anemia, gangrene, sexual weakness, insomnia, nervosity, muscles pain and
malaria [156]. All the metabolites were tested for antiplasmodium and cytotoxic activities.
cis-1-O-Methylinositol (IC50 = 14.3 µM) showed the strongest inhibition of urease, while
succinic acid (IC50 = 12.9 µM) exhibited the best inhibition against lipoxygenase. Succinic
acid (IC50 = 9.5 µM) showed the best DPPH radical scavenging activity, while betulinic
acid exhibited a strong (IC50 values ranging from 1.87-2.34 µg/mL) against chloroquine-
sensitive (Pf 3D7), and chloroquine-resistant (Pf Dd2 and Pf INDO) strains of Plasmodium
falciparum [155].

NTCT, NTFT and NTFO were isolated together with four new steroidal sapogenins,
named dracaenogenins C–F (198–201, Figure 14), a new conjugated chalcone-stilbene,
3′ ′-methoxycochinchinenene H (202, Figure 14), and eight known compounds from the
stems of Dracaena usambarensis Engl. (Asparagaceae) [157]. The organic extracts of this tree
showed anticancer [158], anti-inflammatory [159] and antimicrobial properties [158] and
antiestrogenic, antioxidative, and bacteriostatic activities [160]. 3′ ′-Methoxycochinchinenene
H (202), 4,4′-dihydroxy-3′-methoxychalcone and grossamide tested at 100 µM were sub-
stantially more potent than ibuprofen, inhibiting the release of all the cytokines, IL-1β,
IL-2, GM-CSF and TNF-α from 0.06% to 58.04% compared to LPS control. Trans-resveratrol
significantly reduced the GM-CSF (6.11% of LPS control) and TNF-α (18.35% of LPS control)
release [157].
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NTCT, NTFT, NTST, a previously undescribed arylbenzofuran rhamnoside named
aristolochiaside (203, Figure 14) and seven known compounds were isolated from Isotrema
tadungense (Aristolochiaceae), from which the extract showed significant cytotoxic activ-
ity [161]. It is a plant essentially distributed in Vietnam. The already known compounds
were identified as aristolactam AIIIa, aristololactam CII, grossamide, cannabisin D, melon-
genamide, cannabisin F and N-trans-feruloyldopamine. Among the isolated compounds,
aristolochiaside, aristolactam AIIIa and NTST showed strong and selective cytotoxicity
on the HeLa human cancer cell line with IC50 values of 7.59 ± 1.03, 8.51 ± 1.73 and
9.77 ± 1.25 µM, respectively [161].

NTCT, NTFT, NTFO and a previously undescribed cerebroside named eloundemno-
side (204, Figure 15) were isolated together with 17 known compounds from the roots of
Celtis adolphi-friderici Engl. (Cannabaceae) [162]. This semi-deciduous tree is diffused in the
center region of Cameroon and known as “odou” by the Ewondo tribe, where its bark fruits
and leaves are used in folk medicine to treat severe cough, fever, headache, tuberculosis and
sore eyes [163]. The other known compounds were identified as β-sitosterol, heptacosanoic
vanilic azelaic, laceroic hydroxybenzoic and aspartic acids, 3-carboxaldehyde, glycerol,
1-octadecanoate β-sitosterol-3-O-β-D-glucopyranoside, sapiol, indole and allantoin [162].
Heptacosanoic, vanilic and azakleic acids showed good antioxidant activities with IC50
values of 22.2, 29.3 and 13.2 µM, respectively. Azelaic acid is also a strong inhibitor of
lipoxygenase (IC50 value of 16.3 µM), while friedelin exhibited the highest inhibition of ure-
ase with an IC50 value of 15.3 µM. However, all the compounds tested showed a moderate
butyrylcholinesterase inhibition [162].
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NTFT, NTCAT, NTCT and two previously undescribed phenolic imidates, named fis-
tuloimidates A and B (205 and 206, Figure 15), were isolated together with persicoimidate,
N-coumaroyltyrosine, isorhamnetin-3-O-galactopyranoside and 1-O-(4-hydroxybenzoyl)-
β-D-glucopyranose from the extract of the previously described A. fistulosum [164].
Fistuloimidate A (205) and 1-O-(4-hydroxybenzoyl)-β-D-glucopyranose showed antibacte-
rial activity against E. coli with MIC values of 2000 and 1000 µg/mL, respectively, while
fistuloimidate B (206) showed the same activity against both E. coli and S. aureus with MIC
values of 7.8 and 3.9 µg/mL respectively. Persicoimidate and N-coumaroyltyrosine showed
the same activity against S. aureus with MIC values for both compounds of 250 µg/mL.
Among all the compounds tested against the breast cancer cell line MCF-7, persicoimidate
and isorhamnetin 3-O-galactopyranoside showed low cytotoxic effects in a dose-dependent
manner with IC50 values of 94.4 ± 5.1 and 94.1 ± 1.8 µg/mL, respectively [164].

NCCT, NTFT, NTCT, 2 previously undescribed tetrahydroprotoberberine, named
7R,14S-cis-tetrahydrocoptisine N-oxides and 7R,14R-trans-tetrahydrocoptisine N-oxide
(207 and 208, Figure 15), and 11 known compounds were isolated from the aerial parts of
Chelidonium majus L. (Papaveraceae) [165]. The known compounds were identified as impa-
tien B, spallidamine, oxychelerythrine, dihydrosanguinarine, N-demethyloxysanguinarine,
chelidonine, isochelidonine, 4-[formyl-5-methoxymethyl-1H-pyrol-1-yl] butanoate, norox-
yhydrastinine, 3,4-dehydrotheaspirone and loliolide. 7R,14R-trans-Tetrahydrocoptisine
N-oxide (208), N-demethyloxysanguinarine, chelidonine, isochelidonine, NTCT, 4-[formyl-
5-methoxymethyl-1H-pyrol-1-yl] butanoate and 3,4-dehydrotheaspirone inhibited the nitric
oxide production in LPS-induced RAW 264.7 macrophages with the IC50 values ranging
from 1.1 to 31.9 µM [165].

4. Conclusions

The sources and biological activities of both E- and Z-diastereomers of p-coumaroyl-,
caffeoyl-, feruloyl-, 5-hydroxyferuloyl- serotonine-, sinapoyl- and tryptamine-tyramine
alkylamides and other related alkylamides described in the text are summarized in Table 1,
while those of the co-metabolites isolated from the same sources are reported in Table 2.
Among the alkylamides, NTCT is that produced by several plants belonging to different
species followed by NTFT and NCFT. Some promising activities were also reported for
them suggesting their potential use in different fields. However, further studies are needed
to determine their mode of actions as well as suitable formulations should be prepared for
their practical applications.



Biomolecules 2021, 11, 1765 27 of 43

Table 1. Alkylamides, their sources and biological activities.

Alkylamide Source Biological Activity References

N-trans-Cinnamoyltyramine
(1, Scheme 3) A. yunnanensis No activity [95]

N-cis-Feruloyltyramine
(NCFT, 2, Figure 2)

C. annuum var. grossum “ [13,14]

C. annuum “ [29]

P. suberosa “ [32,34]

A. elegans “ [38]

P. longifolia var. pendula “ [42]

P. hyrcanicum “ [82]

N. nucifera Inhibition of pancreatic lipase [88]

D. cochinchinensis No activity [104]

I. batatas Inhibition of α-glucosidase [113]

L. chinense No activity [118]

N. physaloides Inhibition of apoptosis
and cytoprotective [121]

L. ruthenicun No activity [129]

L. barbarum “ [146]

N-trans-p-Coumaroyltyramine
(NTCT, paprazine, 4, Figure 2)

C. annuum var. grossum “ [13,14]

S. melongena “ [15]

A. chinense Inhibition of thromboxane and
prostaglandin synthetase [23]

A. triloba No activity [26]

I. maitlandii “ [27]

C. annuum “ [29,30]

A. mollissima “ [28]

P. suberosa Anticancer activity and inhibition
of protein tyrosine kinases [32–35]

C. chinensis Inhibition of acetylcholinesterase [36,37]

A. elegans No activity [38]

P. sanctum Antibiotic [41]

P. longifolia var. pendula No activity [42]

S. tupiniquinorum “ [43]

P. duclouxii “ [44]

B. vulgaris “ [45]

C. asiaticum var. sinicum “ [52]

T. sinensis “ [54]

P. nigrum “ [58]

C. gaudichaudianus “ [59]

D. opposita Antidiabetic [64]

A. fistulosum No activity [67]

C. annum “ [75]

S. melongena Antidiabetic [76,103]

P. hyrcanicum Antiprotozoal [80]
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Table 1. Cont.

Alkylamide Source Biological Activity References

L. chinense
Moderate radical scavenging,

anti-inflammatory and
antidiabetic

[83,97,118]

P. oleracea No activity [85,135]

N. nucifera Inhibition of pancreatic lipase [88]

S. buddleifolium No activity [90]

C. lansium “ [98]

Z. mays “ [101]

H. longipes “ [102]

D. cochinchinensis “ [104]

S. cuneata “ [105]

T. triangulare “ [106]

D. moniliforme “ [110]

I. batatas Inhibition of α-glucosidase [113]

M. cuneata No activity [114]

A. frutescens “ [115]

C.-jobi var. mayuen “ [119]

N. physaloides “ [121]

A. maurorum “ [125]

T. terrestris “ [127]

L. ruthenicun “ [129]

P. fragrans Inhibition of α-glucosidase [133]

A. sagittifolius Moderate cytotoxicity [136]

B. retusiusculum No activity [137]

F. convolvulus “ [138]

C. majus “ [139]

D. dasymaschalum Inhibition of α-glucosidase [142]

T. baenzigeri Hepatoprotective activity [143]

L. barbarum No activity [146]

G. cheliensis “ [150]

C. lansium “ [153]

Z. nitidum “ [154]

C. tessmannii “ [155]

D. usambarensis “ [156]

I. tadungense “ [161]

C. adolphi-friderici “ [162]

A. fistulosum “ [164]

C. majus Inhibition of NO production in
RAW 264.7 cells [165]

N-trans-Feruloyltyramine (NTFT, 5,
Figure 2)

C. annuum var. grossum No activity [13,14]

S. melongena “ [15]

F. indica “ [25]
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Table 1. Cont.

Alkylamide Source Biological Activity References

A. triloba “ [26]

C. annuum “ [29]

P. suberosa “ [32,34]

A. elegans “ [38]

P. sanctum “ [41]

P. longifolia var. pendula “ [42]

S. tupiniquinorum “ [43]

P. duclouxii “ [44]

C. gaudichaudianus “ [59]

A. fistulosum Radical scavenging [67]

S. melongena Antidiabetic [76,103]

P. hyrcanicum Antiprotozoal [80]

L. chinense
Moderate radical scavenging,

anti-inflammatory and
antidiabetic

[83,97]

P. oleracea Anti-inflammatory [85,135]

N. nucifera No activity [88]

S. buddleifolium “ [90]

P. flaviflorum “ [92]

Z. mays “ [101]

D. cochinchinensis “ [104]

T. triangulare “ [106]

I. batatas Inhibition of α-glucosidase [113]

M. cuneata No activity [114]

A. frutescens “ [115]

N. physaloides “ [121]

T. terrestris “ [127]

L. ruthenicun “ [129]

P. fragrans Inhibition of α-glucosidase [133]

F. convolvulus No activity [138]

D. dasymaschalum Inhibition of α-glucosidase [142]

T. baenzigeri No activity [143]

L. barbarum “ [146]

G. cheliensis “ [150]

D. usambarensis “ [157]

I. tadungense “ [161]

C. adolphi-friderici “ [162]

A. fistulosum “ [164]

C. majus “ [165]

N-trans-p-Coumaroyloctopamine
(NTCO, 6, Figure 2)

Capsicum annuum var. grossum “ [13,14]

Solanum melongena L. “ [15]

T. triangulare “ [106]
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N-trans-Feruloyloctopamine
(NTFO, 7, Figure 2)

Capsicum annuum var. grossum “ [13,14]

Solanum melongena L. “ [15]

D. cochinchinensis “ [104]

T. triangulare “ [106]

N. physaloides Cytoprotective [121]

L. ruthenicun No activity [129]

C. adolphi-friderici “ [162]

N-cis-p-Cumaroyltyramine
(NCCT, 11, Figure 2)

A. chinense Inhibition of prostaglandin and
thromboxane synthetase [23]

A. mollissima No activity [28]

C. annuum “ [29]

A. elegans “ [38]

P. duclouxii “ [44]

D. opposita “ [64]

S. melongena Antidiabetic [76,103]

N. nucifera No activity [88]

C. lansium “ [98]

H. longipes “ [102]

C.-jobi var. mayuen “ [119]

L. ruthenicun “ [129]

L. barbarum “ [146]

C. majus “ [165]

N-trans-Sinapoyltyramine
(NTST, 52, Figure 4)

P. longifolia var. pendula “ [42]

I. tadungense “ [161]

N-trans-Caffeoyltyramine
(NTCAT, 59, Figure 5)

C. asiaticum var. sinicum “ [52]

C. asiaticum “ [75]

P. hyrcanicum Antiprotozoal [80]

L. chinense Moderate radical
scavengingNF-κB inhibitory [83,97,118]

S. buddleifolium No activity [90]

M. cuneata “ [114]

N. physaloides Cytoprotective [121]

F. convolvulus No activity [138]

C. tessmannii “ [155]

A. fistulosum “ [164]

3′-Methoxy-NTFT (86, Figure 7) A. fistulosum Radical scavenging [67]

4′-O-Methyl-TNCT (88, Figure 7) C. annuum No activity [75]

4′-O-Methyl-TNCAT (89, Figure 7) C. annuum “ [75]
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Alkylamide Source Biological Activity References

N-cis-feruloyloctopamine
(NCFO, 91, Figure 7)

L. chinense
Moderate radical scavenging,

anti-inflammatory and
antidiabetic

[83]

L. ruthenicun No activity [129]

D. usambarensis “ [157]

N-trans-p-oumaroylserotonine
(NTCS, 121, Figure 9) Z. mays “ [101]

N-trans.-p-coumaroyltryptamine
(NTCTR, 122, Figure 9) “ “ “

N-trans-sinapoyloctopamine
(NTSO, 123, Figure 9) S. melongena “ [103]

N-trans-caffeoyloctopamine
(NTCAO, 124, Figure 9) “ “ “

N-trans-feruloylnoradrenline
(NTFA, 125, Figure 9) “ “ “

N-cis-feruloylnoradrenline
(NCFA 126, Figure 9) “ “ “

N-trans-p-coumaroylnoradrenline
(NTCA, 127, Figure 9) “ “ “

Table 2. Co-metabolites, their sources, and biological activities.

Metabolite Source Biological Activity References

Grossamide (3, Figure 2) Capsicum annuum var. grossum No activity [1,14]

Hordatin A (8, Figure 2) H. vulgare Antifungal [17]

Hordatin B (9, Figure 2) “ “ “

Hordatin M (10, Figure 2) “ “ “

Lunularic acid (12, Figure 2) A. chinense Inhibition of thromboxane and
prostaglandin synthetase [23]

Rhapontigenin (13, Figure 2) R. rhabarbarum “ [24]

Piceatannol, (14, Figure 2) “ “ “

Rhaponticin (15, Figure 2) “ “ “

Piceatannol glucoside (16, Figure 2) “ “ “

Mandolin S (17, Figure 2) A. mollissima No activity [29,30]

Mandolin R (18, Figure 2) “ “ “

Mandolin U (19, Figure 2) “ “ “

Mandolin W (20, Figure 3) “ “ “

Mandolin X (21, Figure 3) “ “ “

Canusesnol A (22, Figure 3) C. annuum Cytotoxic [31]

Canusesnol B (23, Figure 3) “ No activity “

Canusesnol C (24, Figure 3) “ “ “

Canusesnol D (25, Figure 3) “ “ “

Canusesnol E (26, Figure 3) “ “ “

Canusesnol F (27, Figure 3) “ “ “

Canusesnol G (28, Figure 3) “ “ “
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Metabolite Source Biological Activity References

Canusesnol H (29, Figure 3) “ “ “

Canusesnol I (30, Figure 3) “ “ “

Canusesnol J (31, Figure 3) “ “ “

Aristolactam E (32, Figure 3) A. elegans “ [38]

Aristolactam-AIIIa-6-O-β-D-glucoside
(33, Figure 3) “ “ “

Aristoquinoline A (34, Figure 3) “ “ “

Aristoquinoline B (35, Figure 3) “ “ “

Aristoquinoline C (36, Figure 3) “ “ “

Aristogin F (37, Figure 3) “ “ “

2-Oxo-12-(3′,4′-
methylenedioxyphenyl)dodecane

(38, Figure 4)
P. sanctum Antibiotic [41]

2-Oxo-14-(3′,4′-
methylenedioxyphenyl)tetradecane

(39, Figure 4)
“ “ “

(40, Figure 4) “ No activity “

2-Oxo-18-(3′,4′-
methylenedioxyphenyl)octadecane

(41, Figure 4)
“ “ “

2-Oxo-14-(3’,4’-methylenedioxyphenyl)-
trans-13-tetradecene

(42, Figure 4)
“ “ “

2-Oxo-16-(3′,4′-methylenedioxyphenyl)-
trans-15-hexadecene

(43, Figure 4)
“ Antibiotic “

2-Oxo-18-(3′,4′-methylenedioxyphenyl)-
trans-17-octadecene

(44, Figure 4)
“ No activity “

2-Oxo-16-phenyl-trans-3-hexadecene
(45, Figure 4) “ “ “

Methyl
[6-(10-phenyldecanyl)tetrahydropyran-2-

yl]acetate
(46, Figure 4)

“ “ “

Methyl 2-(6-tridecyltetrahydro-2H-pyran-2-
yl)acetate

(47, Figure 4)
“ “ “

Methyl 2-(5-tetradecyltetrahydro-2-
furanyl)acetate
(48, Figure 4)

“ “ “

2-Oxo-14-(3′,4′-methylenedioxyphenyl)-
trans-3-tetradecene

(49, Figure 4)
“ “ “

2-Oxo-16-(3′,4′-methylenedioxyphenyl)-
trans-3-hexadecene

(50, Figure 4)
“ “ “

2-Oxo-16-phenyl-3-hexadecane
(51, Figure 4) “ “ “
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Lignan 53 (Figure 5) P. duclouxii No activity [44]

Lignan 54 (Figure 5) “ “ “

Lignan 55 (Figure 5) “ Anticancer “

Lignan 56 (Figure 5) “ “ “

Lignan 57 (Figure 5) “ “ “

Lignan 58 (Figure 5) “ Anti-inflammatory “

Asiaticumine A (60, Figure 5) C. asiaticum var. sinicum No activity [52]

Asiaticumine B (61, Figure 5) “ “ “

4-Methyl-heptadec-6-enoic acid ethyl ester
and (62 Figure 5) T. sinensis Antileishmanial [54]

3-Hydroxy-2,9,11-trimethoxy-5,6-dihydro
isoquino[3,2-a] isoquinolinylium

(63 Figure 5)
“ “ “

1-Nitrosoimino-2,4,5-trimethoxybenzene
(64, Figure 5) P. sarmentosum Cytotoxic [58]

Alkaloid 65 (Figure 5) C. gaudichaudianus No activity [59]

Alkaloid 66 (Figure 5) “ “ “

Alkaloid 67 (Figure 5) “ “ “

Alkaloid 68 (Figure 5) “ “ “

Eryciboside A (69, Figure 6) E. hainanesis No activity [60]

Eryciboside B (70, Figure 6) “ Hepatoprotective “

Eryciboside C (71, Figure 6) “ No activity “

Eryciboside D (72, Figure 6) “ “ “

Eryciboside E (73, Figure 6) “ “ “

Eryciboside F (74, Figure 6) “ Hepatoprotective “

Eryciboside G (75, Figure 6) “ No activity “

Eryciboside H (76, Figure 6) “ “ “

Eryciboside I (77, Figure 6) “ “ “

Eryciboside J (78, Figure 6) “ “ “

Eryciboside K (79, Figure 6) “ “ “

Eryciboside L (80, Figure 6) “ Hepatoprotective “

Chlorogenic acid derivative (81, Figure 6) “ No activity “

Chlorogenic acid derivative (82, Figure 6) “ “ “

Chlorogenic acid derivative (83, Figure 6) “ “ “

Chlorogenic acid derivative (84, Figure 6) “ “ “

Biscoumarin (85, Figure 6) “ Hepatoprotective “

Kaempferol (87, Figure 7) A. fistulosum No activity [67]

N-trans-3,4-
dimethoxycinnamoyldopamine

(90, Figure 7)
P. hyrcanicum “ [82]

Neolignanamide (92, Figure 7) L. chinense Moderate radical scavenging [83]

Neolignanamide (93, Figure 7) “ “ “

Neolignanamide (94, Figure 7) “ “ “
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Neolignanamide (95, Figure 7) “ “ “

Neolignanamide (96, Figure 7) “ “ “

Neolignanamide (97, Figure 7) “ “ “

Neolignanamide (98, Figure 7) “ “ “

Lignanamide (99, Figure 7) “ “ “

Portulacaldehyde (100, Figure 7) P. oleracea No activity [85]

N-(E)-Feruloyl-4-O-methyldopamine
(101, Figure 8) “ Anti-inflammatory “

Nelumnucifoside A (102, Figure 8) N. nucifera No activity [88]

Nelumnucifoside B (103, Figure 8) “ “ “

Flavifloramide A (104, Figure 8) P. flaviflorum “ [92]

Flavifloramide B (105, Figure 8) “ “ “

Aristoyunnolin I (106, Figure 8) A. yunnanensis “ [95]

Aristoyunnolin I (107, Figure 8) “ “ “

Custonolide (108, Figure 8) “ Moderate cytotoxicity “

Claulamine C (109, Figure 8) C. lansium No activity [98]

Claulamine D (110, Figure 8) “ “ “

Claulamine E (111, Figure 8) “ “ “

Clausenaline B (112, Figure 8) “ “ “

Clausenaline C (113, Figure 8) “ “ “

Clausenaline D (114, Figure 8) “ “ “

Clausenaline E (115, Figure 9) “ “ “

Clausenaline F (116, Figure 9) “ “ “

Clausemarins A (117, Figure 9) “ Anti-inflammatory “

Clausemarin B (118, Figure 9) “ No activity “

Clausemarin C (119, Figure 9) “ “ “

Clausemarin D (120, Figure 9) “ “ “

(3R)-3,7-dihydroxy-8-methoxy-3-(4′-
methoxybenzyl)-4-chromanone

(128, Figure 9)
D. cochinchinensis “ [104]

Sargentodoside A (129, Figure 9) S. cuneata “ [105]

Sargentodoside B (130, Figure 9) “ “ “

Sargentodoside C (131, Figure 9) “ “ “

Sargentodoside D (132, Figure 9) “ “ “

Sargentodoside E (133, Figure 9) “ “ “

Sargentodognan F (134, Figure 9) “ “ “

Sargentodognan G (135, Figure 9) “ “ “

5,6-Dimethoxy-7-hydroxy-8-methyl-
flavone

(136, Figure 9)
T. triangulare “ [106]

5,6-Dimethoxy-8-methyl-2-phenyl-7H-1-
benzopyran-7-one

(137, Figure 9)
“ “ “



Biomolecules 2021, 11, 1765 35 of 43

Table 2. Cont.

Metabolite Source Biological Activity References

4-Methoxy-6-(2-hydroxy-4-phenylbutyl)-
2H-pyran-2-one
(138, Figure 10)

“ “ “

9,10-Dihydrophenanthrene-1,5-dihydroxy-
3,4,7-trimethoxy-9,10-
dihydrophenanthrene

(139, Figure 10)

D. moniliforme “ [110]

Miliusacunine A (140, Figure 10) M. cuneata Antimalaria [114]

Miliusacunine B (141, Figure 10) “ “ “

Miliusacunine C (142, Figure 10) “ No activity “

Miliusacunine D (143, Figure 10) “ “ “

Miliusacunine E (144, Figure 10) “ “ “

7-Methoxyflavonol (145, Figure 10) A. frutescens Radical scavenging [115]

7-Methoxyflavonol (146, Figure 10) “ Inhibition mushroom tyrosinase “

7-Methoxyflavonol (147, Figure 10) “ “ “

7-Methoxyflavonol (148, Figure 10) “ “ “

7-Methoxyflavonol (149, Figure 10) “ Radical scavenging “

Fisetinidol glucoside (150, Figure 10) “ “ “

Benzyl glycoside (151, Figure 11) “ “ “

Lyciumsterol A (152, Figure 11) L. chinense No activity [118]

Lyciumsterol B (153, Figure 11) “ Protective effects on pancreatic
islet cells “

Lyciumsterol C (154, Figure 11) “ “ “

Lyciumsterol D (155, Figure 11) “ No activity “

Lyciumsterol E (156, Figure 11) “ “ “

Lyciumsterol F (157, Figure 11) “ Protective effects on pancreatic
islet cells “

Lyciumsterol G (158, Figure 11) “
Protective effects on pancreatic

islet cells and
autophagy activation

“

Lyciumsterol H (159, Figure 11) “ No activity “

Lyciumsterol I (160, Figure 11) “ Autophagy activation “

Lyciumsterol J (161, Figure 11) “ No activity “

Lyciumsterol K (162, Figure 10) “ Autophagy activation “

(7R, 8S)-7-(4-Hydroxy-3,5-
dimethoxyphenyl)-8-hydroxy

me-thyl-10-[N-7”-(4”-
hydrxyphenyl)ethyl]carbamoylethenyl-3′-

methoxybenzodihydrofuran
(163, Figure 11)

N. physaloides No activity [121]

cis-N-p-Hydroxycinnamoyl-7′-
methoxyethyltyramine

(164, Figure 11)
“ “ “

Aristolochic acid II alanine amide
(163, Figure 11) A. maurorum “ [125]

cis-Terrestriamide (165, Figure 11) T. terrestris “ [127]
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Ruthenicunoid A (166 Figure 11) L. ruthenicun Inhibition of SIRT1 [129]

Pseuduvarioside (167, Figure 12) P. fragrans No activity [133]

Oleraisoindole (168, Figure 12) P. oleracea Inhibited NO production in
RAW 264.7 cells [135]

2β,7,3-Trihydroxycalamenene
3-O-β-D-glucoside (170, Figure 12) A. sagittifolius Moderate cytotoxicity [136]

Bobulretulate A (171 Figure 12) B. retusiusculum No activity [137]

Bobulretulate B (172, Figure 12) “ “ “

Majusamide A (173, Figure 12) C. majus “ [139]

Majusamide B (174, Figure 12) “ “ “

Chelidoniumine (175, Figure 12) “ “ “

Tetrahydrocoptisine-N-oxide
(176, Figure 12) “ “ “

Dasymaschalolactam A (177, Figure 12) D. dasymaschalum “ [142]

Dasymaschalolactam B (178, Figure 12) “ “ “

Dasymaschalolactam C (179, Figure 12) “ “ “

Dasymaschalolactam D (180, Figure 12) “ “ “

Dasymaschalolactam E (181, Figure 12) “ “ “

Dasymaschalolactone (182, Figure 12) “ “ “

4-epi-Baenzigeride A (183, Figure 13) T. baenzigeri “ [143]

4,12-di-epi-Baenzigeride A
(184, Figure 13) “ “ “

Tinobaenzin A (185, Figure 13) “ “ “

Tinobaenzin B (186, Figure 13) “ “ “

4-O-D-glucoside (187, Figure 13) “ “ “

Goniochelienic acid A (188, Figure 13) G. cheliensis “ [150]

Goniochelienic acid B (189, Figure 13) “ “ “

Methyl goniochelienate (190, Figure 13) “ “ “

Goniochelieninone (191, Figure 13) “ “ “

(−)-(4S,5S,6R,7S,8S)-goniochelienlactone
(192, Figure 13) “ “ “

7-O-Acetyl derivative of 192
(193, Figure 13) “ “ “

(+)-(7S,8S)-Goniochelienbutenolide A
(194, Figure 13) “ “ “

(−)-(7S,8R)-Goniochelienbutenolide B
(195, Figure 13) “ “ “

Celtisamide A (196, Figure 13) C. tessmannii “ [155]

Celtisamide B (197, Figure 13) “ “ “

Dracaenogenin C (198, Figure 14) D. usambarensis “ [157]

Dracaenogenin D (199, Figure 14) “ “ “

Dracaenogenin E (200, Figure 14) “ “ “

Dracaenogenin F (201, Figure 14) “ “ “
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3′ ′-Methoxycochinchinenene H
(202, Figure 14) “ Anti-inflammatory “

Aristolochiaside (203, Figure 14) I. tadungense Cytotoxic [161]

Eloundemnoside (204, Figure 15) C. adolphi-friderici Moderate butyrylcholinesterase
inhibition [162]

Fistuloimidate A (205, Figure 15) A. fistulosum Antibiotic [164]

Fistuloimidate B (206, Figure 15) “ “ “

7R,14S-cis-Tetrahydrocoptisine N-oxides
and (207, Figure 15) C. majus No activity [165]

7R,14R-trans-Tetrahydrocoptisine N-oxide
(208, Figure 15) “ Inhibited NO production in

RAW 264.7 cells “
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