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Abstract
Super resolution imaging is becoming an increasingly important tool in the
arsenal of methods available to cell biologists. In recognition of its potential, the
Nobel Prize for chemistry was awarded to three investigators involved in the
development of super resolution imaging methods in 2014. The availability of
commercial instruments for super resolution imaging has further spurred the
development of new methods and reagents designed to take advantage of
super resolution techniques. Super resolution offers the advantages
traditionally associated with light microscopy, including the use of gentle
fixation and specimen preparation methods, the ability to visualize multiple
elements within a single specimen, and the potential to visualize dynamic
changes in living specimens over time. However, imaging of living cells over
time is difficult and super resolution imaging is computationally demanding. In
this review, we discuss the advantages/disadvantages of different super
resolution systems for imaging fixed live specimens, with particular regard to
cytoskeleton structures.
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Introduction
Visualizing proteins indirectly in cells and tissues at the light 
microscopic level using antibodies conjugated to fluorochromes 
revolutionized the field of cell biology 40 years ago. In the late 
1980s and early 1990s, the use of commercial, user-friendly, con-
focal microscopes in combination with digital image acquisition 
systems dramatically improved the image quality of fluorescently 
labeled specimens and made image capture easier by avoiding the 
vagaries of the dark room. The technical benefits of confocal over 
“conventional” microscopy include the removal of the out-of-focus 
glare that interferes with what the imager really wishes to observe 
and an increase in specimen contrast. More recently, the ability to 
follow tagged molecules in live cells using both conventional and 
confocal fluorescence microscopy and the development of molecu-
lar biosensors has allowed cell biologists to study the dynamics of 
individual proteins and protein complexes with high precision. Con-
ventional techniques used for light microscopy can achieve resolu-
tions of up to ~100 nm in the image plane, as first detailed by Abbe1, 
and about twice this value along the focal axis2. In practice, most 
authors consider the resolution of commercially available micro-
scopes to be ~200 nm in the image plane and ~500 nm in the axial 
dimension. So called “super resolution” is achieved with techniques 
that allow resolution beyond the diffraction limit of conventional 
optics3. The term super resolution as applied to microscopy has 
been in use since at least as early as the 1960s4. Resonance energy 
transfer5, near field scanning optical microscopy6, dual objective 
(4Pi) microscopy7, total internal reflection microscopy8, single 
molecule fluorescence localization9, expansion microscopy10, 
and several other strategies represent successful efforts to obtain 
structural or positional information from biological specimens at 
resolutions better than those afforded by conventional microscopy. 
However, many of these approaches are technically demanding 
or present significant limits to the type of specimens that can be 
examined. The last decade has seen the development of methods 
that closely resemble more familiar far-field and laser scanning 
confocal microscopy but allow direct visualization of subdiffrac-
tion size structures in fixed and living specimens. Current super 
resolution techniques provide resolutions of less than 10 nm in the 
image plane11 and ~20 nm in the z-axis. The improved resolution 
offered by these methods has produced breathtaking images of the 
nuclear pore complex12,13, the tubular walls of microtubules14, and 
many other structures.

Although the potential and allure of super resolution methods are 
indisputable, they also present new challenges to image acquisition, 
storage, and interpretation. For example, changing the resolution 
of an image from 200 nanometers to 20 nanometers in the image 
(xy) plane, while maintaining a fixed field of view, results in a 
100-fold increase in image size. Extending these calculations 
to the third dimension, multispectral imaging and time (for live 
cells) reveals the potential extent of demands that super resolution 
microscopy can place on specimens and fluorophores as well as 
imaging and data processing hardware. Moreover, although com-
puter and imaging technologies have advanced to the point where 
accumulating these data is feasible, human involvement is cur-
rently still needed to identify regions of interest for examination 
and analysis. Each of the methods used to achieve super resolu-
tion imaging also offer unique technical strengths and weaknesses 
to cell biologists. We direct the reader to several excellent recent 

reviews that provide an overview of the capabilities, advantages, 
and disadvantages of a variety of super resolution procedures in 
tabular form15–18.

Despite the inherent challenges, the use of super resolution micros-
copy is beginning to make an impact on a wide variety of biological 
topics. Among the subjects most likely to benefit from the applica-
tion of super resolution imaging is the study of the cytoskeleton 
and its associated structures. Unlike many other cellular compo-
nents, cytoskeletal filaments form anastomosing networks of fibers 
smaller than the resolution of conventional imaging methods. 
Techniques allowing enhanced resolution imaging of cytoskeletal 
structures, especially in live cells, are already advancing our knowl-
edge of their formation and function. For example, super resolution 
has been a boon to investigators studying cytoskeletal rearrange-
ments in bacteria19,20 and yeast cells21, which have generally been 
too small to approach with conventional diffraction-limited imaging 
methods. Below, we briefly discuss the major methods for achiev-
ing super resolution as well as their strengths and weaknesses with 
emphasis on recent work in which these methods have been applied 
to address biological questions involving the cytoskeleton.

Localization microscopy
Stochastic optical reconstruction microscopy (STORM22), photoac-
tivated localization microscopy (PALM23), fluorescence photoacti-
vation localization microscopy (FPALM24), and a growing number 
of related methods are techniques where fluorescent specimens are 
examined by activating a limited set of fluorophores at a time which 
must be separated by distances greater than the resolution limit of 
the microscope. A diffraction-limited image of the fluorophores is 
captured and the position and intensity of each fluorophore calcu-
lated at subdiffraction precision. Activated fluorophores are deacti-
vated, and a new set of fluorophores is activated and imaged. After 
many images are collected, a completed super resolution image is 
calculated. The techniques differ in the type of fluorophore used. 
For example, PALM and FPALM are used to image expressed 
photoactivatable fluorescent proteins and fusion proteins23,24, while 
STORM is used to create images of fluorescent dyes and tags that 
can be switched between fluorescing and non-fluorescing states22. 
In practice, these methods can produce the highest resolution of 
the available diffraction-unlimited techniques when applied to bio-
logical specimens, with two-dimensional resolutions of less than 
20 nm frequently reported12,25–27. However, overall image resolu-
tion and quality increase with the number of photons captured and 
fluorescent molecules examined. Therefore, these methods are lim-
ited by the time required to obtain a sufficient number of images 
– often tens of thousands – needed to create a final super resolution 
image. In addition, many conventional fluorophores and fluorescent 
proteins are not suitable for localization microscopy14,28, making 
some techniques such as multicolor staining methods challenging.
Localization methods also require that fluorescent molecules or 
proteins within the specimen be detected individually, complicat-
ing the application of these techniques to densely labeled three- 
dimensional cytoskeletal arrays or arrays contained within thick 
samples exhibiting autofluorescence. To address this, some inves-
tigators have incorporated total internal reflection fluorescence 
illumination (TIRF), two photon illumination, or light sheet illu-
mination to limit the volume of a specimen under inspection23,29–31. 
However, these implementations increase the complexity of the 
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instrumentation required. Despite these limitations, a large number 
of studies encountered in our review of current literature employ 
localization techniques. This may be because of both the supe-
rior resolution of the methods and the relatively simple hardware 
requirements which have allowed many investigators to build their 
own STORM or PALM/FPALM imaging systems. In addition, 
fluorophores, fluorescent proteins, buffering agents, and illumina-
tion strategies are being actively developed to extend localization 
to both multicolor labeling and other fluorescent imaging tasks 
(see 28,32–35 for representative reviews).

Among the most novel and dramatic discoveries made using locali-
zation methods is the periodic distribution of actin filaments and 
associated cytoskeletal proteins in axons first visualized using 
STORM imaging36. The periodicity of this structural feature of 
neurons is below the resolution limit of conventional microscopy 
and was overlooked in thin section electron micrographs37,38. Other 
studies have further exploited single molecule/protein imaging to 
analyze the development and regulation of these arrays39,40. STORM 
and PALM methods are also being applied to the study of the struc-
ture of adhesion complexes such as hemidesmosomes41, intercel-
lular adherens junctions42,43, and the less well-defined adhesions 
formed by leucocytes44, as well as actin cytoskeletal rearrangements 
that occur during endocytosis45 and bacterial host cell invasion46. 
In the case of adherens junctions, STORM analyses indicate that 
E-cadherin exists in clusters at sites of cell-cell interaction rather 
than as the “solid” belt typically observed by non-super resolu-
tion methods42,43. Similarly, dual-color PALM studies suggest that 
paxillin and vinculin form functionally distinct non-overlapping 
nanoaggregates in focal adhesions that are not detectable using 
conventional imaging methods47.

Microtubules, 24 nm diameter tubes composed of protofilaments, 
are sparsely distributed at the edge of cultured cells and are often 
used as proof-of-concept targets by developers of super resolution 
imaging methods48–51. STORM and PALM imaging are beginning 
to provide new details regarding the function and organization of 
the microtubule cytoskeleton. For example, these techniques have 
been used to study the organization of centrosomal proteins in intact 
cells, the architecture of microtubules underlying the movement of 
organelles within living cells52, and the interaction of kinesin motor 
proteins with microtubules in neuronal processes53. A variant of 
PALM imaging has also been used to study the structure of EB1 at 
the distal tip of growing microtubules54, and PALM has made pos-
sible the visualization of FtsZ, the bacterial homolog of eukaryotic 
tubulin, in distinct polymeric arrays in prokaryotes20,55.

Although relatively few studies have examined intermediate fila-
ment arrays using super resolution imaging, STORM has been 
used to investigate keratin, plectin, and integrins in hemidesmo-
somes formed by cultured keratinocytes41. Additionally, desmin, a 
cytoskeletal protein mutated in clinically important cardiomyopa-
thies, has been visualized using dual color PALM microscopy in 
cultured cardiomyocytes56. In the latter study, the authors report 
a 10-fold increase in the resolution of desmin protein aggre-
gates and filaments over non-super resolution light microscopic 
methods. More importantly, their super resolution images reveal 
that both mutant and wild-type desmin proteins are incorporated 

into the same filament, suggesting the possibility that changes in 
the mechanical properties of a “mixed” filament might be the cause 
of disease56.

Structured illumination microscopy
Structured illumination microscopy (SIM) improves the resolution 
of light microscopy by illuminating a specimen with a defined regu-
lar pattern of diffraction-limited light and dark bands which create 
Moiré patterns when combined with the structure of a specimen57. 
An image of the resulting interference pattern is created and 
recorded. The illuminating pattern is then rotated and further images 
captured. Finally, an image with improved resolution is calculated 
from the combined rotation series. Because the illuminating pattern 
is generated using wide-field optics, the technique exposes a speci-
men to illumination levels that are comparable to other wide-field 
microscopy methods (although multiple images must be captured 
for each view of the specimen). While many implementations of 
localization microscopy use total internal reflection illumina-
tion and are therefore limited to observation of structures within 
~100 nm of an optical surface, SIM can resolve structures many 
microns deep within a specimen. SIM can also be used with any 
fluorescent probe and, unlike localization methods or laser scan-
ning methods such as stimulated emission depletion microscopy 
(STED), complete images of a specimen are obtained at speeds 
determined by camera sensitivities. SIM is therefore one of the 
least phototoxic and most rapid methods for obtaining enhanced 
resolution images and has been used extensively in studies of living 
cells. A three-dimensional version of structured illumination allows 
for improved resolution in the z direction and has been used to 
visualize cytoskeletal structures in three dimensions. Both of these 
applications are discussed below.

The resolution achieved with SIM is generally only twofold greater 
than that offered by conventional microscopy57, although some 
implementations allow SIM to achieve lateral resolutions as high 
as 50 nm58,59. However, even a twofold increase in resolution, com-
bined with the power of multispectral fluorescent labeling meth-
ods, has allowed investigators to observe previously unresolved 
features of a wide variety of cytoskeletal structures. For example, 
SIM has been used to characterize the distribution of microtubules 
and associated structures in a variety of specimens that conven-
tional diffraction-limited imaging methods have been unable to 
resolve well, including the neuromuscular junction60, platelets61, 
centrosomes62,63, and protists64. SIM has also facilitated studies 
investigating the structure of striated muscle65,66 as well as actin and 
myosin filament organization in non-muscle cells67–70. Intermedi-
ate filament architecture and associated junctions have also been 
examined using this method71,72. Interestingly, although the locali-
zation-based imaging methods described above achieve higher res-
olution than SIM, the pointillized appearance of images produced 
by localization microscopy can obscure fine structural detail that 
may be visible using SIM. For example, SIM has revealed that focal 
adhesions comprise linear subarrays73, a feature not readily visible 
in images published by investigators using interferometric (i)PALM 
to analyze the axial distribution of focal adhesion components74–76.

Finally, because SIM can be applied to microscopy of any fluores-
cent probe, it can be readily used for multispectral studies using 
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conventional fluorophores. SIM has been used to examine cytoskel-
etal structures in triple-labeling studies of adherens junctions77,78, 
neuronal spines79, centrioles80, kinetochores81, and endosomal 
vesicles82. For example, SIM analyses of VASP, zyxin, testin, and 
other proteins surprisingly indicate that these tension-regulating 
proteins are likely recruited to adhesion junctions independent of 
the core adhesion complex78.

Stimulated emission depletion microscopy
STED, reversible saturable optical fluorescence transitions micro-
scopy (RESOLFT), and related techniques excite fluorophores in a 
diffraction-limited spot by a focused laser. Outlying fluorophores 
are converted to a non-fluorescent state by illumination with a 
second (depletion) laser in a manner that leaves a central, subdif-
fraction limited area of fluorophores unconverted83–85. The remain-
ing still-fluorescent fluorophores are detected to create an image 
with resolutions far greater than those provided by conventional 
imaging methods. Some implementations of these techniques have 
yielded resolutions in biological specimens of <50 nm in the image 
plane and 150 nm in the axial dimension86. Common implementa-
tions of STED are technically demanding and the depletion light 
energies are substantially greater than the illumination intensities 
required by other super resolution imaging methods. However, 
STED and similar systems closely resemble laser scanning con-
focal microscopes already employed by many investigators, and 
these methods can be applied to most commonly available fluoro-
phores. Unlike localization methods and SIM, STED does not 
require calculations to generate enhanced resolution images, and 
image resolution can be readily varied by changing the raster scan-
ning patterns used to visualize a specimen. Scanning rates achieved 
by STED are suitable for imaging of live specimens87,88, but the 
required depletion energies currently make extended live cell 
imaging a challenge. However, super resolution imaging can also 
be interchanged with conventional confocal scanning approaches 
simply by turning the depletion laser on or off.

STED has been used to visualize the periodic ring structure of actin 
in neurons89 and actin dynamics in dendritic spines of neurons in 
living brain tissue90. Others have used STED to examine the actin-
like MreB protein in bacteria91 and the reorganization of actin fila-
ment arrays during activation of natural killer cells and T cells92,93. 
It has allowed the visualization of myosin mini-filament formation 
in mammalian non-muscle cells94 and insight into the regulation 
of the actin cytoskeleton by intracellular signaling proteins95,96. 
Microtubules have been examined using STED in primary cilia97, 
and the interphase microtubule array has been examined in muscle 
and non-muscle cells98,99. Finally, several groups have utilized STED 
microscopy to visualize elements of the intermediate filament net-
work, including vimentin100,101, keratin102, and nuclear lamins103. In 
our laboratory, we have used STED to assay the relative localization 
of vimentin and focal adhesions in cultured epithelial cells. Whether 
vimentin interacts with focal adhesions has been controversial for 
years104,105. However, STED not only provides images with more 
detail than can be obtained using conventional confocal microscopy 
but also reveals a distinct pattern of organization of paxillin within a 
focal adhesion (Figure 1). Moreover, in the STED image, vimentin 
filaments clearly wrap around each focal adhesion, an interaction 
that is not apparent in the confocal image.

Live cells
The ability to study proteins in cells in the living state is one of the 
most significant advantages of light microscopy over other methods 
of analysis. However, as has been noted by many others (see 106–108 
for representative reviews), obtaining images of living cells that are 
doing something other than dying on the microscope is difficult 
and involves balancing the competing requirement of image quality 
and cell health. In addition, the study of cytoskeletal dynamics 
often requires rapid image acquisition, increasing the light expo-
sure of live cells over time. Achieving resolutions greater than the 
diffraction limit of conventional microscopy ultimately requires 
capturing larger numbers of photons from smaller areas of live cells 

Figure 1. Association of paxillin (Alexafluor 555, red) and vimentin (Oregon green 488, green) at focal adhesions located at the leading 
edge of a migrating A549 lung cell. Conventional confocal imaging is shown in A while STED imaging of the same area is shown in B.
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than is necessary for conventional resolution images, an effort that 
can clearly compromise the integrity of cells under examination108. 
Fluorescently labeled cytoskeletal filaments are also notoriously 
photolabile109. To date, many investigators of the cytoskeleton in 
live cells have combined super resolution microscopy of fixed cells 
with wide-field or confocal imaging of live cells39,44,45,52,53,64,68,69,77,

79,98,110–113 or have obtained single images of live cells using super 
resolution methods56,89. Although the latter avoid potential artifacts 
induced by fixation and immunostaining, this approach does not 
address dynamic changes in cell architecture.

The majority of publications in our survey that examined dynamic 
changes in cytoskeletal architecture employed SIM. Observations 
of the cytoskeleton in live cells have been made over time scales 
ranging from seconds to tens of minutes using this approach. The 
twofold resolution enhancement offered by SIM has allowed inves-
tigators to examine in previously impossible detail the growth of 
microtubules in living plant cells114, actin retrograde flow in cul-
tured insect cells115, and the reorganization of cytoskeletal arrays 
in dividing yeast and bacterial cells21,91. Two-color applications 
of SIM in living cells have been used to demonstrate heterotypic 
assembly of myosin II isoforms67, the spatial relationship between 
myosin IIA and alpha actinin116, the clustering of receptors in adhe-
rens junctions117, and that vimentin intermediate filaments move 
bi-directionally along microtubules118.

Although capturing clear images of closely apposed structures 
using localization methods requires accumulation and processing 
of thousands of images over periods of many seconds to minutes, 
localization methods have also been applied to the study of rap-
idly changing cytoskeletal structures in live cells by sacrificing 
some image clarity to improve temporal resolution. For example, 
PALM has been used to quantify the addition and loss of individual 
paxillin proteins at focal adhesion sites with a spatial resolution of 
60 nm and temporal resolution of 25 seconds119. Proof-of-principle 
studies have also demonstrated that PALM can be used to visu-
alize dynamic changes in fluorescent actin filaments over brief 
intervals120 and the movement of fluorescently labeled endosomes 
along microtubules in living axons121. In addition, PALM imaging 
platforms have been exploited by several groups that have followed 
changes in localization of single fluorescent cytoskeletal proteins 
over time, either alone or in combination with PALM, STORM, or 
STED techniques122–125. This appears to be a powerful, multimodal 
approach that can place the movement of individual proteins in the 
context of cytoskeletal architecture.

STED employs depletion lasers at energies that are largely incom-
patible with extended viewing of live cells, and, not surprisingly, 
we encountered few publications where this method has been 
used to image cytoskeletal arrays in vivo. Nonetheless, STED has 
great potential for imaging structures within complex tissues and 
has been used in a seminal study of actin dynamics in living neu-
rons within brain tissue90. Single images of microtubules within 
living cells have also been obtained at 60 nm resolution using 
STED86. STED has also been applied to imaging using multiphoton 
excitation126–128 and total internal reflection microscopy129. These 
methods limit light exposure to a sample and offer further potential 
for the application of STED illumination to live cells. We anticipate 

that as these complex instruments become more widely available, 
we will see an increase in the number of investigators employing 
them for studies of living cells.

The third dimension
Many initial implementations of super resolution methods did not 
provide an increase in resolution in the third, or axial, dimension of 
the microscope (see 18 for review). However, recent modifications 
to these methods have achieved impressive resolution enhancements 
in the third dimension. Three-dimensional SIM doubles the resolv-
ing ability of the light microscope in all dimensions while retain-
ing its ability to obtain images rapidly with low light exposures130. 
Although many studies have captured Z-stacks of images using 
super resolution methods and generated extended focus images 
from them, relatively few studies have analyzed the cytoskeleton 
in three dimensions using super resolution microscopy. However, 
three-dimensional SIM has been used to resolve actin filament 
arrays and microtubules in three dimensions using both fixed and 
live cultured cells113,116,130,131 as well as to study the structure of 
centrosomes63,80 and kinetochores81. Additionally, this method 
has also been used to visualize the three-dimensional organiza-
tion of FtsZ in dividing bacteria132. Modification of STORM and 
PALM imaging platforms can achieve axial resolution of up to 
20 nm by introducing axial astigmatism into the optical path133 
and by generating interference patterns from images obtained with 
paired, opposed objective lenses134. Three-dimensional STORM and 
PALM have been used to study the movement of organelles along 
microtubules in live cells and the formation of FtsZ ring structures 
in live dividing bacteria20,52. A STORM imaging method employing 
axial astigmatism and dual objectives has been used to show that 
sheet-like cellular extensions in cultured cells contain two distinctly 
separate actin filament arrays each with unique patterns of actin fil-
ament organization134. The development and regulation of these pre-
viously undetected cytoskeletal arrays have been further analyzed 
using similar approaches in normal cell movement112,116. iPALM can 
resolve structures less than 20 nm in diameter in three dimensions27. 
The technique has recently been used to dissect the organization 
of cytoskeletal proteins associated with matrix adhesion devices 
termed focal adhesions at an unprecedented level of detail74–76. 
Impressively, the technique was able to resolve not only vertical 
stratification enriched for specific cytoskeletal components but also 
the polarized orientation of the N- and C-terminal ends of talin 
within focal adhesions of intact cells. Finally, STED microscopy 
has also been modified by the addition of dual depletion patterns, 
one oriented in the image plane and the other in the axial dimen-
sion, allowing for increases in resolution in the third dimension of 
up to 125 nm135. STED and RESOLFT have also been extended to 
the third dimension using a dual objective imaging strategy136.

Presently, most work using super resolution imaging has been con-
ducted using single cells cultured on optical surfaces. However, 
previous work has shown that cell morphology and behavior can 
be dramatically altered in three-dimensional environments137,138. 
To date, the literature examining the cytoskeleton in cells in situ is 
largely limited to proof-of-principle studies. However, these efforts 
demonstrate the growing potential of super resolution methods. 
For example, STED has been used to view the dynamics of actin 
filament arrays within live neurons in 350 μM thick brain slices90, 
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and three-dimensional SIM has been used to visualize actin arrays 
in developing Drosophila115. In other studies, labeled nuclear his-
tones have been visualized in cells within 150 μM cell spheroids 
by combining single molecule localization methods with planar 
illumination139. Both planar and multi-photon illumination methods 
have been coupled with structured illumination to view green fluo-
rescent protein (GFP) expressed in living nematodes140,141. These 
methods improve visualization by restricting effective illumination 
to a single plane of interest within thick specimens. While these 
latter studies examined structures other than the cytoskeleton, 
these methods show promise for the analysis of the cytoskeleton at 
subdiffraction resolutions in situ.

Summary
Many of us have been fortunate to work as cell biologists during 
two major revolutions in imaging technology: the development of 
fluorescent proteins as tools for biologists and the development 
of confocal microscopy, which extracts clear, in-focus images in 
which the contaminating blur of out-of-focus structures has been 
removed. The astonishment and wonder with which we now view 
images created by super resolution microscopy suggest that we are 
experiencing yet a third revolution in the technology available to 
cell biologists. It is likely that for dual and triple labeling studies 
of cultured cells in two and three dimensions, as well as studies 
of bright, relatively slow-moving structures in live cells, super 
resolution imaging will soon replace confocal microscopy as the 
state of the art in much the same way that confocal microscopy 
replaced conventional wide-field imaging in the 1980s and 1990s. 
However, each of the approaches used to achieve images at better 
than diffraction-limited resolution have strengths and weaknesses. 
Studies of rapid cytoskeletal dynamics in live cells and three- 
dimensional studies are likely to present technical and biological 
challenges to practitioners of super resolution microscopy for some 

time. In addition, while the best super resolution light microscopic 
methods achieve resolutions of <10 nm, this is still 50–100-fold 
greater than the resolution afforded by electron microscopy142,143. 
Conventional fluorescence microscopes can also take advantage 
of a myriad of probes for physiological conditions and molecular 
interactions that have yet to be adapted to super resolution imag-
ing methods. For the time being, no method addresses all possible 
experimental needs, and investigators will likely have to address the 
limitations of their super resolution instruments with complementary 
approaches involving conventional methods. Moreover, the dream 
of seeing individual protein complexes and their partners func-
tioning in live cells within a complex three-dimensional organism 
remains unrealized. Nonetheless, we are seeing the development of  
instrumentation, computational methods, fluorescent probes, and 
novel methods at an amazing pace. We can only imagine what the 
next advances will be.
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