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Abstract

This research proposes the idea of double encryption, which is the combination of chaos

synchronization of non-identical multi-fractional-order neural networks with multi-time-

delays (FONNSMD) and symmetric encryption. Symmetric encryption is well known to be

outstanding in speed and accuracy but less effective. Therefore, to increase the strength of

data protection effectively, we combine both methods where the secret keys are generated

from the third part of the neural network systems (NNS) and used only once to encrypt and

decrypt the message. In addition, a fractional-order Lyapunov direct function (FOLDF) is

designed and implemented in sliding mode control systems (SMCS) to maintain the conver-

gence of approximated synchronization errors. Finally, three examples are carried out to

confirm the theoretical analysis and find which synchronization is achieved. Then the result

is combined with symmetric encryption to increase the security of secure communication,

and a numerical simulation verifies the method’s accuracy.

1. Introduction

Fractional-order calculus was established in the seventeenth century and was initially proposed

by [1] as the extension of the differentiation function and integration function from integer to

arbitrary order. The fractional is as old as the integer, although it was used mainly in mathe-

matics; as a result, the study of the system with fractional-order has remained a prominent

research area ever since. Fractional-order systems are more suited to simulating complex sys-

tems with self-similar forms and more complicated dynamical properties than integer-order

systems. This is because fractional-order provides a more precise instrument [2–5], a well-

suited technology for analyzing fractal dimension concerns, persistent memory, and chaotic

behaviour [6, 7].
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Experts have conducted ground-breaking research since L’Hospital and Leibniz initially

introduced fractional calculus in 1675. These studies involve several branches of discipline and

engineering, such as bioengineering, robots, heat conduction, electromagnetic waves, visco-

elastic systems, and dielectric polarization [8–11]. Research has revealed that the fractional-

order is able to portray the connection between input and output signals of NNS. Besides, the

fractional-order has better memory and inheritance factors than the integer-order. It is possi-

ble to accurately model the neuron dynamics characteristics using fractional-order and NNS

systems [12–16]. This combination is called fractional-order neural networks (FONNS),

which has garnered tremendous attention from scholars, and some outstanding outcomes

have been explored and published in [17–21]. The fact that FONNS have an endless amount of

memory is also worth mentioning because it is believed that they will perform well in some

functions such as parameter estimation because of their limitless memory. Considering these

facts, incorporating a memory term into an NNS model is a significant enhancement that has

been successfully applied to NNS. According to the literature [22–27], the authors have men-

tioned that chaotic behaviours can occur in a FONNS. Moreover, they emphasized the impor-

tance of establishing and analyzing mathematical models of FONNS because differentiation of

fractional-order generates neurons with an essential and universal computation potential that

can stipulate competent information processing. As a result, it is crucial and intriguing to

investigate FONNS in their theoretical and practical applications.

Following the first success of Pecora and Carroll [28], the synchronization of FONNS has

become a meaningful area in the research field. The term "synchronization of FONNS" refers

to the fact that the state of FONNS nodes is primarily consistent with time. When two FONNS

systems, the DSS and RSS, are coupled, both networks will act as excitation sources and gradu-

ally employ the control approach to eliminate the synchronization errors between the two

FONNS systems. In addition, two FONNS must be synchronized so that the RSS output equals

the DSS output asymptotically, which is not always possible. Aside from that, in [19–21], chaos

control and synchronization based on FONNS were presented, which mainly relied on Laplace

transformation theory and numerical simulations. The synchronization of chaotic systems has

received much interest in the latest years due to the vast number of researchers who have

developed various technologies in this field. One of the many applications of chaotic neural

networks is secure communication.

Recent years have seen a resurgence in interest in FONNS-based modelling, owing to its

tremendous advantages in controlling an issue and tackling complicated nonlinear system

analysis problems. An increasing variety of synchronization systems have already been devel-

oped, including projective synchronization, anti-synchronization, complete synchronization,

lag synchronization and other types of synchronization. Furthermore, we discovered that pro-

jective synchronization could accomplish faster communication with its proportional func-

tion. Most of the existing works by researchers are focused on the FONNS without delay [29–

31], which we believe is incorrect. In fact, many complex systems are unable to avoid time-

delay due to the nature of their systems [32, 33]. In every system, there is always some noise

and disturbances that can significantly affect the dynamic features of the system, affecting its

performance and, as a result, interfering with the synchronization’s output. Because of this,

further exploration of the FONNS model with time delay becomes increasingly necessary to be

examined in both its theoretical and practical implications [34]. Nowadays, different types of

control systems based on FONNS have been presented in recent years to achieve synchroniza-

tion; generalized projective control [35] as well as adaptive control [36], linear feedback con-

trol [37], and sliding mode control (SMC) [30, 38] were introduced, which are all based on

NNS. In addition, SMC has many excellent characteristics, such as low perturbation and

parameter disturbance sensitivity, fast response, and simplicity of implementation.
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Due to the significant growth of communication technologies, cryptography plays a crucial

part in personal email and computers, electronic fund transfers, and wireless networks. While

these technologies have proliferated, users must accept the dangers associated with secure net-

works to benefit from the ease associated with secure network communication. The primary

issues are mobile communication links, terminals, and confidentiality in authentication mech-

anisms [39–41]. Secure communication is not only about security and protecting people’s pri-

vacy but also about protecting people’s assets while performing exchanges over the network

and about national defence security to protect the message’s and data’s secrets from data alter-

ation and spying by hackers. Implementing encryption and decryption techniques is signifi-

cant to overcoming the security problem of secure network communication.

Traditionally, cryptography has been used to keep the data by encrypting the accessible

data into unreadable scrambled characters. Four primary characteristics needed in cryptogra-

phy are authenticity, integrity, confidentiality, and usability [42–44]. Traditional cryptography

algorithms are categorized into two types of cryptosystems: symmetric and asymmetric. Sym-

metric encryption is when the sender and receiver share the same key and can be designed to

support high bandwidth throughout the system [45]. However, symmetric encryption has sig-

nificant drawbacks, especially public key sharing. As a result, we designed an NNS chaotic

encryption method that combines FONNSMD and symmetric encryption to strengthen the

cryptosystem and prevent key distribution recurrence. NNS chaotic encryption [46–49] exten-

sively uses chaos theory’s fundamental mixing properties and its high sensitivity to parameters

and beginning values. Early communication in chaotic encryption algorithms (CEA) is classi-

fied into four types: a chaotic expansion [50], chaotic keying [51], chaotic masking [52], and

chaotic parameter modulation [53]. Moreover, in classical CEA, the encryption speed is slo-

wed, and its encryption efficiency is low. As a result, it is essential and worthwhile to study an

effective NNS chaotic encryption method for communication security.

With the above motivations, our foremost aim in this paper is to combine integer-order

and fractional-order multi-FONNSMD, which continues our previous work [34]. Our previ-

ous work has proven that synchronization is achieved with different values of fractional-order

of time-delay. In comparison, this paper aims to establish that synchronization of multi-

FONNSMD can be archived when we combine integer-order in DSS and fractional-order in

RSS. However, to the best of the author’s knowledge, there are few results on the synchroniza-

tion of fractional-order multi-FONNSMD systems and integer-order multi-FONNSMD sys-

tems, and we believe that the concept has never been studied. Furthermore, in this paper, we

have compared the methods without delay, with time-delay, and time-varying delays. These

three examples show that all three types of delayed systems can be achieved with a suitable

parameter suggested. Besides, we analyze and introduce a combination of multi-FONNSMD

and symmetric encryption called "Neural Network Symmetric Encryption" (NNSE) to form a

stable private communication system. We called our system multi-FONNSMD because the

fractional-order of the system will use a different order, and we used five different values of

fractional-order and one value of integer-order.

Multi-FONNSMD synchronization can be accomplished with different DRS initial condi-

tions with the specified values of parameters. It should also be noted that with several time

delays, the conventional Lyapunov functional method (LFM) cannot be applied to multi-

FONNSMD, but FOLDF stability theorems are more applicable. This combination is called

the third generation of chaotic secure communication proposed by [54]. Their idea was to

improve the system’s security even higher than the older generations. This generation is called

a chaotic cryptosystem. Here, the NNSE technique is used to enhance the degree of protection.

This generation has the highest security among the other chaotic secure communication
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system generations. Most secure communication uses this cryptosystem because of its advan-

tages: it is fast sending of the message and its easy execution [55].

The four significant impacts of this paper are as follows:

1. First, a new controller based on SMC is created to achieve synchronization of multi-

FONNSMD.

2. Second, based on the linear FOC system’s stability theorem, we present novel synchroniza-

tion criteria for multi-FONNSMD, fractional-order and integer-order.

3. Third, a chaotic encryption approach based on NNS is being developed. This method com-

bines multi-FONNSMD and symmetric encryption.

4. Fourth, some multi-FONNSMD with and without delays comparative results are shown.

5. Finally, our experiments will demonstrate a significant improvement over past work. They

will provide sufficient confidence to assert that the findings in this paper are far less conven-

tional and more general.

The rest of this work is organized in the following way: Section 2 contains several funda-

mental definitions, theorems, lemmas, and a summary of the model’s explanation. Section 3

includes the implementation of two multi-FONNSMD synchronization schemes. An intro-

duction to the symmetry encryption algorithm is covered in Section 4, while in Section 5, we

proposed a new NNSE algorithm. Section 6 presents the study results with three numerical

examples to demonstrate the efficiency of the approaches provided. Lastly, a conclusion is

drawn in section 7. Table 1 contains a list of acronyms used in this paper.

Table 1. Acronyms used in the article.

Acronyms Description

CTEXT Ciphertext

DSMC Delayed sliding mode control

DSS Drive systems

DRS Drive-response system

EDSMC Error delayed sliding mode control

FOC Fractional order calculus

FOLDF Fractional-order Lyapunov direct function

FONNS Fractional-order neural networks

FONNSMD Fractional-order neural networks multi delayed

G-L Grünwald–Letnikov

LFM Lyapunov functional method

NNSE Neural networks symmetric encryption

NNS Neural networks

PTEXT Plaintext

PKEY Private keys

RSS Response systems

R-L Riemann–Liouville

SCA Symmetric cryptographic algorithms

SKEY Secret keys

SMCS Sliding mode control system

https://doi.org/10.1371/journal.pone.0270402.t001
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2. Description of the model and the fundamental definitions of

fractional-order derivative

Caputo, G-L, and R-L derivatives are three popular derivatives that serve as models for the

fractional derivatives definitions. Improvements to the G-L allowed for the foundation of the

Caputo and R-L. Between the Caputo derivative and the R-L derivative, the Caputo derivative

is the most frequently used by researchers. The most significant advantage of the Caputo deriv-

ative is that it simply needs initial conditions expressed in conditions of integer-order deriva-

tives, which describe elements of physical situations that are well recognized, making it more

relevant to real-world problems. Another advantage of the Caputo derivative is that it is valid

for homogeneous and non-homogeneous initial circumstances, which is not the case with the

R-L derivative. In contrast, the R-L derivative is only valid for homogeneous initial conditions

to solve initial value issues.

The disadvantages of R-L’s derivatives include the fact that the Laplace transform has frac-

tional derivatives and that acquiring the initial conditions of the fractional derivatives is a

time-consuming process. Furthermore, the physical and geometric significance of the frac-

tional derivatives is not entirely comprehensible to us. However, the Caputo derivatives can

solve this weakness. As a result, the Caputo derivatives are frequently employed in science and

technology applications.

Notations Throughout this paper, the complex number space is denoted as the notation C.

The real number space is denoted as the symbol R. In contrast, the space of n-dimensional

Euclidean is denoted as Rn, and the sign function is denoted as a sign (�). Then let u> 0, C([–

u, 0], Rn) represent the group of continuous functions from [–u, 0] to Rn.

Definition 1. [1] Let the order be α1 and a positive integer n. Then α1 > 0, such that
n � 1 < a1 � n. The R-L fractional derivative of an fðtÞ is represented as:

O
a1

X
f tð Þ ¼

dn

dtn
jn� a1

X
f tð Þ;

Furthermore, the R-L fractional integral is represented as:

If tð Þ ¼
1

G a1ð Þ

Z t

0

t � uð Þ
a1 � 1

f uð Þdu;

Definition 2. [1] Let the order be α1, and a positive integer n. Then n − 1< α1� n. The
expression represents the Caputo fractional derivative of an fðtÞ:

Da1

t f tð Þ ¼
1

G n � a1ð Þ

Z t

0

t � uð Þ
n� a1 � 1

fn uð Þdu;

When 0< α1 < 1,

Da1

t f tð Þ ¼
1

G 1 � a1ð Þ

Z t

0

t � uð Þ
� a1 f0 uð Þdu

Let the order be α1 and with α1 > 0, and the Caputo fractional integral of a function fðtÞ, be
represented by the expression:

Ia1
t f tð Þ ¼

1

G a1ð Þ

Z t

0

t � uð Þ
a1 � 1

f uð Þdu;

Γ(�) is the Gamma function, G a1ð Þ ¼
R þ1

0
e� tta1 � 1dt
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Definition 3. [1] Ea1
Xð Þ represents the function of Mittag-Leffler with one parameter, where

α1 > 0, and X � C is described as

Ea1
Xð Þ ¼

X1

k¼0

X
k

G ka1 þ 1ð Þ

Ea1 ;a2
Xð Þ denotes the function of Mittag-Leffler with two parameters, where α1 > 0, α2 > 0 is

defined as

Ea1 ;a2
Xð Þ ¼

X1

k¼0

X
k

G ka1 þ a2ð Þ

When α2 = 1, one has E a1
Xð Þ ¼ Ea1 ;1

Xð Þ, and when α1 = 1, α2 = 1, one further has E1,1(x) = ex

We study the following NNS system in this paper, which is called multi-FONNSMD as the

drive systems (DSS) where 0< α1 < 1, and denoted it as

Da1Xi tð Þ ¼ � aiXi tð Þ þ
Xn

j¼1

bijfj Xj tð Þ
� �

þ
Xn

j¼1

cijf j Xj t � ptð Þ
� �

þ Ui ð1Þ

Alternatively, the vector form:

Da1X tð Þ ¼ � AX tð Þ þ Bf X tð Þð Þ þ Cf X t � ptð Þð Þ þ U

The parameter ai > 0 is the ith neuron’s self-inhibition, and the pseudo-state variable of the

DSS for the ith neuron is represented by the parameter Xi tð Þ. Another two parameters, bij and

cij, represent the relationship between the ith neuron and ith neuron at a time interval of t and

t � pt, in which π is a positive integer. Let n be the number of neurons in a multi-FONNSMD

and i; j ¼ 1 ; 2 ; : : : ; n. Note that πτ> 0 represents the delayed time. For the ith neuron’s

activation function output, we denoted it as f j Xj tð Þ
� �

and f j Xj t � ptð Þ
� �

at time t and t � pt,

and finally, the external input of the ith neuron is represented asUi.

The corresponding response system (RSS), where 0< α2 < 1, is denoted as

Da2yi tð Þ ¼ � piyi tð Þ þ
Xn

j¼1

qijgj yj tð Þ
� �

þ
Xn

j¼1

rijgj yj t � ptð Þ
� �

þ Vi þ SCi tð Þ ð2Þ

Alternatively, the vector form:

Da2y tð Þ ¼ � Py tð Þ þ Qg y tð Þð Þ þ Rg y t � ptð Þð Þ þ Vþ SC tð Þ

A;B;C; P;Q;R; M1 andM2 denote the constant matrices.

The parameter pi > 0 is the ith neuron’s self-inhibition, and the pseudo-state variable of

the DSS for the ith neuron is represented by the parameter yi tð Þ. Another two parameters, qij
and rij represent the relationship between the ith neuron and the ith neuron at a time interval

of t and t � pt, in which π is a positive integer. Let n be the number of neurons in a

FONNSMD and i; j ¼ 1 ; 2 ; : : : ; n. We noted that ti > 0 represents the delayed time. For

the ith neuron’s activation function output, we denoted it as gj yj tð Þ
� �

and g j y j t � ptð Þ
� �

at

a time t and t � pt, and the external input of the ith neuron is denoted as Vi. Finally,

SCi tð Þ ¼M1X tð Þ þM2X t � ptð Þ represents the SMCS.

Another definition, theorems, and lemmas are given in the next part for further

explanation.
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Lemma 4. [56] Let t � t0 ; 1½ Þ; Y � PC � t; 0½ �; Rn½ �; φ � R is a constant.
Assume that for function V, the Caputo upper right-hand derivative of order, 0< α1 < 1 with

the following inequality holds:

Da1

þ
V t;Y 0ð Þ½ � � φV t;Y 0ð Þ½ �

Every time V t þ r;Y rð Þ½ � � V t;Y 0ð Þ½ � for � t � r � 0.

Then sup
t� r�0

V t0 þ s; Y0 rð Þ½ � � X0 denotes V t;Y tð Þ½ � � V t0;Y t0ð Þ½ �Ea1
φ t � t0ð Þ

a1½ � with

t � t0 ; 1½ Þ.

Definition 5. [36] Let ϖ be a nonzero constant. Assume there exists X tð Þ and y tð Þ such that
any two results with distinct initial values of Eqs (1) and (3) have the following:

lim
t!þ1

jjy tð Þ � ϖX tð Þjj ¼ 0 ð3Þ

As a result, both the DSS (1) and the RSS (2) can achieve projective synchronization, where

||�|| represents the Euclidean 1-norm of a vector.

Lemma 6. [57] Let 0< α1 < 1 with the function X tð Þ �R be a continuous differentiable vec-
tor-value. Therefore, at every given time t � t0, one has the following:

Da1X
T tð Þ X tð Þ � 2XT tð ÞDa1X tð Þ ð4Þ

Definition 7. [58] Let α1 � (0, 1),ϖ> 0, γ> 0 with t0 representing the initial instant.
R 0ð Þ ¼ 0, andR Xð Þ � 0 thenR Xð Þ is locally Lipschitz on X �R about the constantR0. The
Mittag–Leffler Eq (1) is stable if

jj X tð Þjj � R X t0ð Þð ÞEa1
� ϖ t � t0ð Þð Þ

a1

n og

Lemma 8. [59] If f tð Þ; g tð Þ � C1 t0 ; b½ �, then

1. D� a1D� a2 f tð Þ ¼ D� a1 � a2 f tð Þ; a1; a2 � 0;

2. Da1D� a1 fðtÞ ¼ fðtÞ; a1 � 0;

3. D� a1Da1 f tð Þ ¼ f tð Þ �
Pn � 1

k¼0
tk
k! f
k 0ð Þ; a1 � 0.

4. Da1ðv1fðtÞ þ v2 gðtÞÞ ¼ v1 Da1fðtÞ þ v2 Da1gðtÞ, v1 and v2 are constants.

5. Da1c ¼ 0; c is a constant.

Lemma 9. [60] If function f tð Þ � C1 0; 1½ Þ; Rð Þ is differentiable, then the following inequal-
ity holdsDa1 fðtÞj j � sign f tð Þð ÞDa1 f tð Þ:

Lemma 10. [61] let X ¼ 0 as an equilibrium point of DSS (1). Assume that there exists a Lya-
punov function Vðt; XÞ and class-K functions hi (i = 1, 2, 3) satisfying:

h1 Xj jj jð Þ � V t; Xð Þ � h2 Xj jj jð Þ ð5Þ

Da1V t; Xð Þ � � h3 Xj jj jð Þ ð6Þ

where α1 2 (0,1).Hence, the equilibrium point of the DSS (1) is asymptotically stable.
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Assumption (H). Assume that there exist real numbers p�i ; p
þ
i ; q

�
i and qþi such that for

any constants u 6¼ v 2 R, the following conditions always hold for all i = 1, 2, . . ., n

p�i �
f i ðuÞ � f i ðvÞ

u � v
� pþi and q �i �

gi ðuÞ � gi ðvÞ
u � v

� qþi

3. Synchronization scheme of multi-FONNSMD

The synchronization of two multi-FONNSMD, namely DSS (1) and RSS (3), is achieved in

this section by designing a suitable control system. Synchronization dynamic errors are

expressed as SEi tð Þ ¼ yiðtÞ � ϖXiðtÞ. Where i; j; n; u; p ¼ 1; 2; . . . ; n andϖ is the projective

coefficient.

Using the DSS (1) and the RSS (2) as a foundation, we proposed the delayed sliding mode

control (DSMC), SCi tð Þ as the following functions:

SCi tð Þ ¼ � ai þ M1 jk

� �
� M2ki

� �
� pi

� �
SE i tð Þ � M1 jk

� �
� M3ni

� �
SE i t � ptð Þ � ϖ ai � pi

� �
Xi tð Þ

�
Xn

j¼1

qij gj ϖXj tð Þ
� �� �

�
Xn

j¼1

rij gj ϖXj t � ptð Þ
� �� �

þϖ
Xn

j¼1

bij f j Xj tð Þ
� �� �

þϖ
Xn

j¼1

cij f j Xj t � ptð Þ
� �� �

þϖUi � Vi

ð7Þ

From (1), (2) and (7), the system of error delayed, DaSE tð Þ is derived as follows:

DaSE i tð Þ ¼ piSE i tð Þ þ
Xn

j¼1

qij gj yj tð Þ
� �

� gj ϖXj tð Þ
� �h i

þ
Xn

j¼1

rij gj yj t � tið Þ
� �

� gj ϖXj t � ptð Þ
� �h i

þϖ ai � pi
� �

Xi tð Þ þ
Xn

j¼1

qij gj ϖXj tð Þ
� �� �

þ
Xn

j¼1

rij gj ϖXj t � ptð Þ
� �� �

� ϖ
Xn

j¼1

bij f j Xj tð Þ
� �� �

� ϖ
Xn

j¼1

cij f j Xj t � ptð Þ
� �� �

� ϖUi þ Vi þ SCi tð Þ

ð8Þ

By utilizing Lemma 8,

SE i tð Þ ¼ SE i 0ð Þ þ D� a
�

piSE i tð Þ þ
Xn

j¼1

qij gj yj tð Þ
� �

� gj ϖXj tð Þ
� �h i

þ
Xn

j¼1

rij gj yj t � tið Þ
� �

� gj ϖXj t � ptð Þ
� �h i

þϖ ai � pi
� �

Xi tð Þ

þ
Xn

j¼1

qij gj ϖXj tð Þ
� �� �

þ
Xn

j¼1

rij gj ϖXj t � ptð Þ
� �� �

� ϖ
Xn

j¼1

bij f j Xj tð Þ
� �� �

� ϖ
Xn

j¼1

cij f j Xj t � ptð Þ
� �� �

� ϖUi þ Vi þ SCi tð Þ
�

ð9Þ
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From the synchronization error (9), we represented the delayed sliding switching surface

(DSSS) as:

SSi tð Þ ¼ SE i tð Þ þD� a M1 jk

� �
M2ki

� �
� SE i tð Þ þ M3ni

� �
� SE i t � ptð Þ � ϖSC tð Þ

� �h i

� D� a
�

� aiSE i tð Þ þ
Xn

j¼1

qij gj yj tð Þ
� �

� gj ϖXj tð Þ
� �h i

þ
Xn

j¼1

rij gj yj t � tið Þ
� �

� gj ϖXj t � ptð Þ
� �h i�

ð10Þ

Where gain matrix, M1 jk

� �

n�u
is chosen appropriately. Then, we substitute Eq (9) into Eq

(10), and one finds that:

SSi tð Þ ¼ SE i 0ð Þ þD� a
�

ai þ M1 jk

� �
� M2ki

� �
� pi

� �
SE i tð Þ þ M1 jk

� �
� M3ni

� �
SE i t � ptð Þ

þϖ ai � pi
� �

Xi tð Þ þ
Xn

j¼1

qij gj ϖXj tð Þ
� �� �

þ
Xn

j¼1

rij gj ϖXj t � ptð Þ
� �� �

� ϖ
Xn

j¼1

bij f j Xj tð Þ
� �� �

� ϖ
Xn

j¼1

cij f j Xj t � ptð Þ
� �� �

� ϖUi þ Vi þ SC i tð Þ
�

ð11Þ

Subsequently, it follows from the Eq (11) that

DaSSi tð Þ ¼ DaSE i 0ð Þ

þDaD� a
�

ai þ M1 jk

� �
� M2ki

� �
� pi

� �
SE i tð Þ þ M1 jk

� �
� M3ni

� �
SE i t � ptð Þ

þϖ ai � pi
� �

Xi tð Þ þ
Xn

j¼1

qij gj ϖXj tð Þ
� �� �

þ
Xn

j¼1

rij gj ϖXj t � ptð Þ
� �� �

� ϖ
Xn

j¼1

bij f j Xj tð Þ
� �� �

� ϖ
Xn

j¼1

cij f j Xj t � ptð Þ
� �� �

� ϖUi þ Vi þ SCi tð Þ
�

¼ ai þ M1 jk

� �
� M2ki

� �
� pi

� �
SE i tð Þ þ M1 jk

� �
� M3ni

� �
SE i t � ptð Þ þϖ ai � pi

� �
Xi tð Þ

þ
Xn

j¼1

qij gj ϖXj tð Þ
� �� �

þ
Xn

j¼1

rij gj ϖXj t � ptð Þ
� �� �

� ϖ
Xn

j¼1

bij f j Xj tð Þ
� �� �

� ϖ
Xn

j¼1

cij f j Xj t � ptð Þ
� �� �

� ϖUi þ Vi þ SCi tð Þ

ð12Þ

Based on the theory of DSMC, DSSS and its derivative must meet SE tð Þ ¼ 0 and _SE tð Þ ¼ 0.

Also, we can acquire _SE tð Þ ¼ D1� aDaSE tð Þ by applying Lemma 8. Therefore, _SE tð Þ ¼ 0 is equal

to DaSE tð Þ ¼ 0. Hence, the result is DaSSi tð Þ ¼ 0; and we prove that DSMC is an Eq (7).
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Now Eqs (7) and (8) are combined. Then DaSE tð Þ can be defined by

DaSE tð Þ ¼ � ai þM1 �M2½ �SE i tð Þ � M1 �M3½ �SE i t � ptð Þ þ
Xn

j¼1

qij gj yj tð Þ
� �

� gj ϖXj tð Þ
� �h i

þ
Xn

j¼1

rij gj yj t � ptð Þ
� �

� gj ϖXj t � ptð Þ
� �h i

ð13Þ

Then, Eq (13) is transformed as follows:

DaSEi tð Þ ¼ � aiSE i tð Þ �
Xn

j¼1

Xu

k¼1

M1 jk

� �
M2ki

� �
" #

SEj tð Þ �
Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� �
" #

SE j t � ptð Þ

þ
Xn

j¼1

qij gj yj tð Þ
� �

� gj ϖXj tð Þ
� �h i

þ
Xn

j¼1

rij gj yj t � ptð Þ
� �

� gj ϖXj t � ptð Þ
� �h i

ð14Þ

Theorem 11. [62] Assume that ui and ki are positive constants, and that

ui ¼ max u�i
�
�
�
�; uþi
�
�
�
�

� �
; ki ¼ max k�i

�
�
�
�; kþi
�
�
�
�

� �
. Then the three matrices: M1 jk

� �

n�u
; M2ki

� �

n�u
,

and M3ki

� �

u�n
. Suppose that assumption (H) holds and then;

C1 ≔min
1�i�n

ai �
Xn

j¼1

Xu

k¼1

M1 jk

� �
M2ki

� ��
�
�

�
�
�

" #

�
Xn

j¼1

qji
�
�
�

�
�
�ui

" #

> 0

C2 ≔max
1�i�n

Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� ��
�
�

�
�
�

" #

þ
Xn

j¼1

rji
�
�
�
�ki

" #

> 0

C1 � C2 > 0

ð15Þ

8
>>>>>>>><

>>>>>>>>:

Then the Eq (13) is Mittag-Leffler stable.

Proof. Corresponding to Eq (15), Theorem 11 and assumption (H) assume that we have

u�j �
f j yj tð Þ
h i

� f j ϖXj tð Þ
� �

y
j tð Þ

h i
� ϖXj tð Þ
� � � uþj

and

k�j �
gj yj t � ptð Þ
h i

� gj ϖXj t � ptð Þ
� �

y
j t � ptð Þ

h i
� ϖXj t � ptð Þ
� � � k

þ

j

Next, we obtain that

f j yj tð Þ
h i

� f j ϖXj tð Þ
� ��

�
�

�
�
� � uj yj tð Þ

� �
� ϖXj tð Þ
� ��

�
�

�
�
�

gj yj t � ptð Þ
h i

� gj ϖXj t � ptð Þ
� ��

�
�

�
�
� � kj yj t � ptð Þ

� �
� ϖXj t � ptð Þ
� ��

�
�

�
�
�

8
><

>:
ð16Þ

The Lyapunov function, which has been constructed and demonstrated, is as follows:

V tð Þ ¼
Xn

i¼1

SE i tð Þ
�
�
�

�
�
� ð17Þ
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From Lemma 9 and 10 by allowing the right upper Da

þ
SE tð Þ½ � along with the trajectory Eq

(17). We expressed the Lyapunov function with the following:

Da

þ
V SE i tð Þ
h i

¼
Xn

i¼1

Da

þ
SE i tð Þ
�
�
�

�
�
�

�
Xn

i¼1

sign SE i tð Þ
h i

Da

þ
SE i tð Þ

¼
Xn

i¼1

sign SE i tð Þ
h i

"

� aiSE i tð Þ �
Xn

j¼1

Xu

k¼1

M1 jk

� �
M2ki

� �
" #

SEj tð Þ

�
Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� �
" #

SE j t � ptð Þ

þ
Xn

j¼1

qij gj yj tð Þ
� �

� gj ϖXj tð Þ
� �h i

þ
Xn

j¼1

rij gj yj t � ptð Þ
� �

� gj ϖXj t � ptð Þ
� �h i

#

� �
Xn

i¼1

ai SE i tð Þ
�
�
�

�
�
�þ
Xn

i¼1

Xn

j¼1

Xu

k¼1

M1 jk

� �
M21ki

� ��
�
�

�
�
�

" #

SE j tð Þ
�
�
�

�
�
�

" #

þ
Xn

i¼1

Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� ��
�
�

�
�
� SE j t � ptð Þ

�
�
�

�
�
�

" #" #

þ
Xn

i¼1

Xn

j¼1

qij
�
�
�

�
�
�uj yj tð Þ
� �

� ϖXj tð Þ
� ��

�
�

�
�
�

" #

þ
Xn

i¼1

Xn

j¼1

rij
�
�
�
�kj yj t � tið Þ
� �

� ϖXj t � ptð Þ
� ��

�
�

�
�
�

" #

¼ �
Xn

i¼1

ai SE i tð Þ
�
�
�

�
�
�þ
Xn

i¼1

Xn

j¼1

Xu

k¼1

M1 jk

� �
M2ki

� ��
�
�

�
�
�

" #" #

SE i tð Þ
�
�
�

�
�
�

þ
Xn

i¼1

Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� ��
�
�

�
�
�

" #" #

SE j t � ptð Þ

�
�
�

�
�
�

þ
Xn

i¼1

Xn

j¼1

qij
�
�
�

�
�
�uj SE i tð Þ
�
�
�

�
�
�

" #

þ
Xn

i¼1

Xn

j¼1

rij
�
�
�
�kj SE j t � ptð Þ

�
�
�

�
�
�

" #
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¼ �
Xn

i¼1

ai �
Xn

j¼1

Xu

k¼1

M1 jk

� �
M2ki

� ��
�
�

�
�
�

" #" #

þ
Xn

j¼1

qij
�
�
�

�
�
�uj

" #" #

SE i tð Þ
�
�
�

�
�
�

þ
Xn

i¼1

Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� ��
�
�

�
�
�

" #" #

þ
Xn

i¼1

Xn

j¼1

rij
�
�
�
�kj

" #" #

SE i t � ptð Þ

�
�
�

�
�
�

� max
1�i�n

Xn

j¼1

Xu

k¼1

M1 jk

� �
M3ki

� ��
�
�

�
�
�

" #

þ
Xn

j¼1

rji
�
�
�
�ki

" #
Xn

i¼1

SE i t � ptð Þ

�
�
�

�
�
�

� min
1�i�n

ai �
Xn

j¼1

Xu

k¼1

M1 jk

� �
M2ki

� ��
�
�

�
�
�

" #

�
Xn

j¼1

qji
�
�
�

�
�
�ui

" #
Xn

i¼1

SE i tð Þ
�
�
�

�
�
�

�
�
�

�
�
�

� � C1V SE i tð Þ
� �

þC2 sup
t� t�s�t

V SE i sð Þ
� �

ð18Þ

It should be noted that

sup
t� t�s�t

V SE i sð Þ
� �

� V SE i tð Þ
� �

ð19Þ

Then, based on (18), (19) and Theorem 10, assuming a constant C greater than zero, one

has

Da

þ
V SE i tð Þ
� �

� � C1 � C2ð ÞV SE i tð Þ
� �

C1 � C2 � C

8
<

:
ð20Þ

The following is how we construct Eq (20):

Da

þ
V SE i tð Þ
� �

� CV SE i tð Þ
� �

ð21Þ

So,

jjSE i tð Þjj ¼ jj yj tð Þ
� �

� ϖXj tð Þ
� �

jj

¼
Xn

i¼1

jj yj tð Þ
� �

� ϖXj tð Þ
� �

jj ð22Þ

Finally, the Eq (14) is stable as SE i tð Þ
�
�

�
�! 0 as t approaches infinity. This thoroughly dem-

onstrates the proof.&

Remark 1. When the value ofϖ equals 1 and (H) holds, the synchronization multi-

FONNSMD is called the "complete synchronization".

Remark 2. When the value ofϖ equals −1 and (H) holds, the synchronization of multi-

FONNSMD is referred to as the "anti-synchronization".

4. Symmetry encryption

This section will perform the encryption and decryption of a message. Symmetric crypto-

graphic algorithms (SCA) and the public key are first used as an original message that is called

plaintext (PTEXT) to generate the ciphertext (CTEXT), and the CTEXT is re-encrypted to
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achieve double encryption using synchronization. It consists of the encrypter (RSS and

encryption function of SCA) and the decrypter (DSS and decryption function of SCAL). We

use (1) as DSS and (2) as RSS, and we have shown that the Eq (14) is SEi tð Þ
�
�

�
�! 0, the synchro-

nization is achieved. The sender uses multi-FONNSMD (1), and the receiver uses multi-

FONNSMD (2), and they both choose X3 tð Þ and y
3
tð Þ as the public keys after a time, which

means that the two FONNSMDs synchronised. The sender picks up the data from X3 tð Þ to

obtain the secret keys for encryption while the receiver picks up data from y
3
tð Þ to obtain

secret keys (SKEY) and decrypt the CTEXT.

PTEXT and CTEXT are represented in numbers; thus, every letter from the alphabet is

substituted by the appropriate numeral associated with ASCII representation. The formula for

SCA encryption and decryption is given by:

CT i ¼ TT i þKi mod 38ð Þ

TT i ¼ CT i � Ki mod 38ð Þ
ð23Þ

With Ki The SKEYs are used to mask the message. These SKEY are completely applied

once. The sender can randomly adjust the initial conditions of multi-FONNSMD (1) for the

next time. This is because chaotic systems are sensitive to the initial state.

5. Proposed NNSE algorithm

Problem: How to enforce double encryption of two multi-FONNSMD with different initial

conditions using the SCA encryption/decryption schemes and chaotic synchronization. We

can overcome this problem using the following steps: Chaotic Synchronization + SCA =

NNSE. We can summarize this algorithm as shown in Fig 1.

You may summarize the entire design technique as follows:

Fig 1. Encryption flowchart.

https://doi.org/10.1371/journal.pone.0270402.g001
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Step 1: Construct the multi-FONNSMD of the DSS (1) and the RSS (2), respectively.

Step 2: Define the EDSMC can then be obtained using MATLAB simulation.

Step 3: A message is converted from PTEXT by an ASCII encoder.

Input PTEXT and the PKEY to form a CTEXT by SCA encryption.

Step 4: Both sender and receiver agree that private keys (PKEY) are from the values of integers

part of 10000x and 10000y.

Step 5: The sender picks up the data X3 tð Þ to obtain the secret keys for encryption while the

receiver picks up data y3(t) to obtain SKEY and decrypts the CTEXT.

Step 6: Since the multi-FONNSMD is with the time-delay, they both decide to change the val-

ues of τ1, τ2 and τ3 after every five units of a message to maintain security. They increase the

values of τ1, τ2 and τ3 by 0.1.

Step 7: The formula for encryption is Ci ¼ Pi þKi ðmod 38Þ, and decryption is

Pi ¼ Ci � Ki ðmod 38Þ

Step 8: Enter PTEXT and the PKEY to construct a CTEXT using the SCA encryption.

Step 9: The CTEXT is then forwarded to the DSS to get the encrypted signal.

Step 10: The PTEXT is obtained using PKEY and the SCA decryption scheme.

Step 11: We can retrieve the CTEXT from the RSS based on the encrypted signal.

Step 12: The plaintext is recovered via the SCA decryption scheme and the PKEY.

6. Results, numerical verification and discussion

In this section, the suggested definition with three numerical examples is disclosed to validate

the feasibility and effectiveness of the achieved results by using multi-FONNSMD systems as

the DRS. We conducted three experiments to see the difference between non-identical syn-

chronization of multi-FONNSMD with and without multi-time delay. The parameters are

selected as αi = [1, 0.99, 0.98, 0.97, 0.96, 0.95], τ1 = 0.5, τ2 = 1.5, τ3 = 2.5, U = (I1 I2 I3))T = V =

(0 0 0)T and f(.) = tanh(.), where i = 1,2,3

The initial values of XðtÞ and y(t) are taken as:

Xi 0ð Þ ¼ � 0:22

yi 0ð Þ ¼ � 0:22

where i = 1,2,3

Example 1: Non-identical synchronization of multi-FONNSMD with multi-time delay

A ¼ P ¼ diag 1 1 1ð Þ

B ¼

0:2 0:5 5:5

0:5 0:5 5:1

� 0:5 � 0:1 � 0:5

2

6
4

3

7
5
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C ¼

0:7 0:7 4:1

0:1 0:1 2:5

� 50:1 � 100:1 2:5

2

6
4

3

7
5

Q ¼

0:2 0:3 7:5

0:5 0:5 7:5

� 0:5 � 3 � 0:5

2

6
4

3

7
5

R ¼

0:3 5:5 5:5

0:5 2:5 5:5

7 � 50:5 � 2:5

2

6
4

3

7
5

Example 2: Non-identical synchronization of multi-FONNSMD with multi time-varying

delay

A ¼ diag 1 2 2ð Þ

P ¼ diag 2 2 2ð Þ

B ¼

0:2 0:5 5:5

0:5 0:5 5:1

� 0:5 � 0:1 � 0:5

2

6
4

3

7
5

C ¼

0:7 0:7 4:1

0:1 0:1 2:5

� 50:1 � 100:1 2:5

2

6
4

3

7
5

Q ¼

0:2 0:3 7:5

0:5 0:5 7:5

� 0:5 � 3 � 0:5

2

6
4

3

7
5

R ¼

0:3 5:5 5:5

0:5 2:5 5:5

� 50:1 � 50:5 � 2:5

2

6
4

3

7
5
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Example 3: Non-identical synchronization of multi-FONNSMD without delay

A ¼ diag 10:5 10:5 0:5ð Þ

P ¼ diag 20:5 20:5 20:5ð Þ

B ¼

0:2 0:5 5:5

0:5 0:5 5:1

� 0:5 � 0:1 � 0:5

2

6
4

3

7
5

C ¼

0:7 0:7 4:1

0:1 0:1 2:5

� 50:1 � 100:1 2:5

2

6
4

3

7
5

Q ¼

0:2 0:3 7:5

0:5 0:5 7:5

� 0:5 � 3 � 0:5

2

6
4

3

7
5

R ¼

0:3 5:5 5:5

0:5 2:5 5:5

� 50:1 � 50:5 � 2:5

2

6
4

3

7
5

After obtaining all the parameters for each experiment, we can answer the above experi-

ments based on the NNSE algorithm steps.

Step 1: Established the multi-FONNSMD from DSS (1) and RSS (2) as:

Da1X tð Þ ¼ � AX tð Þ þ Bf X tð Þð Þ þ
X3

p¼1

Cf X t � ptð Þð Þ þ U ð24Þ

And

Da2y tð Þ ¼ � Py tð Þ þQg y tð Þð Þ þ
X3

p¼1

Rg y t � ptð Þð Þ þ Vþ SC tð Þ ð25Þ

A graphical illustration of the phase portrait of the Eqs (24) and (25) is shown in Fig 2.

Step 2: The EDSMC is obtained using MATLAB simulation. With the initial values and

suggested network parameters above, we answer the numerical solutions of the DSS (24), RSS

(25), and error system (14). The numerical simulation method is presented here for solving

fractional differential equations by using the step-by-step iterative method and MATLAB

tools. The graphical analysis displays the findings using this program. A visual representation

is provided in Fig 3, which portrays the outcomes of multi-FONNSMD synchronization with-

out controller activation, while controller activation is shown in Fig 4. It is seen in Fig 3(d) that

the error state does not converge to zero because the control has not been enabled, and it can

also be seen in Fig 4(d) that when the controller is enabled, the convergence of error state in a

finite period is demonstrated.

From Fig 4, it is easy to see that the DRS (24) and (25) are globally Mittag-Leffler asymptotic

projective synchronization, which validates the reasonableness and usefulness of the
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conditions given in the definition 5. To further confirm that the DRS (24) and (25) are globally

Mittag-Leffler asymptotic projective synchronization, we indicate a multi-time-varying delay

without time-delay for simulation. Moreover, the results are shown in Figs 5 and 6; the order

of fractional-order and the initial value will not change the global Mittag-Leffler synchroniza-

tion of DRS (24) and (25) with different values of parameters.

Fig 2. The chaotic attractor of multi-FONNSMD systems (24) and (25)—Phase portrait.

https://doi.org/10.1371/journal.pone.0270402.g002

Fig 3. Multi-time delay of multi-FONNSMD synchronization without controller activation. (a) x1 versus y1, (b) x2 versus y2, (c) x3 versus

y3, and (d) Synchronization error.

https://doi.org/10.1371/journal.pone.0270402.g003
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Based on Examples 1–3, Table 2 encloses various results of dynamic synchronization error

values for different values of parameters of multi fractional-order in the system (24) and sys-

tem (25). At this point, experiments are conducted with multi-time delay, multi time-varying

delays and without delay. As seen in Table 2, as time increases, the dynamic synchronization

errors of SE tð Þ
1
; SE tð Þ

2
, and SE tð Þ

3
converge to zero. All the examples of dynamic errors show

the same performance. Initially, the error value reduces, and after some time, it increases

Fig 4. Multi-time delay of multi-FONNSMD synchronization with controller activation. (a) x1 versus y1, (b) x2 versus y2, (c) x3 versus y3,

and (d) Synchronization error.

https://doi.org/10.1371/journal.pone.0270402.g004

Fig 5. Multi time-varying delay of multi-FONNSMD synchronization with controller activation. (a) x1 versus y1, (b) x2 versus y2, (c) x3

versus y3, and (d) Synchronization error.

https://doi.org/10.1371/journal.pone.0270402.g005
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subsequently and eventually decreases throughout the time. In conclusion, Table 3 and S1 and

S2 Tables are shown that the whole time taken for dynamic synchronization errors converges

to zero.

Figs 7–9 show another experiment was done to see the effect of different parameters on all

three types of multi-FONNSMD with the same multi fractional-order, which we called non-

identical synchronization. We can see that only Figs 7(a), 8(b) and 9(c), the multi-FONNSMD

system are chaotic and synchronized, while the others are not synchronized. From Figs 7–9,

we can conclude the results in Table 4, where the chaotic systems appear for a wide range of

system parameters but in a different range of multi fractional-order.

Here, we choose example one for the next step.

Step 3: A message is converted from PTEXT by an ASCII encoder, and the space between

two words is assigned by 10. The result is shown in Table 5.

Fig 6. Without delay, multi-FONNSMD synchronization with controller activation. (a) x1 versus y1, (b) x2 versus y2, (c) x3 versus y3, and

(d) Synchronization error.

https://doi.org/10.1371/journal.pone.0270402.g006

Table 2. Result for dynamic synchronization errors for the multi-time delay, multi time-varying delay and without delay.

t Example 1: Multi-time delay Example 2: Multi time-varying delay Example 3: Without delay

SE1
tð Þ SE2

tð Þ SE3
tð Þ SE1

tð Þ SE2
tð Þ SE3

tð Þ SE1
tð Þ SE2

tð Þ SE3
tð Þ

0.2 -7.635074 -3.555392 69.219102 -2.245052 -1.520800 43.668359 -0.309077 -0.283690 0.173145

0.4 -3.851019 -0.082654 66.828019 -0.282647 0.064876 31.754649 -0.132708 -0.107217 0.705430

0.6 -1.768717 1.763905 54.270791 2.729043 2.082869 14.694244 0.053379 0.060519 0.624069

0.8 0.027315 3.283361 27.860997 -0.150939 -1.126820 -14.830215 0.131721 0.121321 0.129667

1.0 2.002976 4.702250 -21.822156 0.627415 -0.116200 12.685434 0.075061 0.061704 -0.281366

1.2 -5.416797 -2.078373 -25.805573 1.663847 0.497237 1.471384 -0.024654 -0.028759 -0.296369

1.4 -5.274272 -2.445515 36.517509 -0.704473 -1.639829 0.344665 -0.065200 -0.060144 -0.042823

1.6 0.820877 2.925084 29.578378 0.696254 -0.270170 1.597438 -0.031423 -0.025457 0.155458

1.8 -0.656675 1.681916 -27.569091 0.865260 -0.076485 -3.991734 0.018813 0.019647 0.137339

2.0 -5.539274 -2.956726 -1.465992 0.415925 -0.278293 -0.657083 0.033062 0.029699 -0.001114

https://doi.org/10.1371/journal.pone.0270402.t002
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Plaintext: NEURAL NETWORKS

Step 4: Both sender and receiver agree that private keys (PKEY) are from the values of inte-

gers that are part of 1000000x and 1000000y.

Step 5: The sender picks up the data from X3 ðtÞ to obtain the secret keys for encryption

while the receiver picks up the data from y3(t) to get the SKEY and decrypt the CTEXT.

Table 3. Time for error dynamics to converge to zero for the multi-FONNSMD system with multi-time delay.

t Multi-time delay

SE1
tð Þ SE2

tð Þ SE3
tð Þ

0.5 -2.783312 0.881577 62.943161

1.0 2.0029766 4.702250 -21.822156

1.5 -2.050509 0.390226 40.653769

2.0 -5.539274 -2.956726 -1.465992

2.5 -2.230595 -0.107194 -9.765992

3.0 -2.966520 -1.175349 4.761501

3.5 -0.649199 0.884686 7.212369

4.0 -1.765203 -0.226732 -5.061299

4.5 -1.231654 -0.144178 6.081291

5.0 -0.280444 0.821304 -6.803661

5.5 -2.701274 -1.7190548 2.582611

6.0 1.175210 1.646657 -0.481021

6.5 -0.271424 -0.028015 -2.016353

7.0 0.246905 0.132753 0.592116

7.5 0.097735 -0.055733 0.679700

8.0 0.191682 0.021054 -0.325423

8.5 0.091803 0.004132 -0.216673

9.0 0.064219 -0.000897 0.199014

9.5 0.067831 0.006754 0.031487

10.0 0.013169 -0.010749 -0.081708

10.5 0.012888 -0.003985 0.027590

11.0 0.028697 0.006889 0.018931

11.5 0.006457 -0.002450 -0.017540

12.0 0.000793 -0.003668 0.007673

12.5 0.009605 0.001986 0.005627

13.0 0.004212 -0.000047 -0.005399

13.5 0.000623 -0.001451 0.003374

14.0 0.003275 0.000272 0.002938

14.5 0.002031 -0.000027 -0.001703

15.0 0.000571 -0.000546 0.001188

15.5 0.001212 -0.000034 0.001570

16.0 0.000765 -0.000076 -0.000270

16.5 0.000113 -0.000246 0.000459

17.0 0.000191 -0.000063 0.000728

17.5 -0.000047 -0.000046 6.268655

18.0 -0.000404 -0.000097 0.000194

18.5 -0.000497 -0.000021 0.000285

19.0 -0.000669 0.000008 0.000030

19.5 -0.000897 0.000005 0.000019

20.0 -0.001032 0.000044 0.000028

https://doi.org/10.1371/journal.pone.0270402.t003
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Step 6: Since the multi-FONNSMD is with the multi-time delay, they agree to alternate val-

ues of τ1, τ2 and τ3 after every five units of a message. They increase the values of τ1, τ2 and τ3

by 0.1, as shown in Fig 10.

Step 7: The formula for encryption is Ci ¼ Pi þKi ðmod 38Þ, and decryption is

Pi ¼ Ci � Ki ðmod 38Þ

Fig 7. Multi-time delay of multi-FONNSMD synchronization with different value of parameters. (a) A = P = diag[1 1 1], (c)

A = diag[1 2 2], P = diag[2 2 2], and (e) A = diag[10.5 10.5 0.5], P = diag[20.5 20.5 20.5]. (a), (c) and (e) are synchronization of

FONNSMD systems while (b), (d) and (f) are dynamic error of FONNSMD systems.

https://doi.org/10.1371/journal.pone.0270402.g007

Fig 8. Multi time-varying delay of multi-FONNSMD synchronization with different value of parameters. (a) A = P = diag[1

1 1], (b) A = diag[1 2 2], P = diag[2 2 2], and (c) A = diag[10.5 10.5 0.5], P = diag[20.5 20.5 20.5]. (a), (c) and (e) are

synchronization of FONNSMD systems while (b), (d) and (f) are dynamic error of FONNSMD systems.

https://doi.org/10.1371/journal.pone.0270402.g008
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Step 8: Enter PTEXT and the PKEY to construct a CTEXT using the SCA encryption func-

tion. The result is shown in Table 6.

Ciphertext: 931322328182097371835161213

Step 9: The CTEXT is then forwarded to the DSS to get the encrypted signal.

Step 10: We can retrieve the CTEXT from the RSS based on the encrypted signal.

Step 11: The plaintext is recovered via the SCA decryption scheme and the PKEY, and the

result is shown in Table 7.

Ciphertext: 931322328182097371835161213

Message: NEURAL NETWORKS

6.1 Discussion on the effects of parameter, fractional-order and time-delay

on chaos synchronization

The impacts of varying parameter values, fractional-order, and other types of time-delay on

chaotic synchronization are discussed in this section. Table 2 summarizes some observations

Table 4. The multi-FONNSMD system performance with different values of a parameter.

A = P = diag[1 1 1] A = diag[1 2 2]

P = diag[2 2 2]

A = diag[10.5 10.5 0.5]

P = diag[20.5 20.5 20.5]

Multi-time delay chaotic No synchronization No chaotic

Multi time-varying delay No synchronization chaotic No chaotic

Without delay No synchronization No synchronization chaotic

https://doi.org/10.1371/journal.pone.0270402.t004

Fig 9. Without delay multi-FONNSMD synchronization with different value of parameters. (a) A = P = diag[1 1 1], (b)

A = diag[1 2 2], P = diag[2 2 2], and (c) A = diag[10.5 10.5 0.5], P = diag[20.5 20.5 20.5]. (a), (c) and (e) are synchronization of

FONNSMD systems while (b), (d) and (f) are dynamic error of FONNSMD systems.

https://doi.org/10.1371/journal.pone.0270402.g009

Table 5. ASCII value.

Unit message N E U R A L - N E T W O R K S

ASCII 78 69 85 82 65 76 10 78 69 84 87 79 82 75 83

https://doi.org/10.1371/journal.pone.0270402.t005
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about dynamic error synchronization based on examples 1–3 for various parameter values,

fractional-order, and different types of time-delay at specified time values. Because neurons

have varied communication delays, we study the non-identical multi-FONNSMD with other

parameters and various time-delays. Based on the literature, fractional-order influences the

system’s performance in chaotic dynamics. As formerly proven, parameters and time-delay

Fig 10. Phase portrait of x3ðtÞ and y3(t) of multi-FONNSMD synchronization with multi-time delay [τ1, τ2, τ3]. (a)

[1.5,2.5,3.5], (b) [1.6,2.6,3.6], and (c) [1.7,2.7,3.7].

https://doi.org/10.1371/journal.pone.0270402.g010

Table 6. Encryption of PTEXT to CTEXT.

Time

τ1

Time

τ2

Time

τ3

Time

t
x3(t) Keys

k
Plaintext

P
Ciphertext

CT i
¼ PT i

þKi

(mod 38),

1.5 2.5 3.5 14.0 1.089718 1089718 N (78) 32

15.0 1.088824 1088824 E (69) 3

16.0 1.088195 1088195 U (85) 36

17.0 1.088692 1088692 R (82) 36

18.0 1.088484 1088484 A (65) 1

1.6 2.6 3.6 19.0 1.159015 1159015 L (76) 15

20.0 1.158987 1158987 - (10) 35

21.0 1.158947 1158947 N (78) 25

22.0 1.158932 1158932 E (69) 1

23.0 1.158904 1158904 T (84) 26

1.7 2.7 3.7 24.0 1.235119 1235119 W (87) 16

25.0 1.235099 1235099 O (79) 26

26.0 1.235079 1235079 R (82) 9

27.0 1.235061 1235061 K (75) 22

28.0 1.235044 1235044 S (83) 13

https://doi.org/10.1371/journal.pone.0270402.t006
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affect the system’s effectiveness in chaotic dynamics, as seen in Figs 7–9. Time-delays are prev-

alent and inevitable in the real world, while the time-delay dynamic system has complex char-

acteristics. The effect of varied parameters, fractional-order, and time-delay on dynamic

systems is investigated using two multi-FONNSMD chaotic systems that operate as DRS. In

addition, the competence of the SMC is explored in this study to demonstrate that it can con-

trol the multi-FONNSMD system.

We investigate a non-identical multi-FONNSMD system with multiple time delays, as

shown in Fig 7, with fractional-order values of 0.99, 0.98, 0.97, 0.96, and 0.95. We can learn

from Fig 7(a) and 7(b) that the system becomes chaotic and periodic when the parameter

A = P = diag [1 1 1]. The system keeps on being chaotic as the different parameter values are

employed. For example, parameters A and P where A = diag [1 2 2] and P = diag [2 2 2] in Fig

8(c) and 8(d). Then, A = diag [10.5 10.5 0.5] and P = diag [20.5 20.5 20.5] in Fig 9(e) and 9(f).

Other values of parameters show that the multi-FONNSMD systems are chaotic but unstable

since the dynamic synchronization error does not converge to zero. This paper demonstrates

that parameters do have an impact on the system’s chaos synchronization. Table 2 presents

some data on the dynamic synchronization error for non-identical multi-FONNSMD systems

based on examples 1 and 2. Tests are carried out with a specified fractional-order and time-

delay value. Example 3 is a non-identical multi-FONNSMD system run with a specified frac-

tional-order value and no time delay.

We chose the values for fractional-order 0.99, 0.98, 0.97, 0.96, and 0.95 because they are the

most stable based on the previous study compared to other fractional-order values. Further-

more, when the alpha value is 0.95 or above, a fractional chaotic system will exhibit chaotic

behaviours. We chose it and verified it using a Matlab test, finding that the dynamic synchro-

nization error approximates zero when the systems are synchronized. Furthermore, the main

goal of our paper is to show that there is chaos synchronization with varied values of parame-

ters, fractional-order, and time-delay. Furthermore, we show that chaos synchronization hap-

pens using the suggested controller presented in the paper. Also, we use a time-delay of τ =

[1.5, 2.5, 3.5] for calculation purposes. As long as the chaos feature does not deteriorate, the

Table 7. Decryption of ciphertext to plaintext.

Time

τ1

Time

τ2

Time

τ3

Time

t
y3(t) Keys

Ki

Ciphertext

CT i

Plaintext

PT i
¼ CT i

� Ki

(mod 38)

1.5 2.5 3.5 14.0 1.089718 1089718 32 78 (N)

15.0 1.088824 1088824 3 69 (E)

16.0 1.088195 1088195 36 85 (U)

17.0 1.088692 1088692 36 82 (R)

18.0 1.088484 1088484 1 65 (A)

1.6 2.6 3.6 19.0 1.159015 1159015 15 76 (L)

20.0 1.158987 1158987 35 10 (-)

21.0 1.158947 1158947 25 78 (N)

22.0 1.158932 1158932 1 69 (E)

23.0 1.158904 1158904 26 84 (T)

1.7 2.7 3.7 24.0 1.235119 1235119 16 87 (W)

25.0 1.235099 1235099 26 79 (O)

26.0 1.235079 1235079 9 82 (R)

27.0 1.235061 1235061 22 75 (K)

28.0 1.235044 1235044 13 83 (S)

https://doi.org/10.1371/journal.pone.0270402.t007
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value can be anything. Due to the obvious number of possible possibilities or the size of the

data, some problems are difficult for computers to answer. As a result, they were picked to

solve them effectively and avoid errors in the outcomes.

7. Conclusion

The combination of the synchronizing of a chaotic neural network with a secure communica-

tion system has been presented. Besides, this paper demonstrates that the multi-FONNSMD

can be easily controlled using SMC techniques. So, we showed synchronization between the

two multi-FONNSMD using the proposed controller. The synchronization is achieved as

the convergence of synchronization errors of finite time has been ensured with the initial con-

ditions for DSS and RSS given as X1 0ð Þ ¼ 0:22; X2 0ð Þ ¼ 0:22; X3 0ð Þ ¼ � 0:22, y1(0) = 0.22,

y2(0) = 2.22, y3(0) = 2.1. We also performed a different type of delay to compare the results of

dynamic errors. We can conclude that chaos synchronization is achieved with a different type

of delay and without delay. This is proof that we could not avoid delays occurring in the sys-

tems. After synchronization is archived, the secret keys are generated to be used in the NNSE

algorithm. This new NNSE algorithm will give the proposed idea high security and efficiency.

Finally, a numerical simulation is presented to support the efficiency of our proposed tech-

nique. Moreover, in the future, we anticipate exploring NNSE using asymmetric encryption.
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