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In this paper we discuss the classification results of cardiac patients of ischemical 
cardiopathy, valvular heart disease, and arterial hypertension, based on 19 
characteristics (descriptors) including ECHO data, effort testings, and age and 
weight. In this order we have used different fuzzy clustering algorithms, namely 
hierarchical fuzzy clustering, hierarchical and horizontal fuzzy characteristics 
clustering, and a new clustering technique, fuzzy hierarchical cross-classification. 
The characteristics clustering techniques produce fuzzy partitions of the 
characteristics involved and, thus, are useful tools for studying the similarities 
between different characteristics and for essential characteristics selection. The 
cross-classification algorithm produces not only a fuzzy partition of the cardiac 
patients analyzed, but also a fuzzy partition of their considered characteristics. In 
this way it is possible to identify which characteristics are responsible for the 
similarities or dissimilarities observed between different groups of patients. 
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INTRODUCTION 

The mathematics of fuzzy set theory was originated by L.A. Zadeh in 1965[15]. It deals with the 
uncertainty and fuzziness arising from interrelated humanistic types of phenomena such as 
subjectivity, thinking, reasoning, cognition and perception. This type of uncertainty is 
characterized by structures that lack sharp (well-defined) boundaries. This approach provides a 
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way to translate a linguistic model of the human thinking process into a mathematical framework 
for developing the computer algorithms for computerized decision-making processes. The theory 
has grown very quickly[1,2,3,5]. 

There are two opposite approaches to hierarchical clustering, namely, agglomerative and 
divisive procedures. An agglomerative hierarchical classification places each object in its own 
cluster and gradually merges the clusters into larger and larger clusters until all objects are in a 
single cluster. The divisive hierarchical clustering reverses the process by starting with all the 
objects in a single cluster and subdividing it into smaller ones until, finally, each object is in a 
cluster of its own. The number of clusters to be generated may be either specified in advance or 
optimized by the algorithm itself according to certain criteria. 

Among other interesting applications, the fuzzy clustering theory developed in References 
[3,4,6,8] has been used for the selection and the optimal combination of solvents[7,13], for the 
classification of Roman pottery[9], for the cross-classification of Greek muds[6], for the 
development of a fuzzy system of chemical elements[12,14], for producing a performant fuzzy 
regression algorithm[10], and for the cross-classification of thin layer chromatography data[11]. 

In this paper we analyze the possibility of identifying the correct diagnosis concerning the 
cardiac patients using different fuzzy clustering algorithms. 
 

THEORETICAL CONSIDERATIONS 
 
Fuzzy Substructure of a Fuzzy Set 
 
In this section we will recall the so-called generalized fuzzy n-means algorithm[3,4,6]. This 
algorithm is a generalization of the well-known fuzzy n-means algorithm[1,4]. Let us consider a 
set of objects X = { x1, ..., x p } ⊂  Rs and let C be a fuzzy set on X. We are searching for the fuzzy 
partition corresponding to the cluster substructure of the fuzzy set C. Let us suppose that this 
fuzzy partition is {A1, ..., An}. We admit that each fuzzy class Ai may be represented by a 
prototype Li from the representation space, Rs. If Li is from X, it is natural to suppose that Li has 
the greatest membership degree to Ai, that is: 
 
   )(max)( xALA iXx

i
i ∈

=    (1) 

 
Otherwise, if Li is not from X, we cannot speak about its membership degree to the fuzzy set Ai, 
since the universe of the fuzzy set Ai is X. 

 Let us denote by d a distance in the space Rs. For example, we may consider the distance 
induced by the norm of the space. The dissimilarity Di(x j ,Li) between a point x j  and the prototype 
Li is defined as the square local distance in the class Ai, di(x j,Li), and is interpreted as a measure of 
the inadequacy of the representation of the point xj by the prototype Li. 

 If Li is not a point from the data set X, then 
 
   D x L A x d x Li

j i
i

j j i( , ) ( ( )) ( , ).= 2 2   (2) 
 
If, on the contrary, Li is a point from the data set X, then we have from (1) that 
A L A xi

i
i

j( ) ( )≥ for any x j  in X, and the relation (2) is still valid. 
 The inadequacy between the fuzzy partition P and its representation, L = {L1, ..., Ln} is given 
by the following function: 
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J(P, L) may also be interpreted as the representation error of P by L. 
 It is easy to observe that J is a criteria function of the type of square errors sum. The 
classification problem becomes the determination of the fuzzy partition P and its representation L 
for which the inadequacy J(P, L) is minimal. We note that, intuitively, to minimize J means to 
give small membership degrees to Ai for those points in X for which the dissimilarity to the 
prototype Li is large, and vice-versa. Another useful remark is that the fuzzy sets Ai, i = 1,...,n are 
components of the fuzzy partition P of the fuzzy set C, and thus the obvious �solution�, Ai = 0 for 
all i is not acceptable since it does not form a fuzzy partition of C. 

If we admit that d is a distance induced by the norm, we may write 
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If the norm is induced by the inner product, we have 
 
  || x j  - Li ||2 = (x j - Li)T M (x j  - Li), 
 
where M is a symmetrical and positively defined matrix. The transposing operation was denoted 
by T. The criteria function becomes: 
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Because an algorithm to obtain an exact solution of the problem (5) is not known, we will use an 
approximate method in order to determine a local solution. The minimum problem will be solved 
using an iterative (relaxation) method, where J is successively minimized with respect to P and L. 
 Supposing that L is given, the minimum of the function J(�,L) is obtained[3, 4] for: 
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for all j for which for every k, d(x j, Lk) ≠ 0. If, on the contrary, there exists a j so that for some 
values of k, d(x j, Lk) = 0, then the membership degrees Ai(x j) fulfill the condition Ai(xj) = 0 for all 
i so that d(x j, Li) ≠ 0. 
 For a given P, the minimum of the function J(P,·) is obtained for: 
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We observe[3,4] that Li is the weighting center of the class Ai. 
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 The iterative procedure for obtaining the cluster substructure of the fuzzy class C is called 
generalized fuzzy n-means (GFNM)[3]. Essentially, the GFNM algorithm works with Picard 
iterations using the relation (6) and (7). The iterative process begins with an arbitrary 
initialization of the partition P. The process ends when two successive partitions are close 
enough. To measure the distance between two partitions, we will associate to each partition P a 
matrix Q with the dimensions n × p. Q is named the representation matrix of the fuzzy partition P 
and is defined as: 
 
  Qij = Ai(x j ), i = 1, 2, ..., n; j = 1, 2, ..., p.  (8) 
 
 Considering that Q1 and Q2 are the representation matrices of the partitions P1 and P2, we 
may define 
 
   d(P1, P2) = ||Q1 − Q2||   (9) 
 
where Q A x

i j i
j= max ( )

,
. 

 The process ends at the r-th iteration if 
 
   d(Pr, Pr+1) < ε   (10) 
 
where ε is an admissible error (usually, 10−5). 
 For C = X this procedure is the well-known algorithm fuzzy n-means (FNM)[1]. 
 

Fuzzy Divisive Hierarchical Clustering 
 

Let us consider a fuzzy set C on X and a fuzzy binary partition P = {A1, A2} of C, and the 
following function, called polarization degree: 
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where Ai,1/2 is the 1/2-cut of Ai (i.e., Ai,1/2(x) is equal to Ai(x) if Ai(x) is larger than C(x)/2 and is 
equal to zero otherwise). (For a complete study of the polarization degree and its properties, 
please see Reference [3].) We will say here only that R(P) is as larger as the partition P is more 
polarized, and R(P) is as small as the partition P is fuzzy. We say that the binary partition P 
describes �real� clusters if the polarization degree R(P) is larger than a certain threshold t ∈ (0,1) 
chosen a priori, and if for every class Ci there exists at least one point x in X so that Ai(x) > 
C(x)/2. 

Using the FNM algorithm we may determine a binary fuzzy partition P = {A1, A2} of the 
data set X. If the partition P does not describe �real� clusters, the data set X does not have a 
substructure. If this partition describes �real� clusters, we denote P1 = {A1, A2}. Using the GFNM 
algorithm for two subclasses (n = 2) we may determine a binary fuzzy partition for each Ai of P1. 
If this partition of Ai describes real clusters, these clusters will be attached to a new fuzzy 
partition, P2. Otherwise, Ai will remain undivided. The class Ai will be marked and will be 
allocated to the partition P2. The unmarked classes members of P2 will follow the same 



Pop et al.: Assessing Heart Disease with Fuzzy Classification TheScientificWorld (2001) 1, 369-390 
 

 373 

procedure. The divisive procedure will stop when all the classes of the current partition Pl are 
marked, i.e., there are no more �real� clusters. 

The procedure described here is called the Fuzzy Divisive Hierarchical Clustering (FDHC) 
algorithm[3,9]. This procedure may be used to determine the optimal cluster substructure of the 
data set. The method is especially useful when the number of classes is unknown. We emphasize 
here that the ability of chose the value of the polarization threshold to be used allows us to stop 
the hierarchical analysis at that degree of refinement considered relevant for the application. If we 
decide to choose a high threshold we will obtain the fuzzy partition corresponding to the 
macroscopic structure of the data set, while by choosing a smaller threshold, we will have a more 
detailed image of the fuzzy substructure of the data. Moreover, we are not interested only in the 
final fuzzy partition; we are interested in the relationships between different fuzzy sets. These 
relationships may be observed very well from the binary classification tree[6,7,9,11,12,14]. 
 

Interpretation of the Final Fuzzy Partition 
 

The fuzzy hierarchy obtained is richer in information (see Reference [5]) than a hierarchy based 
on classical sets, but sometimes is useful to have a classical partition also. For a complete 
discussion on the problem of passing from fuzzy partitions to classical partitions, see Reference 
[5]. We will only show the method used here for obtaining a classical partition. 

Defuzzification of the final fuzzy partition will be realized using the maximum membership 
rule or a hierarchical assignment rule. This latter rule means that the classical sets corresponding 
to the fuzzy classes will be built in the same time with the respective fuzzy classes, based on the 
following rules (here, and in all that follows, ~C  denotes the classical set obtained by 
defuzzification from the fuzzy set C): 1) initially, since X is a classical set, ~ ;X X=  2) when we 
build the fuzzy partition {C1, C2} of the fuzzy set C, we will say that: 
 

 ( )(x)C (x) and ~~
211 ≥∈⇔∈ CCxCx  

and 
 ( ) (x)C (x) and ~~

212 <∈⇔∈ CCxCx  
 
Remark. It is obvious that {~ , ~ }C C1 2  is a hard partition of the classical set ~C . 
 

Finally, when obtaining the fuzzy hierarchy of the set X, we will also obtain the so-called 
classical hierarchy associated to that fuzzy hierarchy. 

Associative Simultaneous Fuzzy n-Means Algorithm 
 

Let X = {x1, ..., x p } ⊂  Rs be the set of objects to be classified. A characteristic may be specified 
by its values corresponded to the p objects. Thus, we may say that Y = {y1, ..., ys} ⊂  Rp is the set 
of characteristics. y j

k  is the value of the characteristic k with respect to the object j, so we may 

write y xj
k

k
j= .  

 Let P be a fuzzy partition of the fuzzy set C of objects and Q a fuzzy partition of the fuzzy 
set D of characteristics. The problem of the cross-classification (or simultaneous classification) is 
to determine the pair (P, Q) which optimizes a certain criterion function. 

 By starting with an initial partition P0 of C and an initial partition Q0 of D, we will obtain a 
new partition P1. The pair (P1, Q0) allows us to determine a new partition Q1 of the 
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characteristics. The algorithm consists in producing a sequence (Pk, Qk) of pairs of partitions, 
starting from the initial pair (P0, Q0), in the following steps: 
 
 (i)  (Pk, Qk) →  (Pk+1, Qk); 
 (ii)  (Pk+1, Qk) →  (Pk+1, Qk+1). 
  
The rationale of the hierarchical cross-classification method[4,6] essentially supposes the splitting 
of the sets X and Y in two subclasses. The classes obtained are alternatively divided in two 
subclasses, and so on. The two hierarchies will be represented by the same tree, having in each 
node a pair (C, D), where C is an objects fuzzy set and D is a characteristics fuzzy set. 
 As a first step we wish to determine simultaneously the fuzzy partitions (as a particular case, 
the binary fuzzy partitions) of the classes C and D, so that the two partitions should be highly 
correlated. With the generalized fuzzy n-means algorithm, we will determine a fuzzy partition  
P = {A1, ..., An} of the class C, using the original characteristics. 

 In order to classify the characteristics, we will compute their values for the classes  
Ai, i = 1, ..., n. The value yi

k  of the characteristic k with respect to the class Ai is defined as: 
 

   ∑
=

===
p

j

j
k

j
i

k
i sknixxAy

1

.,...,1;,...,1,)(   (12) 

  
Thus, from the original s p-dimensional characteristics we computed s new n-dimensional 
characteristics which are conditioned by the classes Ai, i = 1, ..., n. We may admit that these new 
characteristics do not describe objects, but they characterize the classes Ai. 
 Let us consider now the set },...,{ 1 syyY =  of the modified characteristics. We define the 
fuzzy set D  on Y  given by 
 
  .,...,1),()( skyDyD kk ==  
 
The way the set Y  has been obtained lets us conclude that if we will obtain an optimal  
partition of the fuzzy set D, this partition will be highly correlated to the optimal partition of  
the class C. With the generalized fuzzy n-means algorithm we will determine a fuzzy partition  
Q = {B1, ..., Bn} of the class D, by using the characteristics given by the relation (12). We may 
now characterize the objects in X with respect to the classes of properties Bi, i = 1, ..., n. The 
value xi

j  of the object j with respect to the class Bi is defined as: 
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Thus, from the original p s-dimensional objects we have computed p new n-dimensional objects, 
which correspond to the classes of characteristics Bi, i = 1, ..., n. 

 Let us consider now the set },...,{ 1 pxxX =  of the modified characteristics. We define the 
fuzzy set C  on X  given by 
 
  .,...,1),()( pjxCxC jj ==  
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With the generalized fuzzy n-means algorithm we will determine a fuzzy partition P′ =  
{A′1, ..., A′n}, of the class C by using the objects given by the relation (13). The process continues 
until two successive partitions of objects (or characteristics) are closed enough to each other. 
 Considering P = {A1, ..., An} is the fuzzy n-partition of X and Q = {B1, ..., Bn} is the fuzzy  
n-partition of Y produced after this step of our algorithm. Let us remark that we made no explicit 
association of a fuzzy set Ai on X with a fuzzy set Bj on Y, i.e., what is the fuzzy set Bj that best 
describes the essential characteristics corresponding to the fuzzy set Ai. It only supposes that Ai is 
to be associated with Bi, and this is not always true. 

 Let us denote by Sn the set of all permutations on {1, ..., n}. We wish to build that 
permutation σ ∈ Sn which best associates the fuzzy set Ai with the fuzzy set B iσ ( ) , for every  
i = 1, ..., n. Our aim is to build some function J : Sn →  R so that the optimal permutation σ  is 
that which maximizes this function. Let us consider the matrix Z ∈ Rn,n given by 
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 Let us remark the similarity between the way we compute the matrix Z in (14) and the way 
we computed the new objects and characteristics in relation (12) and (13). 
 The experience enables us to consider the function J as given by 
 

   J zi i
i

n

=
=

∏ , ( ) .σ
1

   (15) 

  
Thus, supposing that the permutation σ maximizes the function J defined above, we will be able 
to associate the fuzzy set Ai with the fuzzy set B iσ ( ) , i = 1, ..., n. As we will see in the 
comparative study below, this association is more natural than the association of Ai with  
Bi, i = 1, ..., n. Based on these considerations we are able to introduce the following algorithm, the 
associative simultaneous fuzzy n-means algorithm (ASF): 
 
S1. Set l = 0. With the generalized fuzzy n-means algorithm we determine a fuzzy  

n-partition P(l) of the class C by using the initial objects. 
S2. With the generalized fuzzy n-means algorithm we determine a fuzzy n-partition Q(l) of the 

class D by using the characteristics defined in (12). 
S3. With the generalized fuzzy n-means algorithm we determine a fuzzy n-partition P(l+1) of 

the class C by using the objects defined in (13). 
S4.  If the partitions P(l) and P(l+1) are close enough, that is, if ||P(l+1) - P(l) || < ε , where ε  is a 

preset value, then go to S5, otherwise increase l by 1 and go to S2. 
S5. Compute the permutation σ  that maximizes the function J given in relation (15). 
S6. Re-label the fuzzy sets Bi, so that B iσ ( )  becomes Bi, i = 1, ..., n. 
 
 Let us remark now that, after steps S5 and S6, we are able to associate the fuzzy set Ai with 
the fuzzy set Bi, i = 1, ..., n. 
 Let us also remark that the computation required in step S5 is not an obvious one. But, as we 
will see, our purpose is to use this algorithm for developing a hierarchical technique. Thus, we 
will use the ASF algorithm in the particular case n = 2. In this case, the computation required in 
step S5 becomes trivial. 
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Fuzzy Hierarchical Cross-Classification Algorithm 
 
The method described below is the straightforward way of developing a hierarchical algorithm that 
should use at each node of the classification tree our ASF algorithm. We will first show the way to 
build the classification binary tree. The tree nodes are labeled with a pair (C, D), where C is a fuzzy 
set from a fuzzy partition of objects and D is a fuzzy set from a fuzzy partition of characteristics. The 
root node corresponds to the pair (X, Y). In the first step the two sub-nodes (A1, B1) and (A2, B2), 
respectively, will be computed by using the ASF algorithm. Of course, these two nodes will be 
effectively built only if the fuzzy partitions {A1, A2} and {B1, B2} describe real clusters. For each of the 
terminal nodes of the tree we try to determine partitions having the form {A1, A2} and {B1, B2}, by 
using the ASF algorithm, modified as we have mentioned before. In this way the binary classification 
tree is extended with two new nodes, (A1, B1) and (A2, B2). The process continues until, for any 
terminal node, we are not able to determine a structure of real clusters, either for the set of objects or 
for the set of characteristics. The final fuzzy partitions will contain the fuzzy sets corresponding to the 
terminal nodes of the binary classification tree. This algorithm, termed the FHCCA algorithm, seems 
to be suitable for applications where the idea is to get most of the relationships between different 
classes of objects and different classes of characteristics. In Pop and Sârbu[11] we introduced two 
more variants of this algorithm, FHCCB and FHCCC. 
 

Characteristics Clustering 
 

In this section we address the problem of characteristics clustering. This may be useful in many 
situations. For example, the dimensionality reduction may be considered a characteristic 
classification process. The characteristics in the same class (which are, consequently, very similar to 
each other) will realize a reduced discrimination among the objects. On the contrary, the more 
distant the classes that contain two different characteristics, the greater their discrimination power. 
If the classes of characteristics are homogenous and well separated, a class may be replaced by the 
most representative characteristic. This characteristic represents an average of the properties of the 
class. The more compact the class, the smaller the loss of information produced by this replacement. 
In this way we realize a dimensionality reduction. By choosing a unique characteristic from each 
class, the number of selected characteristics is equal to the number of clusters in the set Y. 
Alternatively, we may not only select some of the existing characteristics, but we may replace them 
by new characteristics, by considering that each class of characteristics is replaced by the prototype 
characteristic. The technique obtained by using the fuzzy divisive hierarchical clustering algorithm 
on the set of characteristics will be called fuzzy hierarchical characteristics clustering (FHiCC). 
Similarly, the technique obtained by using the fuzzy n-means algorithm on the set of characteristics 
will be called fuzzy horizontal characteristics clustering (FHoCC). 

 

CLASSIFICATION RESULTS AND DISCUSSIONS 
 
Analysis of Human Experts 
 
The data set analyzed in this paper consists of 72 cardiac patients described by 19 variables 
(descriptors), as follows: age (1), weight (2), ECHO data including left ventricle (3) and (4), right 
ventricle (5), left atrium (6) and contractility (7) and (8), respectively and effort testings for level 
of effort (9), duration (10), cardiac frequency (11), maximum cardiac frequency (12), systolic 
arterial tension (13), diastolic arterial tension (14), VTO2 (MET) (15), index of tension-time (16), 
relative index of tension-time (17), body aerobic deficit (18), and myocardium aerobic deficit 
(19). Tables 1 and 2 show the values of these 19 descriptors for 72 patients. 
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TABLE 1 
Original Values of the 19 Descriptors for 72 Cardiac Patients (Part I) 

 
 

Patient 
Characteristic (descriptor) 

 1 2 3 4 5 6 7 8 9 10 

1  49 58 50 35 14 35 67 31 100 150 
2  43 65 55 40 18 42 61 27.2 50 167 
3  42 73 60 45 19 45 58 22 75 115 
4  53 87 53 40 19 30 63 24 100 100 
5  33 91 58 40 18 35 68 31 75 125 
6  65 89 55 40 14 30 61 27.2 50 107 
7  39 67 52 35 21 35 68 32 125 150 
8  67 85 50 38 15 28 56.1 24 100 136 
9  48 75 62 40 15 47 71 34 100 150 
10  36 70 59 45 15 32 57 23.7 75 125 
11  49 59 50 30 14 28 79 41 50 115 
12  41 67 50 35 21 30 67 31 75 162 
13  57 65 65 50 20 50 54 23 100 115 
14  28 70 56 40 19 30 55 23 125 162 
15  56 67 48 30 21 33 73 36 75 136 
16  32 76 62 48 18 38 53.5 22.5 100 125 
17  41 73 58 43 20 41 58 25 75 125 
18  27 55 50 30 14 31 79 41 100 167 
19  46 67 47 26 15 41 83.07 44.6 100 152 
20  44 71 60 45 20 48 25 58 125 136 
21  33 61 49 30 20 41 78 40 100 167 
22  44 86 60 45 20 40 58 25 150 167 
23  39 66 55 40 20 52 61 27.2 50 100 
24  40 73 49 35 16 33 66 30 100 136 
25  40 60 57 40 14 40 63 29.8 125 167 
26  60 88 62 50 22 50 44 17 125 150 
27  48 77 48 31 29 50 73 35.4 75 88 
28  56 56 60 40 20 38 70 33.3 50 125 
29  50 74 80 65 30 60 46.3 18.75 50 100 
30  50 76 49 30 18 30 74 37 100 100 
31  49 87 58 45 18 42 55 20 150 157 
32  59 82 55 35 18 50 70 36 75 157 
33  43 68 53 40 21 48 57 24.5 75 83 
34  56 55 55 40 19 50 61 27.2 75 100 
35  42 68 62 45 20 35 59 26 100 94 
36  33 68 52 30 20 42 80 42 75 150 
37  45 76 50 35 18 39 67 31 50 136 
38  44 86 54 40 19 43 61 27 100 167 
39  48 75 68 52 30 54 42 21 50 136 
40  57 63 60 45 20 42 58 25 50 100 
41  31 60 94 80 25 65 38.3 15.6 50 147 
42  67 60 74 62 30 50 28 13.8 25 150 
43  36 80 74 65 14 40 25.3 12.1 100 150 
44  50 78 86 76 20 64 29 11.6 50 115 
45  58 60 87 76 20 50 30 12 25 80 
46  69 100 80 65 30 48 46 18.75 50 94 
47  53 88 65 47 34 45 62.1 27.6 75 160 
48  55 100 90 76 40 70 39.7 15.5 25 118 
49  54 90 47 30 20 30 73.9 36 100 150 
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50  47 70 55 40 9 30 61 27.2 75 100 
51  50 90 55 40 10 33 61 27.2 100 150 
52  63 90 72 60 20 55 42 16.6 50 115 
53  52 95 53 40 17 40 56 24 100 150 
54  55 80 75 55 20 45 60 26.6 50 85 
55  46 75 65 55 15 40 40 15.3 100 110 
56  69 70 65 50 20 42 54 23 50 94 
57  54 68 51 30 17 30 79.6 41 50 167 
58  73 60 76 65 34 65 37 14.4 25 115 
59  56 85 51 35 19 30 67.6 31.3 125 136 
60  58 80 65 50 22 40 54 23 125 115 
61  56 85 50 35 20 30 67 31 50 120 
62  51 105 65 50 18 42 54 23 50 136 
63  68 88 60 50 20 40 43 16 75 125 
64  52 79 60 50 20 40 43 16 50 136 
65  43 64 60 45 20 30 57.8 25 50 125 
66  49 89 58 34 20 45 79.8 41.3 100 170 
67  58 70 65 55 20 42 43 16 75 107 
68  68 50 45 30 22 25 70.3 33.3 75 100 
69  52 85 60 45 18 30 58 25 75 125 
70  41 70 50 35 16 32 67 31 75 168 
71  46 80 62 50 20 45 44 17 100 130 
72  47 90 55 45 18 35 45.2 18.18 75 150 

 
 

TABLE 2 
Original Values of the 19 Descriptors for 72 Cardiac Patients (Part II) 

 
 Characteristic (descriptor) 

 
Patient 11 12 13 14 15 16 17 18 19 

1  161 190 100 25 7.14 31500 28500 22.81 16.46 
2  167 135 85 14 4 32100 22545 60.99 33.50 
3  178 155 90 17 4.85 32200 17825 52.86 44.51 
4  167 155 85 16 4.57 31100 15500 53.20 50.16 
5  177 150 90 13.3 3.8 33100 18750 66.90 45.63 
6  145 175 90 10 2.85 29900 18725 68.89 42.64 
7  171 230 110 26 7.42 32500 34500 17.96 1.06 
8  153 180 95 20 5.71 29700 24480 46.55 24.70 
9  162 165 90 20 5.71 31600 24750 42.92 26.37 
10  174 115 80 17 4.85 32800 14375 63.45 68.20 
11  161 150 90 15 4.28 31500 17250 56.98 48.59 
12  169 175 90 18 5.14 32300 28350 53.07 16.67 
13  163 190 100 23 6.57 30700 21850 31.36 28.82 
14  182 155 90 25.5 7.28 33600 25885 34.96 25.56 
15  154 165 90 17 4.85 30800 22440 46.55 32.31 
16  178 165 95 20 5.71 33200 20625 50.44 40.29 
17  169 135 85 17 4.85 32300 16875 54.45 50.39 
18  183 170 90 27 7.71 33700 28390 32.26 18.49 
19  164 165 95 21.5 6.14 31800 25905 36.80 23.20 
20  166 195 105 25.5 7.28 32000 26520 34.75 21.64 
21  177 160 80 25 7.14 33100 26720 33.49 22.51 
22  176 180 100 38.3 10.94 32000 30060 34.75 11.19 
23  171 145 85 14 4 32500 14500 64.25 57.37 
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24  170 135 75 21 6 32400 18360 46.1 43.3 
25  170 180 85 30 8.57 32400 30060 23.07 11.79 
26  160 215 95 21 6 30400 32250 37.87 2.03 
27  162 180 110 15 4.28 31600 15840 57.19 52.87 
28  154 185 90 16 4.57 30800 23125 52.49 30.24 
29  170 140 85 12 3.42 31400 14000 71.49 58.20 
30  160 170 90 12 3.42 31400 17000 65.41 49.25 
31  171 235 95 23 6.57 31500 36895 31.17 9.94 
32  161 155 95 15 4.28 30500 24335 56.28 26.20 
33  167 135 85 17 4.85 32100 11205 55.83 65.09 
34  154 130 70 22 6.28 30800 13000 34.67 60.78 
35  168 155 95 21 6 32200 14570 32.74 57.10 
36  177 150 90 17 4.85 33100 22500 54.77 34.45 
37  165 145 90 12 3.42 31900 19720 66.24 41.63 
38  166 110 85 16 5 32000 18370 51 46.72 
39  172 160 90 12 3.42 31600 21760 65 31 
40  153 197 95 14.5 4.14 30700 19500 56 36.5 
41  189 170 80 15 4.28 33300 24990 60 25 
42  153 135 70 10 2.85 29700 20250 68 32 
43  174 165 85 19 6.24 32800 24750 48 24.5 
44  170 115 75 11 3.14 31400 13225 68 57.88 
45  162 116 70 10 2.85 30600 9280 70 69 
46  151 150 90 9 2.6 29500 14100 70 52 
47  167 190 100 13.3 3.8 31100 30880 60 7 
48  165 143 70 6 1.71 30900 16874 80 45 
49  156 215 90 16.7 4.77 31000 32250 50 0 
50  163 160 85 17 4.85 31700 16000 52 50 
51  160 180 95 16.7 4.77 31400 27000 50 14 
52  157 155 90 10 2.85 30100 17825 70 41 
53  158 165 75 16 4.57 31200 24750 53 20 
54  165 200 115 11 3.14 30900 17000 67 45 
55  174 190 95 20 5.71 31800 20900 43 34 
56  151 180 85 13 3.71 29500 16920 58 42 
57  156 195 95 13.5 3.85 31000 32565 60 0 
58  147 145 90 10 2.85 29100 16675 67 43 
59  164 160 90 21 6 30800 21760 37.6 30 
60  162 160 90 22.5 6.42 30600 18400 32.53 39.86 
61  154 175 90 10.5 3 30800 21000 70 36 
62  159 220 110 9 2.57 31300 29920 74 4 
63  152 185 95 13.3 3.8 29600 23125 58 22 
64  158 135 85 11 3.14 31200 18360 68 41 
65  167 165 90 14 4 32100 19625 61 39 
66  171 160 85 16.7 4.77 31500 27200 52 14 
67  162 165 85 17 4.85 30600 17655 50 42 
68  142 180 95 24 6.8 29600 18000 24 39 
69  168 145 90 14 4 31200 18125 59 42 
70  169 190 95 17 4.85 32300 31920 53 0 
71  174 135 70 19 5.4 31800 17500 50 48 
72  163 160 90 13.3 3.8 31700 24000 60 24.29 

 
The data set has been manually classified by human experts on the basis of paraclinical and 

clinical investigations into three principal groups: valvular heart disease (VHD) and fibrillation of 
aortic insufficiency (FAI) (1-38); dilatative cardiomiopathy (DCM), arterial hypertension (AH), 
and congestive cardiac insufficiency (CCI) (39-48); ischemic cardiopathy (IC), effort pectoralis 
angina (EPA), and myocardium infarct (MI) (49-72). 
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TABLE 3 
Final Fuzzy Partition of the Cardiac Patients, 

without Data Normalization 
 

 
Fuzzy class 

Cardiac patients 

A111 8 9 28 32 43 53 63 72 
A1121  12 19 20 51 66 
A1122  14 18 21 41 
A121  1 22 25 47 62 
A1221 7 31 
A12221 26 
A12222 49 57 70 
A2111  2 13 15 36 39 42 59 61 
A2112 16 37 55 65 
A2121 3 5 11 17 24 30 38 64 69 71 
A2122 6 40 48 52 54 56 60 67 68 
A221 4 27 50 58 
A2221 10 23 29 34 35 44 46 
A2222 33 45 

 
The medical specialists who realized this classification noted that many patients showed 

symptoms indicating more than one illness. This fact, together with the large number of 
descriptors used, represents good support for using a fuzzy clustering approach. 
 
Fuzzy Hierarchical Classification of Cardiac Patients 
 
The successive partition of the cardiac patients produced by using the 19 descriptors mentioned above is 
presented in Table 3. To ensure a more uniform participation of the various descriptors, we used a 
normalization (auto-scaling) of descriptors. The classification based on the same 19 descriptors but 
normalized�a procedure that avoids certain descriptors, expressed by larger numerical values, to 
prevail�gives finally just two classes. Table 4 shows the partition of the cardiac patient in this case. 
 

TABLE 4 
Final Fuzzy Partition of the Cardiac Patients, 

with 19 Normalized Characteristics 
 

 
Fuzzy class 

Cardiac patients 

A1  1 2 5 7 8 9 11 12 13 14 15 16 18 19 20 21 22 24 25 26 28 31 
32 35 36 38 43 47 49 51 53 55 57 59 60 66 68 70 

A2 3 4 6 10 17 23 27 29 30 33 34 37 39 40 41 42 44 45 46 48 
50 52 54 56 58 61 62 63 64 65 67 69 71 72 

 
 

Comparing the results in Table 3 with the classes obtained by paraclinical and clinical 
investigations, we have observed certain differences. However, using data normalization the 
algorithm seems to produce better results providing only two classes: the first one including the 
majority of the valvular heart disease patients and the second one the majority of the dilatative 
cardiomiopathy and ischemic cardiopathy patients. In this case, a good agreement with the original 
diagnostics was established, as it may be seen in Table 5. 



Pop et al.: Assessing Heart Disease with Fuzzy Classification TheScientificWorld (2001) 1, 369-390 
 

 381 

TABLE 5 
Original Diagnostic and Memberships to the Classes of the Final Fuzzy Partition 
Produced with Data Normalization (the illnesses order has been established by 

clinical analysis) 
 

Patient Illness NYHA A1 A2 
1  VHD 1 0.68002 0.31998 
2  VHD 2/3 0.50467 0.49533 
3  VHD 2/3 0.42350 0.57650 
4  VHD 3 0.43222 0.56778 
5  VHD 3 0.50049 0.49951 
6  VHD 3 0.41299 0.58701 
7  VHD 1 0.63278 0.36722 
8  VHD, AH 2 0.56933 0.43067 
9  VHD 2 0.76578 0.23422 
10  VHD 3 0.44981 0.55019 
11  VHD 2/3 0.53107 0.46893 
12  VHD 2 0.71795 0.28205 
13  VHD 2/3 0.55432 0.44568 
14  VHD 1 0.62916 0.37084 
15  VHD 3 0.62206 0.37794 
16  VHD 2 0.57640 0.42360 
17  VHD 3 0.40503 0.59497 
18  VHD 1 0.63305 0.36695 
19  VHD 2 0.69466 0.30534 
20  VHD 1 0.58656 0.41344 
21  VHD 1/2 0.65185 0.34815 
22  VHD 1/2 0.60018 0.39982 
23  VHD 3 0.38422 0.61578 
24  VHD 2 0.61156 0.38844 
25  VHD 1 0.64990 0.35010 
26  VHD, FAI 2 0.56060 0.43940 
27  VHD 2 0.47991 0.52009 
28  VHD, FAI 2/3 0.51652 0.48348 
29  VHD, FAI 3 0.33772 0.66228 
30  VHD 2/3 0.49998 0.50002 
31  VHD, AH 2/3 0.61521 0.38479 
32  VHD, MI, FAI 3 0.56514 0.43486 
33  VHD, FAI 2/3 0.38908 0.61092 
34  VHD, MI, FAI 2/3 0.45803 0.54197 
35  VHD, AH 2 0.51714 0.48286 
36  VHD 2/3 0.62298 0.37702 
37  VHD 3 0.45240 0.54760 
38  VHD 3 0.52360 0.47640 
39  DCM, AH, CCI 3 0.33589 0.66411 
40  DCM, AH, CCI 3 0.37492 0.62508 
41  DCM, CCI 3 0.45608 0.54392 
42  DCM, CCI, FAI 3 0.38489 0.61511 
43  DCM 2 0.50106 0.49894 
44  DCM, CCI 3 0.37297 0.62703 
45  DCM 3 0.37795 0.62205 
46  DCM, CCI 3 0.36426 0.63574 
47  DCM, AH, CCI 3 0.51120 0.48880 
48  AH, DCM, FAI, CCI 3 0.40455 0.59545 
49  IC, EPA, AH 2 0.63120 0.36880 
50  IC, EPA 2/3 0.49107 0.50893 
51  IC, EPA, AH 2 0.65957 0.34043 
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52  IC, EPA, CCI 3 0.31495 0.68505 
53  IC, MI 3 0.55236 0.44764 
54  IC, MI, AH, EPA 3 0.39859 0.60141 
55  IC, MI, EPA 2 0.50264 0.49736 
56  IC, EPA, MI 3 0.34103 0.65897 
57  IC, EPA 3 0.59843 0.40157 
58  IC, FAI 3 0.38734 0.61266 
59  IC, MI 2 0.68343 0.31657 
60  IC, EPA 2 0.51521 0.48479 
61  MI 3 0.43440 0.56560 
62  IC, EPA, AH 3 0.48213 0.51787 
63  IC, AH, EPA 3 0.40022 0.59978 
64  IC, EPA, AH 3 0.27272 0.72728 
65  IC, EPA 3 0.40367 0.59633 
66  MI 2 0.65184 0.34816 
67  IC, EPA 2/3 0.26617 0.73383 
68  IC, MI, EPA 2 0.53834 0.46166 
69  MI, EPA 3 0.34337 0.65663 
70  IC, EPA 2 0.68006 0.31994 
71  IC, MI, EPA 2 0.41871 0.58129 
72  IC, EPA 3 0.45662 0.54338 

 
 
The table also presents the NYHA functional class as it was established by paraclinical and 
clinical investigations. Moreover, considering the relatively large number of variables, we 
attempt, in the next section, to reduce it by applying a fuzzy clustering algorithm. 

 

Fuzzy Hierarchical and Horizontal Characteristics Clustering 
 
The large number of available variables is always an issue, because of the extra computation 
required, and because not all the variables describe equally well the data. Following the fuzzy 
clustering of patients, our aim is to use fuzzy clustering in selecting the most relevant variables. 
We will next classify the data by using only these most relevant variables, and compare the 
results with those of the original fuzzy classification. 

In order to develop the classifications presented in this section we applied the FHiCC 
procedure to the initial descriptors. 

The characteristics clustering with the 19 descriptors for the 72 cardiac patients without data 
normalization produced the final partition presented in Table 6. The first descriptor separated 
from the others is 5, followed by 6 and then by 4. The cluster containing the descriptors from 7 to 
19 is not subjected to any more splitting (their membership degrees, MD, to this cluster are all 
near 1). In the next step the descriptor 2 follows and, finally, 3 and 1. 

The characteristics clustering with the same descriptors but with normalization (see Table 3) 
illustrates the same aspect, i.e., the high similarity of the last 13 descriptors based on effort testing 
and a large dissimilarity among the first descriptors including ECHO data and age and weight, 
respectively. This conclusion is supported also by the horizontal characteristics clustering, with 
the number of classes preset to seven, i.e., the number of classes produced by the hierarchic 
clustering procedure. The results of the horizontal characteristics clustering procedure are shown 
in Table 7. It is interesting to remark that all the divisions in Table 4 are clear-cut, the 
membership degrees to the different classes are all 1 or 0. We have to stress that the same 
treatment, but with a predefined number of eight classes, gives absolutely the same results, i.e., 
seven classes are clear-cut and one remains vacant, the MDs of all the descriptors to this class 
being zero. 
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TABLE 6 
Membership Degrees of the 19 Descriptors to the Clusters of the Final Fuzzy 

Partition without and with Data Normalization, Respectively 
 

 
Descriptor  

Without normalization  With normalization 

 A111 A11211 A112121 A112122 A1122  A12  A2 A1 A2 
1  0.218 0.210 0.526 0.000 0.044 0.000 0.000 0.537 0.463 
2  0.260 0.643 0.003 0.002 0.090 0.000 0.000 0.498 0.502 
3  0.171 0.052 0.000 0.681 0.094 0.000 0.000 0.561 0.439 
4  0.991 0.002 0.001 0.001 0.003 0.000 0.000 0.528 0.472 
5  0.001 0.000 0.000 0.000 0.000 0.002 0.996 0.589 0.411 
6  0.000 0.000 0.000 0.000 0.000 0.759 0.241 0.495 0.504 
7  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
8  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
9  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
10  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
11  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
12  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
13  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
14  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
15  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
16  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
17  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
18  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 
19  0.002 0.000 0.000 0.000 0.997 0.000 0.000 0.008 0.992 

 
TABLE 7 

 Membership Degrees of the 19 Descriptors to the Seven Classes Obtained by 
Horizontal Classification 

 
 

Descriptor 
Fuzzy class 

 A1 A2 A3 A4 A5 A6 A7 
1  0.000 1.000 0.000 0.000 0.000 0.000 0.000 
2  1.000 0.000 0.000 0.000 0.000 0.000 0.000 
3  0.000 0.000 1.000 0.000 0.000 0.000 0.000 
4  0.000 0.000 0.000 1.000 0.000 0.000 0.000 
5  0.000 0.000 0.000 0.000 1.000 0.000 0.000 
6  0.000 0.000 0.000 0.000 0.000 1.000 0.000 
7  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
8  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
9  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
10  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
11  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
12  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
13  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
14  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
15  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
16  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
17  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
18  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
19  0.000 0.000 0.000 0.000 0.000 0.000 1.000 
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We may conclude that the most significant descriptors, as shown by fuzzy clustering, are, in 
the order of their importance, 5 (ECHO data for right ventricle), 6 (ECHO data for left atrium), 4 
(ECHO data for left ventricle), 2 (weight), 3 (ECHO data for left ventricle), 1 (age). This is 
because these descriptors have the highest discriminative power among the data set. 

On the other side, the descriptors from 7 to 19 had the same membership degrees to all the 
produced classes, and this may indicate that they are representations of the same unique property. 
As such, we have added one of this descriptors to the set of six most relevant descriptors. 
 

Fuzzy Hierarchical Clustering of Cardiac Patients Considering Only Seven 
Characteristics 

 
Taking into account the results obtained above referring to the characteristics clustering, it 
appears more illuminating and intuitive to use for the classification of cardiac patients only the 
first seven descriptors, namely age (1), weight (2), and ECHO data (3-7). In order to validate our 
method, we will use the same fuzzy clustering procedures, but on the data set described only by 
these seven descriptors. 

The results obtained in this case without and with normalization are presented in Table 8. By 
careful examination and comparison with the results in Table 9 concerning the membership 
degrees of the patients to the four final classes it is easy to observe a good agreement with the 
classification based on the paraclinical and clinical examinations (see Table 5). 

This analysis confirms that the data set using only the seven selected descriptors conserve its 
discriminative power, and supports our decision to discard the less relevant descriptors. 
 

 
TABLE 8 

Final Fuzzy Partition of the Cardiac Patients Produced using Seven 
Characteristics without and with Data Normalization 

 
 
Fuzzy class 

Cardiac patients 

Without data normalization 
A11 3 4 5 6 8 9 16 17 22 31 32 35 38 40 49 51 53 59 61 66 
A12 1 2 7 10 11 12 14 15 18 19 21 23 24 25 27 28 30 33 34 36 37 0 57 65 68 70 
A21 13 20 26 39 47 54 55 56 60 62 63 64 67 71 72 
A22 29 41 42 43 44 45 46 48 52 58 

With data normalization 
A11 3 4 5 6 8 9 16 17 22 27 31 32 38 40 49 51 53 59 61 66 69 72 
A12 1 2 7 10 11 12 14 15 18 19 21 23 24 25 28 30 33 34 35 36 37 50 57 65 68 70 
A21  13 20 26 43 47 54 55 56 60 62 63 64 67 71 
A22 29 39 41 42 44 45 46 48 52 58 
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TABLE 9 
Membership Degrees of the Cardiac Patients to the Classes of the Final 

Fuzzy Hierarchical Partition, without and with Data Normalization 
 

 
Cardiac patient 

Without normalization With normalization 

 A11 A12 A21 A22 A11 A12 A21 A22 
1 0.181 0.689 0.093 0.036 0.244 0.605 0.113 0.037 
2 0.273 0.615 0.086 0.025 0.272 0.616 0.090 0.022 
3 0.441 0.260 0.248 0.051 0.424 0.288 0.244 0.043 
4 0.625 0.174 0.163 0.038 0.575 0.233 0.158 0.034 
5 0.470 0.284 0.182 0.064 0.433 0.328 0.178 0.061 
6 0.452 0.201 0.273 0.074 0.418 0.248 0.262 0.071 
7 0.107 0.826 0.050 0.018 0.193 0.708 0.074 0.024 
8 0.425 0.228 0.271 0.077 0.402 0.268 0.256 0.074 
9 0.475 0.358 0.128 0.040 0.431 0.345 0.178 0.045 
10 0.375 0.393 0.176 0.054 0.354 0.449 0.152 0.044 
11 0.229 0.612 0.110 0.049 0.269 0.555 0.127 0.049 
12 0.150 0.773 0.057 0.020  0.226 0.665 0.081 0.026 
13 0.167 0.126 0.513 0.194 0.145 0.109 0.575 0.170 
14 0.332 0.414 0.183 0.071 0.321 0.442 0.172 0.066 
15 0.279 0.599 0.089 0.333 0.327 0.512 0.121 0.040 
16 0.342 0.246 0.312 0.010 0.356 0.307 0.256 0.080 
17 0.507 0.313 0.149 0.031 0.476 0.356 0.141 0.026 
18 0.242 0.543 0.141 0.075 0.265 0.503 0.156 0.075 
19 0.262 0.582 0.107 0.049 0.283 0.549 0.120 0.047 
20 0.159 0.124 0.418 0.298 0.189 0.149 0.442 0.220 
21 0.221 0.608 0.115 0.056 0.251 0.554 0.135 0.060 
22 0.511 0.123 0.316 0.049 0.515 0.158 0.285 0.042 
23 0.318 0.430 0.182 0.070 0.310 0.380 0.227 0.083 
24 0.240 0.704 0.043 0.013 0.239 0.687 0.057 0.017 
25 0.225 0.613 0.117 0.044 0.260 0.562 0.134 0.044 
26 0.099 0.050 0.675 0.175 0.103 0.056 0.645 0.196 
27 0.386 0.423 0.137 0.054  0.326 0.317 0.239 0.118 
28 0.270 0.505 0.157 0.067 0.298 0.432 0.200 0.069 
29 0.092 0.068 0.098 0.742 0.109 0.088 0.073 0.729 
30 0.347 0.558 0.071 0.025 0.355 0.538 0.082 0.025 
31 0.436 0.104 0.414 0.046 0.488 0.133 0.341 0.037 
32 0.478 0.270 0.191 0.060 0.416 0.260 0.253 0.070 
33 0.370 0.405 0.175 0.050 0.352 0.381 0.210 0.056 
34 0.276 0.392 0.228 0.103 0.281 0.337 0.276 0.106 
35 0.392 0.390 0.173 0.045 0.384 0.414 0.165 0.037 
36 0.252 0.589 0.109 0.051 0.273 0.542 0.129 0.055 
37 0.420 0.550 0.024 0.007 0.364 0.598 0.030 0.007 
38 0.640 0.150 0.173 0.036 0.600 0.202 0.165 0.032 
39 0.063 0.042 0.450 0.445 0.101 0.077 0.261 0.561 
40 0.323 0.297 0.297 0.081 0.314 0.267 0.349 0.069 
41 0.165 0.149 0.196 0.489 0.172 0.158 0.202 0.468 
42 0.121 0.100 0.221 0.559 0.128 0.107 0.202 0.563 
43 0.141 0.106 0.318 0.434 0.196 0.156 0.367 0.281 
44 0.123 0.096 0.130 0.651 0.134 0.108 0.178 0.581 
45 0.130 0.110 0.163 0.597 0.137 0.116 0.216 0.531 
46 0.143 0.092 0.327 0.438  0.146 0.104 0.262 0.487 
47 0.299 0.139 0.427 0.134 0.208 0.152 0.346 0.293 
48 0.158 0.120 0.219 0.503 0.173 0.144 0.198 0.484 
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49 0.471 0.333 0.144 0.051 0.446 0.344 0.158 0.052 
50 0.400 0.481 0.093 0.026  0.362 0.437 0.154 0.047 
51 0.562 0.181 0.207 0.050 0.452 0.289 0.203 0.056 
52 0.081 0.049 0.358 0.512 0.094 0.061 0.386 0.459 
53 0.460 0.151 0.317 0.071 0.476 0.189 0.276 0.059 
54 0.148 0.081 0.550 0.221 0.118 0.071 0.599 0.212 
55 0.104 0.065 0.625 0.205 0.223 0.148 0.507 0.121 
56 0.197 0.128 0.504 0.171 0.190 0.129 0.524 0.157 
57 0.281 0.584 0.096 0.039 0.310 0.542 0.109 0.038 
58 0.138 0.116 0.202 0.543 0.151 0.131 0.184 0.535 
59 0.572 0.267 0.126 0.035  0.520 0.304 0.140 0.036 
60 0.179 0.071 0.703 0.047 0.159 0.074 0.715 0.051 
61 0.567 0.268 0.128 0.036 0.510 0.304 0.147 0.038 
62 0.261 0.123 0.444 0.171 0.276 0.145 0.427 0.153 
63 0.169 0.087 0.578 0.167 0.199 0.111 0.542 0.149 
64 0.125 0.061 0.761 0.052 0.201 0.096 0.664 0.038 
65 0.332 0.437 0.176 0.055 0.333 0.455 0.166 0.046 
66 0.461 0.313 0.162 0.063  0.442 0.298 0.195 0.065 
67 0.067 0.043 0.663 0.226 0.095 0.062 0.705 0.139 
68 0.286 0.430 0.188 0.096 0.298 0.379 0.218 0.105 
69 0.526 0.140 0.286 0.048 0.533 0.190 0.237 0.039 
70 0.143 0.803 0.041 0.013 0.185 0.742 0.056 0.016 
71 0.107 0.054 0.752 0.086 0.167 0.087 0.671 0.074 
72 0.330 0.136 0.449 0.084 0.419 0.184 0.334 0.062 

 

Fuzzy Horizontal Cardiac Patients Clustering Considering Only Seven 
Characteristics 
 
We continue our analysis by clustering the set of patients with the seven descriptors without and with 
data normalization. Because the human experts indicated a classification of the patients in three 
classes, we will work here with the same number of classes. The fuzzy horizontal clustering 
distributes the cardiac patients according to the data presented in Table 10. It is interesting to remark 
in this case a better agreement with the classification obtained by paraclinical and clinical 
examinations. The class of arterial hypertension patients, A3, is much better separated than the other 
ones. Concerning the class of valvular heart disease patients, A1, and the class of the ischemic cardiac 
patients, A3, each of them contains patients from the other one. However, we have to observe that in 
each of these classes we find the majority of patients indicated by paraclinical and clinical 
investigations (see Table 5) and this is a good validation of our technique. 

The membership degrees of the cardiac patients to the classes of the final fuzzy partitions 
obtained by horizontal fuzzy clustering for seven descriptors without and with data normalization, 
presented in Table 11 illustrate also the efficiency of the fuzzy clustering approach. These fuzzy 
membership degrees are in good support with the medical practice that cardiac patients may 
present signs of more than one illness, since a clear-cut of the three groups of cardiac patients is 
practically impossible. 
 

Fuzzy Hierarchical Cross-Clustering 
 
In what follows our aim is to identify the descriptors responsible with the separation of each class 
of patients. We will achieve this by using our fuzzy hierarchical cross-clustering algorithm on the 
set of 72 cardiac patients characterized by the same seven descriptors. 
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TABLE 10 
Results of Horizontal Fuzzy Clustering of the Cardiac Patients 

without and with Data Normalization, Considering only Seven Characteristics 
 

 
Fuzzy class 

Cardiac patients 

Without data normalization 
A1 1 2 7 9 10 11 12 14 15 18 19 21 23 24 25 27 28 30 

33 34 35 36 37 49 50 57 65 66 68 70 
A2 3 4 5 6 8 13 16 17 22 26 31 32 38 40 47 51 53 54 56 

59 60 61 62 63 64 69 71 72 
A3 20 29 39 41 42 43 44 45 46 48 52 55 58 67 

With data normalization 

A1 1 2 7 9 10 11 12 14 15 18 19 21 23 24 25 27 28 30 
33 34 35 36 37 49 50 57 59 61 65 68 70 

A2 3 4 5 6 8 13 16 17 20 22 26 31 38 40 51 53 54 55 56 
60 62 63 64 66 67 69 71 72 

A3  29 39 41 42 43 44 45 46 47 48 52 58 
 
 

TABLE 11 
Membership Degrees of the Cardiac Patients to the Classes of the Fuzzy 

Partition Obtained by Horizontal Fuzzy Clustering using only Seven 
Characteristics 

 
 

Cardiac patient  
Without normalization With normalization 

 A1 A2 A3 A1 A2 A3 

1 0.799 0.155 0.045 0.729 0.219 0.052 
2 0.725 0.227 0.048 0.708 0.253 0.039 
3 0.317 0.591 0.091 0.326 0.604 0.070 
4 0.293 0.647 0.060 0.390 0.550 0.060 
5 0.340 0.499 0.101 0.453 0.454 0.093 
6 0.287 0.601 0.112 0.364 0.522 0.113 
7 0.895 0.086 0.019 0.807 0.161 0.032 
8 0.322 0.555 0.123 0.389 0.493 0.117 
9 0.515 0.409 0.076 0.467 0.456 0.077 

10 0.484 0.421 0.095 0.544 0.383 0.073 
11 0.738 0.197 0.065 0.692 0.240 0.068 
12 0.862 0.114 0.025 0.783 0.180 0.036 
13 0.244 0.409 0.347 0.244 0.454 0.302 
14 0.515 0.371 0.114 0.546 0.356 0.098 
15 0.750 0.200 0.050 0.679 0.260 0.060 
16 0.322 0.522 0.156 0.386 0.496 0.118 
17 0.389 0.546 0.065 0.418 0.532 0.050 
18 0.660 0.240 0.100 0.622 0.276 0.102 
19 0.721 0.213 0.067 0.693 0.241 0.065 
20 0.204 0.339 0.457 0.250 0.429 0.322 
21 0.726 0.202 0.072 0.674 0.245 0.080 
22 0.105 0.852 0.043 0.164 0.789 0.046 
23 0.544 0.342 0.114 0.486 0.392 0.122 
24 0.835 0.141 0.024 0.812 0.162 0.025 
25 0.716 0.217 0.066 0.662 0.273 0.065 
26 0.138 0.463 0.398 0.164 0.470 0.366 
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27 0.577 0.334 0.089 0.446 0.389 0.165 
28 0.635 0.264 0.100 0.568 0.328 0.104 
29 0.052 0.089 0.860 0.051 0.080 0.869 
30 0.740 0.217 0.043 0.731 0.228 0.040 
31 0.067 0.896 0.036 0.109 0.854 0.036 
32 0.408 0.491 0.101 0.386 0.504 0.110 
33 0.512 0.395 0.093 0.478 0.431 0.091 
34 0.517 0.325 0.158 0.464 0.379 0.157 
35 0.478 0.435 0.087 0.494 0.439 0.066 
36 0.715 0.216 0.069 0.668 0.256 0.076 
37 0.810 0.168 0.021 0.828 0.155 0.017 
38 0.231 0.717 0.051 0.304 0.646 0.050 
39 0.100 0.214 0.686 0.111 0.191 0.698 
40 0.408 0.443 0.149 0.376 0.499 0.124 
41 0.171 0.219 0.610 0.178 0.226 0.596 
42 0.114 0.171 0.715 0.117 0.171 0.712 
43 0.153 0.265 0.582 0.237 0.381 0.382 
44 0.089 0.141 0.771 0.109 0.169 0.722 
45 0.110 0.159 0.730 0.131 0.192 0.676 
46 0.141 0.284 0.575 0.140 0.238 0.622 
47 0.216 0.591 0.193 0.243 0.374 0.383 
48 0.147 0.233 0.619 0.163 0.224 0.612 
49 0.494 0.418 0.087 0.514 0.401 0.084 
50 0.622 0.326 0.054 0.564 0.360 0.076 
51 0.265 0.663 0.072 0.409 0.501 0.090 
52 0.088 0.207 0.705 0.118 0.252 0.630 
53 0.196 0.712 0.091 0.269 0.649 0.084 
54 0.175 0.462 0.362 0.186 0.459 0.354 
55 0.162 0.408 0.429 0.240 0.555 0.206 
56 0.234 0.457 0.309 0.251 0.473 0.276 
57 0.733 0.210 0.057 0.706 0.238 0.055 
58 0.132 0.185 0.683 0.138 0.185 0.677 
59 0.448 0.484 0.067 0.492 0.443 0.064 
60 0.132 0.706 0.162 0.166 0.668 0.165 
61 0.446 0.486 0.067 0.487 0.445 0.067 
62 0.195 0.564 0.240 0.232 0.555 0.212 
63 0.173 0.505 0.321 0.213 0.527 0.260 
64 0.148 0.608 0.244 0.155 0.722 0.123 
65 0.536 0.367 0.097 0.556 0.368 0.075 
66 0.464 0.434 0.102 0.445 0.454 0.101 
67 0.143 0.336 0.520 0.192 0.476 0.332 
68 0.558 0.303 0.139 0.513 0.338 0.149 
69 0.151 0.794 0.055 0.257 0.684 0.059 
70 0.890 0.092 0.017 0.846 0.132 0.022 
71 0.148 0.564 0.288 0.168 0.665 0.166 
72 0.175 0.695 0.130 0.230 0.682 0.088 

 
 
The classification hierarchies produced in this way using both non-normalized and normalized 
data are presented in Table 12. The partitioning of the cardiac patients in classes 1 and 2 is 
practically the same in both cases. What is different is the partitioning of the descriptors in the 
two cases. The descriptors associated to the class 1 (without normalization), comprising the 
majority of valvular heart disease patients, are age (1), left ventricle (4), right ventricle (5), and 
left atrium (6). The patients in class 2 (without normalization), majority of arterial hypertension 
and ischemic cardiopathy patients, have as main descriptors the weight (2), left ventricle (3), and 
contractility (7). 
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TABLE 12 
Cross-Classification of the Cardiac Patients and Characteristics Produced 

with Seven Non-Normalized and Normalized Descriptors 
 

 
Fuzzy class 

Cardiac patients  
 

Associated descriptors 
Without data normalization 

 
A1 

 
1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 21 22 
23 24 25 27 28 30 31 32 33 34 35 36 37 38 40 49 
50 51 53 57 59 61 65 66 68 69 70 

 
1 4 5 6 

A2 13 20 26 29 39 41 42 43 44 45 46 47 48 52 54 55 
56 58 60 62 63 64 67 71 72 

2 3 7 

With data normalization 

A1 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 21 22 
23 24 25 27 28 30 31 32 33 34 35 36 37 38 40 49 
50 51 53 57 59 61 65 66 68 69 70 72 

1 2 3 4 5 6 

A2 13 20 26 29 39 41 42 43 44 45 46 47 48 52 54 55 
56 58 60 62 63 64 67 71 

7 

 
 

In the case with data normalization, the main descriptor associated to the class 2 is only 
the contractility (7), the rest, namely age (1), weight (2), left ventricle (3) and (4), right ventricle 
(5) and left atrium (6) are classified with the class 1, which includes the majority of the valvular 
heart disease patients and half from ischemic cardiopathy patients. We remark again a good 
agreement with the medical observations presented in Table 5. 

CONCLUSIONS 

Fuzzy classification algorithms applied to cardiac patients based on seven descriptors, namely 
ECHO data, and also age and weight, allow an objective interpretation of their similarities and 
dissimilarities. Moreover, the results obtained may be very useful in their reclassification. It is 
very interesting to study the classification of valvular heart disease and ischemic cardiopathy 
patients considering their membership degrees. Some of them belong practically with the same 
MD to the two classes, illustrating in this way the fuzziness of cardiac diseases. The new fuzzy 
approach, the fuzzy cross-classification algorithm, allows the qualitative and quantitative 
identification of the variables (descriptors) responsible for the observed similarities and 
dissimilarities between cardiac patients. 

In addition, the fuzzy hierarchical characteristics clustering (FHiCC) and fuzzy horizontal 
characteristics clustering (FHoCC) procedures revealed a high similarity between the descriptors 
referring to the effort testing. This is one of the main conclusions and suggests their high 
redundant character concerning the diagnosis of cardiac diseases. 
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