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Species of the highly diverse fungal genus Aspergillus are well-known agricultural pests, 
and, most importantly, producers of various mycotoxins threatening food safety worldwide. 
Mycotoxins are studied predominantly from the perspectives of human and livestock 
health. Meanwhile, their roles are far less known in nature. However, to understand the 
factors behind mycotoxin production, the roles of the toxins of Aspergilli must be understood 
from a complex ecological perspective, taking mold-plant, mold-microbe, and mold-animal 
interactions into account. The Aspergilli may switch between saprophytic and pathogenic 
lifestyles, and the production of secondary metabolites, such as mycotoxins, may vary 
according to these fungal ways of life. Recent studies highlighted the complex ecological 
network of soil microbiotas determining the niches that Aspergilli can fill in. Interactions 
with the soil microbiota and soil macro-organisms determine the role of secondary 
metabolite production to a great extent. While, upon infection of plants, metabolic 
communication including fungal secondary metabolites like aflatoxins, gliotoxin, patulin, 
cyclopiazonic acid, and ochratoxin, influences the fate of both the invader and the host. 
In this review, the role of mycotoxin producing Aspergillus species and their interactions 
in the ecosystem are discussed. We intend to highlight the complexity of the roles of the 
main toxic secondary metabolites as well as their fate in natural environments and 
agriculture, a field that still has important knowledge gaps.
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INTRODUCTION

The lifestyles of Aspergillus species associated with plants range from saprophytes and symptomless 
endophytes to weak and opportunistic phytopathogens. The shift between these lifestyles is 
the result of global transcriptome changes, primarily affecting secondary metabolite (SM) 
production (e.g., Reverberi et  al., 2013). The principal and well-known mycotoxins produced 
by the Aspergilli are ochratoxin A (OTA) and aflatoxins (AFs), as well as less-prominent toxins 
like patulin (Keller et  al., 2005). These toxins are found in different agricultural commodities 
(Varga et  al., 2004), and are tightly regulated with different threshold limits depending on the 
matrix (Cano et  al., 2016).
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Due to the importance of SMs in plant pathogenesis and 
animal toxicoses, understanding their regulation and biosynthesis 
is crucial but still hindered by notable knowledge gaps. The 
species A. flavus, for example, has been predicted to possess 
56 SM biosynthesis gene clusters (Keller et  al., 2005), but only 
some secondary metabolites, e.g., AFs (Yu et al., 2004), aflatrem 
(Nicholson et  al., 2009), piperazine (Forseth et  al., 2013), 
asparasone (Malysheva et  al., 2014), cyclopiazonic acid (CPA) 
(Chang et  al., 2009), and kojic acid (Terabayashi et  al., 2010) 
have been assigned to a particular gene cluster (Ehrlich and 
Mack, 2014). A. flavus thus might produce metabolites besides 
well-known mycotoxins that could be  underrated contributors 
to its toxicity to humans and animals.

Initially, it was hypothesized that mycotoxin production helps 
fungi to compete with other organisms for nutrient sources 
like fruits or seeds (Janzen, 1977). Mycotoxins are now also 
known to act as chemical signals between representatives of 
different kingdoms, e.g., as inhibitors of quorum sensing (QS), 
virulence factors in pathogens, or as protectors of sclerotia from 
insect predation (Ciegler, 1983; Wicklow et al., 1994; Desjardins 
and Hohn, 1997; Rasmussen et  al., 2005; Rohlfs et  al., 2010).

Due to their economic and public health importance, the 
research on mycotoxins has so far mostly been focused on 
animal husbandry, the food chain, and human aspects. However, 
for a comprehensive understanding of toxigenic molds’ ecology 
and of the evolutionary pressures shaping mycotoxin production, 
interactions with the micro- and macroflora and fauna in 
different habitats need to be  considered and investigated. The 
study of the overall role of microbial SMs in natural habitats 
is a previously mostly neglected, but an emerging field 
(O’Brien  and Wright, 2011).

ASPERGILLUS MYCOTOXINS AND 
THEIR ECOLOGICAL ROLES

Sterigmatocystin/Aflatoxins
AFs are produced by as much as 16 species (Frisvad et  al., 
2019), most notably by A. flavus and A. parasiticus. A wide 
range of Aspergillus spp. produces the AF precursor sterigmatocystin 
(ST), which is also a carcinogenic compound. The ST/AF polyketide 
biosynthetic pathways are perhaps the most thoroughly studied 
ones in fungi (Cleveland et  al., 2009; Khaldi et  al., 2010).

The most common AF-producing species and the most common 
member of section Flavi is A. flavus, which possesses two distinct 
morphotypes, namely the “L-type” with big sclerotia (with average 
diameter of >400  μm), and the “S-type” that produces small 
sclerotia (under 400  μm) (Gilbert et  al., 2018). However, several 
additional and often newly delimited species (A. aflatoxiformans, 
A. arachidicola, A. austwickii, A. cerealis, A. minisclerotigenes, A. 
mottae, A. pipericola, and A. texensis) have been characterized 
by S-type sclerotia. Earlier reports on S-type A. flavus may have 
referred to any of these species, including those that produce 
both aflatoxin B1 (AFB1) and aflatoxin G1 (AFG1) (so-called 
SBG strains) (Singh et  al., 2018; Frisvad et  al., 2019).

While the ecological role of ST is not known in detail, it 
is presumably antagonistic to organisms competing for resources 

with ST producers. Both AFs and ST have been reported to 
be  phytotoxic (Stoessl, 1981; McLean et  al., 1995). AFs inhibit 
plant photosynthesis by hindering chlorophyll and carotenoid 
synthesis (Anjorin and Inje, 2014), leading to virescence or 
albinism in the contaminated plants (Reiss, 1978). However, 
in plant pathogenesis, the role of these mycotoxins needs to 
be investigated as non-aflatoxigenic strains also have the potential 
to colonize plant hosts, e.g., on cotton bolls (Cotty, 2007), 
and these types of strains are isolated frequently.

Soil is the natural habitat for A. flavus, and AF production 
is considered to give a fitness advantage in that environment 
(Drott et al., 2017). Selective forces that maintain the polymorphism 
of non-aflatoxigenic and aflatoxigenic colonies are mainly unknown. 
Resource competition among the closely related strains is modulated 
by factors such as chemical composition and pH of the soil or 
nutrient and water availability (Ehrlich, 2014). Moreover, 
competition between aflatoxigenic and non-aflatoxigenic strains 
is strain-dependent, and it must be  noted that non-aflatoxigenic 
strains are not necessarily atoxigenic, as they may produce toxins 
other than AFs. Under high fungal density, non-aflatoxigenic 
strains can outcompete both toxigenic and other non-aflatoxigenic 
populations (Cotty, 2006). Aflatoxigenic isolates were shown to 
have lower fitness than non-aflatoxigenic isolates in wide 
temperature ranges (25–42°C) (Drott et  al., 2019). This may 
explain the success of the latter in competition. The metabolic 
cost of AF production seems to explain the low fitness as AFB1 
itself does not affect the growth of A. flavus at concentrations 
as high as 500  ng  g−1 (Drott et  al., 2019), orders of magnitude 
higher than what can be  measured in soils (0.6–5.5  ng·g−1) 
(Accinelli et  al., 2008). Inoculation of soil with non-aflatoxigenic 
strains also protects crops from AF contamination during storage 
(Dorner and Cole, 2002; Bandyopadhyay et  al., 2016).

AFB1 is transient in soils with a half-life of approximately 
5  days at 28°C; however, it is produced continuously as long 
as there is a substrate, e.g., corn residues (Accinelli et  al., 
2008). High A. flavus levels (log10 3.1–4.5  cfu·g−1), AFB1 
production, and expression of the AF biosynthetic genes (aflG, 
aflD, aflP, aflR, and aflS; Ehrlich et al., 2005) have been reported 
in the former study.

Studies on AFB1 transformation in soil or purified mineral 
systems have identified AFs B2 (AFB2) and G2 (AFG2) as 
the primary transformation products using thin-layer 
chromatography. However, the more sophisticated HPLC-MS 
technique did not detect these molecules in spiked soils. In 
an aqueous-soil environment, a new structure, B2a (AFB2a), 
was detected as the single primary transformation product. 
AFB2a is a hydrolytic product of AFB1 and the soil acting 
as an acid catalyst (Starr et  al., 2017) (Figure  1).

AFs taken up through plant roots can be  accumulated, 
transported to other tissues (e.g., in groundnut seedlings; 
Hariprasad et  al., 2015; Snigdha et  al., 2015), degraded, 
metabolized, or masked, or can be diffused back to the medium 
(e.g., in maize; Mertz et  al., 1980).

Various fungi can inhibit AF accumulation. In an in vitro 
soil environment, Fusarium oxysporum was able to inhibit AF 
production at different temperatures (25 and 30°C) and fumonisins 
accumulated instead of AFB1 (Falade et  al., 2016). On the 
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contrary, inhibitory effect by A. flavus on Fusarium oxysporum 
f. sp. niveum and Fusarium solani f. sp. cucurbitae has also 
been described with an inhibition rate exceeding 50 % in in 
vitro and greenhouse experiments. Hyperparasitism of A. niger, 
A. flavus, and A. terreus on F. oxysporum f. sp. melonis was 
also demonstrated (Boughalleb-M’Hamdi et  al., 2018).

Gliotoxin
Gliotoxin (an epipolythiodioxopiperazine) has internal disulfide 
bridges that conjugate proteins (Spikes et  al., 2008). Gliotoxin 
biosynthesis and regulation are reviewed by Dolan et al. (2015). 
The compound is implicated in the formation of reactive oxygen 
species (ROS) by redox cycling and is generally broadly cytotoxic 
(Gardiner et  al., 2005). Therefore, its detoxification is only 
possible by its biosynthetic enzymes (Scharf et  al., 2018). One 
of the significant gliotoxin producers besides biocontrol 
Trichoderma ssp. is A. fumigatus, a saprophyte and an 
opportunistic animal pathogen. Gliotoxin produced by this 

fungus acts as a virulence factor mediating systemic mycosis 
in susceptible vertebrates (Latgé, 2001; Scharf et  al., 2016) and 
presumably in insects (Reeves et al., 2004). A. fumigatus possesses 
a self-protecting system against gliotoxin (Schrettl et  al., 2010; 
O’Keeffe et  al., 2014). RNA-seq revealed 164 differentially 
expressed genes (DEGs) in A. fumigatus treated with external 
gliotoxin, and besides gliotoxin biosynthesis genes, helvolic acid 
biosynthesis genes, siderophore-iron transport genes showed 
altered expression (O’Keeffe et  al., 2014). High temperature 
and humidity during crop maturation may favor A. fumigatus 
presence and toxin production. Gliotoxin enters the food chain 
and reaches the most sensitive farm animals, like horses and 
poultry (Pena et  al., 2010). However, there is no threshold 
limit for this molecule.

In composted mineral soil with a natural microbiota, the 
toxin may function as an antibiotic, effectively controlling the 
damping-off disease of Zinnia elegans (zinnia) seedlings caused 
by the fungus Rhizoctonia solani and the water mold Pythium 

FIGURE 1 | Main chemical conversions of aflatoxin B1 (AFB1) under interaction with different organisms and soil. Sterigmatocystin (ST) is a chemical precursor of 
aflatoxin B1 (AFB1) in aflatoxigenic fungi. The further conversion processes are explained in details in the text. Source: National Center for Biotechnology 
Information. PubChem Compound Database (accessed June 6, 2019) (Bolton et al., 2008).
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ultimum (Lumsden et  al., 1992). A strong correlation between 
the presence of bacterial peptidoglycan, lipopolysaccharide, or 
lipoteichoic acid in soil and the gliotoxin secretion of A. 
fumigatus was described by Svahn et  al. (2014). This finding 
was potentially relevant for drug discovery research, and 
parallelism was found with the increased virulence of A. 
fumigatus in case of bacterial co-infection.

Ochratoxins
Several Aspergilli in sections Circumdati (such as A. steynii 
and A. westerdijkiae), Flavi, and Nigri (e.g., A. carbonarius and 
A. niger; Palencia et  al., 2010) are well-known producers of 
OTA, a mycotoxin teratogenic, carcinogenic, immunosuppressive, 
and nephrotoxic in animals (Samson et  al., 2014). All studied 
OTA-producing fungi have a consensus OTA biosynthetic pathway 
with four highly conserved biosynthetic genes in a cluster and 
a bZIP transcription factor (Wang et  al., 2018).

OTA induced necrotic lesions on Arabidopsis thaliana leaves 
via induction of an oxidative burst by elevated ROS (hydrogen 
peroxide and superoxide anion) levels (Peng et  al., 2010). 
Meanwhile, the downregulation of the antioxidant defense enzymes 
in host plants and up-regulation of lipid peroxidation were 
detected, along with root growth inhibition of seedlings (Peng 
et  al., 2010). Infiltration of 4-week-old A. thaliana leaves with 
2 mM and 1 mM OTA solutions in vitro resulted in macroscopic 
lesions (Wang et  al., 2012), and the growth of A. thaliana was 
repressed, while cell death was detected with characteristic 
hypersensitive response-type lesions on the excised leaves. Cell 
death did not only result in a manifestation of oxidative burst 
but the deposition of phenols and callose (Peng et  al., 2010) 
as well. McLean (1996) investigated the effect of the toxin on 
germinating Zea mays embryos. Interestingly, there was no linear 
relationship between the inhibitory effect and the OTA 
concentrations as 10  μg·ml−1 OTA was inhibitory, while 5 or 
25  μg·ml−1 OTA was stimulatory for root and shoot growth.

Soil type, in connection with microbial activity, affects OTA 
half-life. In soils with higher microbial activity, like planted soils, 
faster degradation could be  measured (Mortensen et  al., 2006) 
caused by the microbial biomass (e.g., Barberis et  al., 2014). 
Regulation of OTA biosynthesis can be  modulated by volatile 
organic carbons (VOCs) as observed for A. carbonarius and fruit 
ketones, C-8 alcohols, and trans-nerolidol (Zhang et  al., 2017).

Patulin
Patulin is a polyketide mycotoxin produced by Penicillium spp. 
and to a lesser extent, various Aspergilli (Zhang et  al., 2008). 
It is frequently found in fresh fruits or fruit juices and jams 
contaminated with blue mold rot (Logrieco et  al., 2003). Like 
clavatol, patulin inhibits numerous plant pathogenic fungi and 
water molds in vitro, i.e., Fusarium oxysporum f. sp. cucumerinum, 
Botrytis cinerea, Didymella bryoniae, Rhizoctonia solani, and 
Pythium ultimum (Zhang et  al., 2008). Patulin and clavatol 
produced by Aspergillus clavatonanicus endophyte of Taxus 
mairei have been shown to antagonize plant pathogens (Zhang 
et  al., 2008). Interestingly, Botha et  al. (2018) reported that 
A. clavatus produced higher concentration of tremorgenic 

mycotoxins (i.e., tryptoquivaline A, deoxytryptoquivaline A, 
and deoxynortryptoquivaline) than concomitant patulin and 
cytochalasin E. Patulin, similarly to penicillic acid has the 
potential to interfere with bacterial QS communication in soil 
(Rasmussen et  al., 2005), hinting at its potentially manifold 
ecological roles in microbial communities.

Cyclopiazonic Acid
The neurotoxic CPA is an indole-tetramic acid produced by 
13 species in section Flavi (Frisvad et  al., 2019). It inhibits 
endoplasmic reticulum calcium ATPases at nanomolar 
concentrations, and therefore, it is an inducer of cell death 
in plants (Chang et  al., 2009). Usually, CPA and AFs are 
concomitant mycotoxins. Most A. flavus strains synthesize AFs 
B1 and B2 besides CPA, although some strains also synthesize 
AFs G1 and G2 (Geiser et  al., 2000; Cardwell and Cotty, 
2002). In contrast, A. parasiticus strains produce all four AFs 
without CPA biosynthesis (Dorner et  al., 1984). Moreover, a 
“sleeping” CPA cluster was activated by the overexpression of 
a general secondary metabolism regulator gene (laeA) in A. 
fumisynnematus (Hong et  al., 2015).

CPA was proposed to modify calcium homeostasis, 
mitochondria, and cytoplasm membranes based on animal 
studies (Riley and Goeger, 1992). This mycotoxin serves as a 
critical pathogenicity factor that enables the saprophytic lifestyle 
of A. flavus (Chalivendra et  al., 2017), presumably, through 
its good iron-chelating characteristics (Riley and Goeger, 1992).

PLANT-FUNGAL INTERACTIONS

Peanut-Aspergillus flavus Interaction
It is well-known that multiple mechanisms are involved in 
host plant defense systems in response to A. flavus infection 
and AF accumulation. Peanut was found to have evolved 
complex defense mechanisms to resist pathogens, such as 
blocking the invasion and activating a range of defense responses 
(Holbrook and Stalker, 2003). Eight hundred forty-two candidate 
genes were recognized for A. flavus resistance in post-harvest 
seeds (Wang et al., 2016a). Genes involved in defensive responses 
to A. flavus and AF biosynthesis were stimulated in resistant 
genotype (Wang et  al., 2016b).

The plant cell wall, the first line of defense against microbial 
pathogens, is primarily made up of polysaccharides cellulose, 
hemicellulose, and pectin. While opportunistic fungi usually 
infect plants through wounds (e.g., mechanical or pest damages), 
pathogenic ones actively penetrate cell walls, often through 
the secretion of a range of polysaccharide-degrading enzymes such 
as pectinesterase, arabinofuranosidase, mannosidase, and 
galacturonidase along with amylases or proteases (Whitehead et al., 
1995; Bellincampi et  al., 2014; Wang et  al., 2016b). In peanuts 
resistant to A. flavus infection, feruloyl esterase, pectinesterase, 
arabinofuranosidase, mannosidase, polygalacturonase, and 
galacturonidase fungal activities were significantly downregulated 
compared to the sensitive plants (Wang et al., 2016a). Resistance 
to A. flavus infection is naturally the most critical factor in 
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avoiding AF exposure to consumers. Pod infection, seed invasion, 
and AF production in the cotyledon are the crucial steps to 
be considered (Nigam et al., 2009). The first interaction between 
the plant and the mold is at the pod shell, where the pathogen 
resistance depends on the shell structure. The second barrier 
is the undamaged seed coat. Upon a successful invasion, A. 
flavus colonizes the seed cotyledon and produces AFs. In a 
proteomic study, a total of 29 seed proteins showed differential 
expression between the resistant and susceptible peanut cultivars 
under drought stress in response to A. flavus (Wang et  al., 
2010). Under drought stress, AF production was consistent in 
peanut pods even if roots of those plants were well watered. 
Meanwhile, AF was not produced in well-watered peanuts pods, 
while roots were under drought stress (Sanders et  al., 1993).

The data suggest that drought stress is the most critical 
factor in the interaction of the plant and the fungal agent. 
Therefore, watering of the fields is crucial along with the 
improvement of the plant’s resistance by genetic modification 
or selection.

Maize-Aspergillus flavus Interaction
Pathogenesis in maize depends on environmental factors (e.g., 
Payne and Widstrom, 1992; Kebede et al., 2012; Fountain et al., 
2014), metabolic state of the kernels (Chen et  al., 2010; Jiang 
et  al., 2011), physiological state of the fungus (Jayashree and 
Subramanyam, 2000), and time elapsed following infection 
(Scott and Zummo, 1994; Betrán and Isakeit, 2004). Vitreous 
compared to softer dent type endosperm was positively correlated 
with AF contamination and resistance to ear rot (Betrán and 
Isakeit, 2004; Llorente et  al., 2004).

Since maize is a favorable host for the Aspergilli, especially 
for A. flavus, and the plant’s resistance is genetically determined, 
much effort was invested worldwide to develop resistant maize 
genotypes. Recent breeding investigations focused on quantitative 
trait loci (QTL) for AF resistance (Kelley et al., 2012; Fountain 
et  al., 2015), and the studies demonstrated that the resistance 
to A. flavus is highly quantitative and is not conferred by a 
single gene. Any given QTL was found to account for a rather 
low level of phenotypic variance explained regarding AF 
resistance. Resistance thus has a polygenic nature with a 
combination of multiple traits being involved in the resistant 
phenotype (Fountain et al., 2014; Yin et al., 2014). Maize inbred 
lines were found also to vary in their tolerance to CPA 
(Chalivendra et  al., 2017). Moreover, CPA tolerance of the 
root was in a significant correlation to silk resistance under 
fungal colonization (Mideros et  al., 2012).

During infection, mycelia were detected inside the scutellum, 
exhibiting a biofilm-like formation at the endosperm-scutellum 
interface (Dolezal et al., 2013). This biofilm-like structure bears 
resemblance to the biofilm of A. fumigatus in the human lung 
(Loussert et  al., 2010). In situ hybridization of RNA showed 
the expression of the pathogenesis-related protein gene in the 
aleurone and scutellum of maize seed (PRms) during A. flavus 
infection (Shu et  al., 2015). Transcripts of the maize sucrose 
synthase-encoding gene (shrunken-1; Sh1) were detected in 
the embryo in non-infected kernels, but the gene was up-regulated 
in the aleurone and scutellum under A. flavus infection. 

Moreover, the transcripts of PRms and Sh1 showed accumulation 
in the seeds before infection (Shu et  al., 2015).

A recent study was conducted on expression profiling of 
267 unigenes (mostly genes of metabolism, stress response and 
disease resistance) in a mapping population derived from a 
cross between susceptible and resistant parent plants (Dhakal 
et al., 2017). It revealed that many genes involved in the synthesis 
and hydrolysis of starch and sugar mobilization and others 
related to energy production and/or precursors of lignin and 
phytoalexins used in the defense response were highly expressed 
(Dolezal et  al., 2014; Shu et  al., 2015; Dhakal et  al., 2017).

Apart from Fusarium infection (Mesterházy, 2008), A. flavus 
causes the most economic loss on cornfields. However, 
co-infection by these genera is not investigated in detail, and 
only some aspects are known like the inhibitory effect on 
AFB1 production by Fusarium (Falade et al., 2016), and inhibitory 
and hyper-parasitic effect of A. flavus on Fusaria (Boughalleb-
M’Hamdi et  al., 2018). Moreover, the physiological effects of 
the co-produced mycotoxins like CPA and AFs or the effect 
of the co-infection on mycotoxin productions is rarely investigated 
(e.g., Marín et  al., 2001; Giorni et  al., 2016).

Cotton-Aspergillus flavus Interaction
Cottonseed can be contaminated pre-and postharvest by Aspergilli. 
A comparative transcriptome analysis was performed investigating 
the genes expressed differentially in corn, peanut, and cotton 
under aflatoxigenic A. flavus infection (Bedre et  al., 2015). 
Only 26 common genes were identified as candidate A. flavus 
resistance genes in all the three plants. Six of these genes 
coded for Fe(II)-dependent oxygenase superfamily proteins and 
2-oxoglutarate. In response to both non-aflatoxigenic and 
aflatoxigenic strains, genes encoding alcohol dehydrogenase, 
UDP glycosylation transferase, and helix loop helix protein 
were induced (Bedre et  al., 2015). Upregulation of primary 
metabolism modulated signal transduction cascades that were 
essential to plant defense responses (Rojas et  al., 2014). In 
the pericarp, sucrose and starch metabolism besides glycerolipid 
metabolism were upregulated under infection with 
non-aflatoxigenic A. flavus. The metabolic pathways activated 
by the presence of non-aflatoxigenic A. flavus in the plant 
pericarp and seeds compared to aflatoxigenic A. flavus activated 
pathways can lead to possible target genes to develop fungal 
stress tolerance and resistance in cotton (Bedre et  al., 2015).

Phytohormone Guided Interactions
Phytohormones are well-known mediators of fungus-plant 
interactions with different roles. The abscisic acid (ABA) (Hauser 
et  al., 2011; Xin et  al., 2012), salicylic acid (SA) (Janda and 
Ruelland, 2014), and ethylene (ET) (Bleecker and Kende, 2002; 
Ton et  al., 2002) phytohormonal pathways in plants can act 
against A. flavus and AF production by mediating and channeling 
many stress-response genes (Bari and Jones, 2009). Transcriptomic 
analysis revealed DEGs of phytohormone production and 
signaling in response to AF production in peanut (Wang et al., 
2016a). Moreover, DEGs concerning ABA production and 
signaling showed higher expression in a sensitive peanut genotype 
than in the resistant plants (Wang et  al., 2016b).
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Determining the roles of ET is challenging as disease 
symptoms seem to be  either reduced or enhanced or not 
affected depending on the pathogen-host interaction (Bleecker 
and Kende, 2002). It inhibits AF biosynthesis in A. flavus 
through alleviation of oxidative stress (Huang et  al., 2009). 
However, DEGs involved in ET production were downregulated 
in response to AF production, and most of them were also 
repressed in the resistant genotype. Wang et al. (2016b) concluded 
that ET might suppress resistance to AF production, and later 
Wang et  al. (2017) found that ET emitted by infected seed 
facilitated the colonization by A. flavus but not AF production 
in maize, potentially opening up biotechnological applications.

Contrary, SA is suppressive for some fungi (Seyfferth and 
Tsuda, 2014). SA inhibited mycelial growth and mycotoxin 
formation of A. flavus in vitro, and the in vivo evaluation resulted 
in more significant inhibitory effects for the intact treated 
pistachio fruit as for injured ones (Panahirad et  al., 2014).

Jasmonates are lipid-derived signals compounds in plant 
growth and development in response to stresses like pathogen 
attack or drought (Wasternack, 2014). Jasmonic acid (JA) and 
its metabolites, members of the oxylipin family, are synthesized 
in the alpha-linolenic acid pathway. Many of them modify 
gene expression in a regulatory network with synergistic and 
antagonistic effects concerning other plant hormones such as 
SA, auxin, ET, and ABA (Wasternack, 2007). Metabolism of 
alpha-linolenic acid was upregulated in pericarp under both 
non-aflatoxigenic and toxigenic A. flavus infection in comparison 
to seeds. Similarly, the alkaloid biosynthetic pathway was more 
intensively upregulated in the pericarp under both 
non-aflatoxigenic and toxigenic A. flavus infection than in the 
seed. In tobacco host plants, the alkaloid biosynthesis was 
increased in response to insect foraging and application of JA 
(Todd et  al., 2010). Therefore, it was suggested that the 
JA-regulated defense response is also stimulated as an answer 
to A. flavus infection (Bedre et  al., 2015).

Furthermore, in the case of the aflatoxigenic A. flavus 
infection, upregulation of arachidonic acid (AA) metabolism 
was detected in seeds, exceeding that under non-aflatoxigenic 
infection in the pericarp. AA has a role in plants as a signaling 
compound, and it stimulates plant defense responses through 
fatty acids. Meanwhile, pathogen AA triggers plant innate 
immunity resulting in defense responses and programmed plant 
cell death (Savchenko et  al., 2010).

Pathogenesis-Related (PR) Proteins
PR proteins are disease resistance proteins induced in the host 
plant in response to pathogen infection (Bravo et  al., 2003; 
Luo et  al., 2011). Identification and characterization of such 
plant genes have importance in reducing fungal pathogenicity. 
In maize, PR-protein genes included PR-1, PR-4, PR-5, PR-10, 
and chitinase (Dhakal et  al., 2017).

The plant hydrolytic enzymes like β-1,3-glucanases and 
chitinases show antifungal activity owing to the degradation 
of fungal cell wall components (Cordero et  al., 1994; Dolezal 
et  al., 2014). Plant chitinases also have lysozyme activity and 
are active in preventing mycelial development (Collinge and 
Slusarenko, 1987; Collinge et  al., 1993). The gene expression 

of chitinase 2 and PR-10 was reported to be  upregulated in 
maize seeds during fungal infection (Cordero et  al., 1994). In 
vitro PR-10 protein possessed antifungal activity against A. 
flavus, and its production was upregulated upon A. flavus 
infection in a resistant maize hybrid but not in a susceptible 
one (Chen et  al., 2006). RNAi gene silencing driven repression 
of PR-10 resulted in an increased susceptibility to A. flavus 
and AF production (Chen et al., 2010). Moreover, overexpression 
of chitinase genes (Cletus et  al., 2013) resulted in resistance 
against fungal infection in rice (Baisakh et al., 2001) and peanut 
(Rohini and Sankara Rao, 2001; Prasad et  al., 2013).

Besides chitinases (Singh et al., 2015), lectins are also involved 
in the plant defense mechanisms (Dang and Van Damme, 
2015) and probably play an essential role in inhibiting AF 
production (Hawkins et  al., 2015). In resistant and sensitive 
plant genotypes, chitinase showed different expression levels 
(Wang et  al., 2016a). Eleven chitinase encoding transcripts 
were expressed differentially in pericarp and seed during infection 
by both aflatoxigenic and non-aflatoxigenic strains in cotton 
(Bedre et  al., 2015), while in maize seven chitinase genes were 
associated with the increased in vivo resistance to A. flavus 
infection and AF accumulation (Hawkins et  al., 2015).

Production of the PR maize seed protein, ZmPRms, was 
recently shown to be  involved in resistance to A. flavus and 
other pathogens in a seed-specific RNA interference study 
(Majumdar et  al., 2017). A. flavus infection increased 
significantly on corn kernels with downregulated ZmPRms 
with a concomitant 4.5–7.5-fold higher accumulation of AFs, 
presenting the protein’s role in evading infection and toxin 
accumulation (Majumdar et  al., 2017).

Plants also produce cell wall polygalacturonase-inhibiting 
proteins to counteract the activity of fungal polygalacturonases 
(Kalunke et  al., 2015), enzymes that catalyze the hydrolysis 
of the α-(1–4) linkages between the D-galacturonic acid units 
in homogalacturonan resulting in cell separation in the plant 
tissues. The interaction between polygalacturonases and inhibiting 
proteins promoted the formation of oligogalacturonides, which 
evoked further defense responses (Federici et  al., 2006). In 
peanut, Wang et  al. (2016b) showed that all six DEGs of 
polygalacturonase-inhibiting proteins were upregulated to a 
much higher level in a resistant genotype than in a sensitive one.

Oxylipins
Plant’s linoleic acid and 9- and 13-hydroperoxy fatty acids 
(9S- and 13S-HPODE oxylipin products) have a substantial 
effect on the differentiation processes of Aspergillus spp. Both 
9S- and 13S-HPODE alter secondary metabolism in A. parasiticus 
and A. nidulans (Gardner, 1995; Burow et  al., 1997). They 
also increase the production of the conidiospores in A. nidulans 
and A. flavus, and, in A. nidulans, elevate cAMP levels (Calvo 
et al., 1999; Affeldt et al., 2012). Additionally, A. flavus infection 
of peanut seeds promoted linoleate 9-LOX expression and 
9S-HPODE accumulation. 13S-HPODE producing lipoxygenase 
alleles (PnLOX2 and PnLOX3) were highly expressed in mature 
seed, but these genes were repressed between 5-fold and 250-fold 
during A. flavus infection. The outcomes of these investigations 
proposed that 9S-HPODE is a susceptibility, while 13S-HPODE 
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is a resistance factor during Aspergillus spp. infection (Tsitsigiannis 
et al., 2005). Similarly, linoleic acid host-derived oxylipins were 
also suggested to drive mycotoxin synthesis (Burow et al., 1997; 
Brodhagen et  al., 2008; Reverberi et  al., 2010). 13S-HPODE 
repressed expression of ST and AF biosynthetic pathway genes 
at concentrations of 10 and 100 μM and, in this way, significantly 
reduced ST and AF production in both A. nidulans (ST producer) 
and A. parasiticus (AF producer) in vitro (Burow et  al., 1997). 
The maize ZmLOX3-mediated pathway acted as a root-specific 
suppressor of all three major defense signaling pathways 
(Gao  et  al., 2008a,b).

The oxylipin-driven processes are complicated further by 
fungal oxylipin production. A. flavus single lipoxygenase produced 
oxylipins influence host responses. Reverberi et al. (2010) found 
that a lox-like gene mutant A. ochraceus was not only failed 
to produce 13S-HPODE, but a sharp decrease was detected 
in its OTA production. The conidium formation was also 
delayed, and the sclerotium production was increased in the 
cultures. Moreover, seeds infected with the A. ochraceus mutant 
could not produce normal 9S-HPODE levels or induce the 
defensive PR1, suggesting the importance of the fungal 
13S-HPODE in the regulation of host defense response. The 
oxylipin profile of the maize kernels inoculated with wild type 
and lox mutant A. flavus strains showed elevated levels of 
HPODE and diHODES, also suggesting that the fungal Lox 
produces compounds that suppress plant oxylipin production. 
The ΔAflox1 mutant strain was able to produce AF only on 
kernels, but not in axenic culture (Scarpari et al., 2014), revealing 
the complexity of the metabolic interactions.

PSIB α oxylipins derived from linoleic acid in A. nidulans 
were also reminiscent of those produced from seed fatty acids, 
and the infected seeds were able to influence the fungal 
development imitating and interfering with signals controlling 
conidiogenesis (Prost et  al., 2005).

Antioxidants
Oxidative stress is a critical factor that can stimulate the synthesis 
of AF and other SMs (Reverberi et  al., 2010, 2013). H2O2 and 
other oxidative agents (Fanelli et  al., 1985; Jayashree and 
Subramanyam, 2000; Narasaiah et  al., 2006) activate AF 
biosynthesis in Aspergillus sect. Flavi (Reverberi et  al., 2008). 
At the plant-pathogen boundary, ROS production is an essential 
feature that contributed to Aspergillus virulence besides SM 
production (Reverberi et  al., 2013). In seeds contaminated with 
Aspergilli, a burst of H2O2 was detectable within a few hours 
of infection (Lamb and Dixon, 1997; Kachroo et  al., 2003; 
Reverberi et al., 2008; Peng et al., 2010). For A. flavus, it appeared 
that lowering H2O2 levels in the corn embryo helps to prevent 
A. flavus infection and AF accumulation (Magbanua et al., 2007).

Among the stress-related transcripts, the presence of fungal 
superoxide dismutase in the dent samples indicated oxidative 
stress, known to be coupled to the production of AFs (Jayashree 
and Subramanyam, 2000; Fountain et  al., 2015, 2016). It is 
arising that oxidative stress in fungi plays an essential role 
not only in SM biosynthesis but also in plant-fungal interactions. 
Within plant tissues, environmental stresses, e.g., drought and 
heat stress, may also result in the accumulation of ROS and 

play an essential role in communication between plants and 
the Aspergilli (Fountain et  al., 2014).

In various plant seeds (e.g., maize, sunflower), the processes 
of lipoperoxidation induce a change in the ratio of oxidants 
and antioxidants, in favor of ROS accumulation in fungal cells 
and stimulating synthesis of AFs in A. flavus and A. parasiticus 
(Fabbri et  al., 1983; Burow et  al., 1997; Reverberi et  al., 2008; 
Gao and Kolomiets, 2009). The SM production may be considered 
as the result of fungal cell response to incomplete scavenging 
of ROS (Reverberi et  al., 2008; Hong et  al., 2013).

At the plant’s side, DEGs and antioxidant transcripts of 
glutathione S-transferase, ferredoxin, copper amine oxidase, 
ascorbate peroxidase, and peroxidase involved in ROS processing 
and scavenging showed amplified activity during infection with 
both non-aflatoxigenic and toxigenic A. flavus (Bedre et  al., 
2015). Plant peroxidases also contributed to the response to 
AF production. DEG peroxidases showed a significantly higher 
expression in an A. flavus resistant peanut genotype than in 
a sensitive one, indicating better management of ROS in the 
former during fungal infection (Wang et  al., 2016a).

Genes of the phenylpropanoid biosynthetic pathway that produce 
antimicrobial phytoalexins, phenolic substances, and lignin in 
plants (Collinge and Slusarenko, 1987; Lawton and Lamb, 1987) 
were found to show higher expression and more rapid activation 
in an A. flavus resistant maize genotype than in a sensitive one. 
Moreover, biosynthesis genes of phenylpropanoids, flavonoids, 
stilbenoids, diarylheptanoids, and gingerol were enriched only in 
the resistant maize genotype (Wang et  al., 2016a). DEGs analysis 
in cotton inoculated with aflatoxigenic and non-aflatoxigenic A. 
flavus also revealed some significant variances in the expression 
rates of the genes taking part in the defense mechanisms. For 
instance, in the pericarp, the phenylpropanoid pathway was enriched 
at a higher level under aflatoxigenic strain infection than under 
non-aflatoxigenic infection (Bedre et  al., 2015).

The flavonoid pathway is essential in the production of several 
antifungal compounds and, therefore, it is related to defense 
reactions (Treutter, 2005). In seeds, the flavonoid biosynthesis 
pathway was the utmost upregulated under non-aflatoxigenic A. 
flavus infection exceeding the pericarp (Bedre et  al., 2015). 
Numerous studies illustrated the potential impact that flavonoids 
could exert on SM production. Rutin (quercetin-3-rutinoside) 
was demonstrated as an effective inhibitor of AFB1 production 
(Chitarrini et  al., 2014). Naringin (flavanone-7-O-glycoside), 
hesperidin (3′,5,7-trihydroxy 4′-methoxy flavanones 7-rutinoside), 
and some plant glucosides were characterized for their capacity 
to restrain mycotoxin production (e.g., patulin by Penicillium 
expansum, A. terreus, and Byssochlamys fulva; Salas et  al., 2012). 
Similarly, the growth of A. parasiticus and its AFB1 production 
were repressed by methanolic extracts of Ephedra major roots 
(Bagheri-Gavkosh et  al., 2009). The inhibition of the growth and 
AFB1 production of A. parasiticus was attributed to quercetin 
and p-coumaric acid flavonoid compounds. In peanut, some 
stilbenoids (arachidin-1, arachidin-3, and chiricanine A) caused 
changes in growth rate, mycelial morphology, and spore germination 
of A. flavus (Sobolev et al., 2018). Moreover, a significant decrease 
or almost complete suppression of AF production was revealed 
in A. parasiticus, A. flavus and A. nomius (Sobolev et  al., 2018). 
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Similarly, plants with high concentrations of other antioxidants 
like β-carotene, β-cryptoxanthin, and total provitamin A also 
had a reduced amount of AF contamination than hybrids with 
low carotenoid contents (Suwarno et  al., 2019). The relative ease 
of plant breeding for increased provitamin A as compared to 
breeding directly for AF resistance suggested novel approaches 
to suppress AF contamination.

Masked Mycotoxins
Plants metabolize xenobiotic compounds such as mycotoxins 
as part of their defense mechanisms. In plants, similar to 
animals, phase I  metabolism (enzymatic transformation such 
as oxidation, reduction, or hydrolysis), phase II process 
(sulfatation, glucosidation, glucuronidation) (Coleman et  al., 
1997; Berthiller et  al., 2009), and phase III detoxification 
(sequestration of compounds conjugated to glucose or glutathione 
into a vacuole or their permanent attachment to the plant 
cell wall) (Berthiller et  al., 2013) can be  differentiated. The 
chemical transformations in phase I  are typical for lipophilic 
compounds, and most of the hydrophilic compounds are not 
affected by this phase. In phase I, oxidations are catalyzed by 
the cytochrome P-450 system, while the hydrolysis is catalyzed 
by esterases and amidases (Coleman et  al., 1997).

Plant-metabolized mycotoxins have been identified mostly 
for Fusarium toxins (HT-2 toxin, T-2 toxin, nivalenol, 
fusarenon-X, deoxynivalenol, zearalenone, fusaric acid; Berthiller 
et al., 2013) or insecticidal destruxins from Metarhizium anisopliae 
(Pal et  al., 2007). The metabolism of some Alternaria toxin 
derivatives and Aspergillus mycotoxins was studied using plant 
cell cultures (Ruhland et  al., 1996) and germinating cereals 
and vegetables (Ruhland et al., 1997). The same OTA derivatives 
were isolated from all the tested plant species, and the conversion 
was nearly complete (Berthiller et  al., 2013). However, the 
quantitative distribution strongly depended on the plant species. 
In addition to ochratoxin α, the main derivatives were (4R)- 
and (4S)-4-hydroxy-ochratoxin A and β-glucosides of both 
isomers were detected. Ochratoxin α is considered as a non-toxic 
molecule, whereas hydroxy-ochratoxin A is as potent 
immunosuppressant as OTA (Berthiller et  al., 2013).

The lack of current studies on plant-modified and masked 
Aspergillus mycotoxins calls for attention to a considerable gap 
in the understanding of mycotoxins’ fate and ecological roles, 
especially in the case of toxins produced by plant pathogens, 
such as A. flavus.

INTERACTIONS OF THE ASPERGILLI 
AND THEIR MYCOTOXINS WITH SOIL 
MICRO- AND MACROBIOTA

The possible interactions of fungi in the genus Aspergillus with 
the micro- and macrobiota of the soil can be  very diverse 
ranging from direct physical contact, through non-contact 
biochemical/enzymatic interactions (e.g., via biotransformation), 
up to volatile organic compounds (VOCs) exerting their effects 
without physical contact between competing organisms.

Aspergilli and Their Mycotoxins Versus 
Soil Microbiome
Actinomycetes (e.g., Verheecke et  al., 2014), Lactobacilli (e.g., 
Romanens et al., 2019), Bifidobacteria (e.g., Ghazvini et al., 2016), 
and Bacilli (Siahmoshteh et al., 2017) are the best-studied groups 
from these aspects. Several studies have conducted screening on 
microbial collections to find potential biocontrol isolates that 
inhibit mold growth, testing (1) bacteria ranging from endophytes 
and rhizosphere species (Wang et  al., 2013); (2) traditional 
fermentation products (Ahlberg et  al., 2017); (3) various other 
samples where natural interactions with toxigenic molds are far 
less plausible, as in halophilic soils (Jafari et  al., 2018) or fish 
intestines (Veras et  al., 2016). The effects on toxin production 
and the underlying mechanisms of growth and toxigenic nature 
are, similarly to yeasts, less understood and often not attempted 
to uncover. OTA biodetoxification was reviewed by Chen et  al. 
(2018) in detail. Microbes can affect OTA concentration by 
degradation or absorption and at gene regulation level. OTA 
biosynthesis genes (acpks, acOTApks, and acOTAnrps) and the 
general SM regulator veA of A. carbonarius were downregulated 
upon co-culturing with Streptomyces isolates, with a concomitant 
decrease in OTA production (El Khoury et  al., 2017). While 
acOTAnrps and acOTApks, along with laeA, a general regulator 
of fungal secondary metabolism, were found to be downregulated 
by Lactobacillus plantarum (Lappa et  al., 2018).

Close physical interaction between bacteria and fungi induced 
otherwise silent biosynthesis genes in A. nidulans (Schroeckh 
et al., 2009). These are from a wide range of gene clusters known 
as silent or non-expressed ones of merely predicted SMs (Keller 
et al., 2005). For example, the direct physical interaction between 
A. nidulans and actinomycetes resulted in orsellinic acid and 
lecanoric acid production via chromatin remodeling (Netzker 
et al., 2015) of the fungal culture (Schroeckh et al., 2009). Intimate 
interaction was also described for plant root-Bacillus subtilis-A. 
niger interactions, where B. subtilis attached on the surface of 
the plant root and onto fungal mycelia. Transcriptomic data 
revealed that both the fungus and the bacterium modified their 
metabolism during the interaction. The antifungal and antibacterial 
defense mechanisms of both B. subtilis and A. niger were reduced 
upon attachment of bacteria to the mycelia (Benoit et  al., 2015). 
Furthermore, bacterial-fungal interaction can also affect plants 
negatively, for example, Salmonella enterica subsp. enterica serovar. 
Typhimurium established biofilm on A. niger hyphae, where the 
bacterial growth was promoted, while the bacterial biofilm protected 
the fungus in a mutualistic relationship (Balbontín et  al., 2014). 
Regarding the maize plant, the co-colonization has more adverse 
consequences on plant growth than colonization by either 
microbe individually.

Mycotoxins in soil are subjects of microbial biotransformation, 
detoxification, or degradation. A wide variety of microorganisms 
can biotransform mycotoxins (reviewed by Verheecke et  al., 
2016). Most studies were conducted with AFB1 due to its 
high toxicity and carcinogenicity. Several bacteria and fungi, 
including Rhizopus sp. (Cole et  al., 1972), Hypomyces rosellus 
(Dactylium dendroides), and Corynebacterium rubrum (Mann 
and Rehm, 1976) convert AFB1 to aflatoxicol (Figure 1) reducing 
its C-3 keto on the cyclopentanone ring. AFB1 degradation 
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of Nocardia corynebacteroides (Flavobacterium aurantiacum) was 
reported first by Ciegler et  al. (1966). However, AFB1 was 
only metabolized partially and mostly adsorbed to N. 
corynebacteroides cells (Line and Brackett, 1995).

Bacteria can reduce the amount of AFB1 by forming AFB2 
with lower toxicity, and by making other compounds (AFG2, 
aflatoxicol) undetectable. Myxococcus fulvus reduced AFB1 by 
80.7% (Guan et  al., 2010). Teniola et  al. (2005) studied 
Rhodococcus erythropolis, and a remarkable reduction (70%) 
of AFB1 was observed with cell-free extracts, and an almost 
total (over 90%) degradation was detected within 4 h. Nocardia 
asteroides was also able to transform AFB1 to another fluorescent 
product (Arai et  al., 1967).

Among fungi, Rhizopus species, such as R. arrhizus (Cole 
et  al., 1972), R. oryzae (Knol et  al., 1990; Faraj et  al., 1993; 
Varga et  al., 2005) and R. oligosporus (Kusumaningtyas et  al., 
2006) have been described as being able to degrade AFB1, whereas 
several other Rhizopus species (Cole et  al., 1972) also have been 
shown to remove AFG1. Non-aflatoxigenic A. flavus isolates, 
Rhizopus sp., A. niger, and A. glaucus (Eurotium herbariorum) 
converted AFB1 to aflatoxicol (Figure 1) and vice versa (Nakazato 
et  al., 1990). Alternaria sp., Phoma sp., Trichoderma sp., and 
Sporotrichum sp. have been found to lower AFB1 to 65–99% of 
the original concentrations (Shantha, 1999). Other fungi, such 
as Hypomyces rosellus (Dactylium dendroides) (Detroy and 
Hesseltine, 1968), Mucor ambiguous, Trichoderma viride (Mann 
and Rehm, 1976), Armillaria tabescens (Liu et  al., 1998), Phoma 
sp. (Shantha, 1999), Pleurotus ostreatus (Motomura et  al., 2003), 
and Trametes versicolor (Zjalic et al., 2006) have also been described 
to lower AFB1 concentrations. OTA degradation was demonstrated 
when applying Bacillus licheniformis (Petchkongkaew et al., 2008), 
Brevibacterium species (B. linens, B. iodinum, B. epidermidis, B. 
casei) (Rodriguez et al., 2011), Acinetobacter calcoaceticus (Hwang 
and Draughon, 1994), and Phenylobacterium immobile (Wegst 
and Lingens, 1983). Cell-free supernatants of Pseudomonas putida 
reduced OTA concentration by 8.45–25.70% (Rodriguez et  al., 
2011). The dimorphic fungus Apiotrichum mycotoxinivorans 
(Trichosporon mycotoxinivorans) also degraded OTA (Molnar et al., 
2004). Aspergillus species such as A. niger, A. fumigatus, A. 
japonicus, and section Nigri species were also able to remove 
OTA from liquid media (Varga et  al., 2000; Abrunhosa et  al., 
2002, 2014; Bejaoui et  al., 2006). Patulin degradation was rarely 
demonstrated. However, for example, the yeast Rhodosporidium 
kratochvilovae was shown to decrease patulin concentration, 
whereas the concentration of desoxypatulinic acid increased with 
time (Castoria et  al., 2011). Another possible detoxification 
mechanism is done by PGUG enzyme from yeast Meyerozyma 
guilliermondii (Chen et  al., 2017) or by oxidoreductase from 
bacteria Gluconobacter oxydans (Ricelli et  al., 2007). Besides the 
antagonistic effects of yeasts on mycotoxin production, the cytotoxic 
and inhibitory effects of the toxins on yeasts (summarized in 
Figure  2) have also been investigated in some cases (reviewed 
by Pfliegler et  al., 2015). In these studies, the well-known model 
organisms Saccharomyces cerevisiae and the fission yeast 
Schizosaccharomyces pombe have been studied. The toxic effects of 
AF and OTA, among other mycotoxins, negatively affected the 
yield of maize mash fermentation processes (Kłosowski et al., 2010), 

suggesting considerable toxicity. The mechanism of the AF toxic 
action was shown to be  a DNA replication block (Fasullo et  al., 
2010). Mutagenic effects were detected after ST exposure (Kuczuk 
et al., 1978). Furthermore, patulin was found to induce oxidative 
stress and DNA damage both in fission and budding yeasts 
(Horváth et  al., 2012; Papp et  al., 2012; Ianiri et  al., 2013), with 
an additional effect of fluidization of the cytoplasm membrane 
in S. pombe (Horváth et  al., 2010).

Yeasts utilize general and oxidative stress response pathways 
along with potential degradation mechanisms to resist 
mycotoxin exposure (Iwahashi et al., 2006; Ianiri et al., 2013); 
thus, variation in sensitivity to mycotoxins is not a surprise. 
Indeed, Hanseniaspora uvarum, S. cerevisiae, and Kluyveromyces 
marxianus were all found to be  resistant to AF and OTA 
(Angioni et al., 2007). Aspergillus mycotoxin toxicity to bacteria 
is far less understood. Madhyastha et al. (1994) found Bacillus 
and Brevibacillus spp. to be  highly susceptible to AFB1, but 
mostly resistant to OTA (except for B. brevis and B. cereus). 
Tested strains of Pseudomonas, Salmonella, Listeria, and 
Escherichia were usually unaffected by mycotoxins. Additionally, 
Kuczuk et  al. (1978) demonstrated the mutagenic effects of 
ST on S. Typhimurium.

Biodegradation techniques with higher effectiveness may 
be  developed based on existing data and novel research, by 
further identifying microorganisms capable of biodegrading 
mycotoxins, by confirming non-toxicity of degradation 
compounds, by improving both their toxin tolerance and their 
degradation abilities, and by testing various modes of application.

Volatile Organic Compounds in  
Soil Interactions
Fungi interact with plants through VOCs. This phenomenon 
could play an essential role in fungal pathogenesis. VOCs 
released by pathogenic fungi could influence plants before 
any physical interaction between the two organisms. Some 
VOCs (fatty acid derivatives, terpenoids, phenylpropanoids) 
are lipophilic; they are small (less than 300  Da) and have 
high vapor pressure (0.01  kPa or higher at 20°C) and are 
well known as signal molecules among various organisms. 
Some of the VOCs (e.g., C15H24) were found to be  unique 
to aflatoxigenic A. flavus (Zeringue et  al., 1993). Different 
fungal-bacterial interaction leads to the specific initiation of 
fungal SM genes. The two-way volatile interaction between 
A. flavus and Ralstonia solanacearum, a similarly widespread 
and economically crucial soil-borne pathogenic bacterium 
of peanut, was studied by Spraker et al. (2014). R. solanacearum 
decreased the production of its major virulence factor 
extracellular polysaccharide in response to A. flavus VOCs, 
while A. flavus responded to the bacterial VOCs by reducing 
conidiospore production and by increasing AF production 
on peanut. Arbuscular mycorrhizae are also affected by the 
Aspergilli. Funneliformis mosseae (Glomus mosseae) decreased 
the saprobic A. niger population through its effect on the 
plant, whereas A. niger inhibited F. mosseae in its extramatrical 
stage through the production of soluble substances or VOCs 
(McAllister et  al., 1995).
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Application of some special yeasts may cause a direct inhibition 
of mycotoxin production of filamentous fungi, independently 
of their growth suppressing effect (Petersson et  al., 1998; Hua 
et  al., 2014). However, the effect on toxin production is rarely 
separated from the growth-inhibiting effect due to methodological 
constraints. Wickerhamomyces anomalus (Pichia anomala) is the 
best-characterized yeast species from this aspect. Hua et  al. 
(2014) recognized 2-phenyl ethanol (2-PE), a volatile compound 
produced by W. anomalus as both growth and AF biosynthesis 
inhibitor in A. flavus. AF biosynthesis genes aflR (a positive 
regulator), aflC (polyketide synthase, an early gene in the AF 
pathway), aflS (transcription enhancer), aflK (versicolorin B 
synthase), and aflO (O-methyltransferase B) were downregulated 
more than 10,000-fold following 2-PE treatment. Altered 
expression patterns were also observed for chromatin-modifying 
genes (MYST1, MYST2, MYST3, hdaA, gcn5, rpdA), influencing 
mold growth negatively (Hua et  al., 2014). On the contrary, 
a subsequent characterization of the temporal transcriptome 
response of A. flavus to smaller, subinhibitory 2-PE concentration 
revealed inhibition of CPA and AF biosynthesis genes that can 
be  attributed to stimulating active growth of the mold, a 
condition that does not favor SM production (Chang et  al., 
2015). These results highlighted the complexity of fungus-fungus 
interactions depending on the metabolic state and VOC 
concentration as delicately controlled as the production of 
mycotoxins (Figure  3).

Streptomyces isolates decreased AF levels when co-cultured 
with A. flavus, and this effect was also linked to suppressing 
AF regulator gene expression (Verheecke et  al., 2015). 
Subsequently, S. alboflavus VOCs (mainly dimethyl trisulfide 
and benzenamine) were shown to play a critical role in this 
effect, downregulating genes involved in AF biosynthesis in 
addition to growth inhibition (Yang et  al., 2019). Along with 
W. anomalus, Hanseniaspora uvarum and Pichia kluyveri yeasts 
were also found to produce VOCs (most notably 2-PE) that 
hindered the growth and OTA production of A. ochraceus 
(Masoud et  al., 2005; Masoud and Kaltoft, 2006). A follow-up 
study showed that 2-PE inhibition of OTA production byin 
A. carbonarius and A. ochraceus isolates was also inhibited by 
2-PE, though was caused by the downregulation of their 
non-ribosomal peptide synthase, polyketide synthase, and 
monooxygenase genes (Farbo et al., 2018) and the regulatory 
veA and laeA genes (Amaike and Keller, 2009).

Another VOC, ethylacetate, was involved in the biocontrol 
effects of Saccharomyces, Metschnikowia, and W. anomalus yeasts 
against various molds, including A. carbonarius (Oro et  al., 
2018). VOCs were also responsible for the biocontrol effect 
of Candida friedrichii, Candida intermedia, Lachancea 
thermotolerans, and Cyberlindnera jadinii (Fiori et  al., 2014). 
However, this effect was species-specific. Only C. friedrichii 
reduced mold growth significantly, while the others only inhibited 
the fungal sporulation.

FIGURE 2 | Mechanisms of action of some Aspergillus mycotoxins on bacteria (left) and yeasts (right). Colored lines represent antagonistic/damaging effects. AF, 
aflatoxin; ST, sterigmatocystin; OTA, ochratoxin A.
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Finally, it should be  noted that yeast-mold, and bacteria-
mold interactions through VOCs and other factors, including 
growth inhibition mechanisms and the mechanisms of gene 
expression alterations in mycotoxin gene clusters, mostly have 
been tested in solid and liquid co-cultures, i.e., isolated from 
the plant host. Studies based on results of the last decades 
thus should focus on disentangling the interplay among microbes 
in vivo, both to understand the microbial ecology of mycotoxin 
production in crops and to evaluate the utilization strategies.

The Aspergilli and Their Mycotoxins 
Versus Protists
Secretion of mycotoxins and escape from phagocytosis are 
strategies evolved in molds to counter predation in the natural 
environment. A. fumigatus and free-living amoebal species are 
both abundant soil organisms with antagonistic relationships. 
Mechanisms of A. fumigatus to avoid ingestion by amoebae 
were modeled with Acanthamoeba castellanii (Van Waeyenberghe 
et  al., 2013). Intra-amoebal passage left a fraction of the 

FIGURE 3 | Schematic summary of ecological interactions of plants, fungi, insects, microbes, and Aspergilli. Red lines represent trophic relationships, with arrows 
pointing towards predators and herbivores. Orange lines represent competitive relationships, while green ones show mutualistic relations. Brown lines signal toxic 
effects of mycotoxins on various organisms, and blue lines show modulating effects of plants and microbes on toxin production. Note that trophic interactions and 
pathogenicity of soil microbiota are only considered in relation to aflatoxigenic Aspergilli and their toxins in this review and figure.
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consumed conidia viable. These spores were able to escape 
the food vacuoles after phagocytosis and germinated intra-
cytoplasmatically, resulting in amoebal death. Interactions with 
mammalian and avian macrophages and A. fumigatus have 
been compared to these processes, leading to the hypothesis 
that the ability of the fungus to kill and escape macrophages 
is a pre-adoptive trait developed in their original ecological 
niche, namely the soil (Van Waeyenberghe et  al., 2013).

Similarly, the slime mold Dictyostelium discoideum efficiently 
consumed fungal spores upon contact with A. fumigatus, but 
the ingestion was more intensive when conidia contained lower 
amounts of the green spore pigment dihydroxy naphthalene 
(DHN) melanin (Hillmann et al., 2015). Conidia could survive 
phagocytosis, and the intracellular germination began only after 
some hours of co-incubation, which leads to a fatal disruption 
of the predatory cell. Furthermore, both organisms secreted 
cross-inhibitory factors that could block fungal growth or induce 
amoebal aggregation (caused by fungal gliotoxin) with subsequent 
cell lysis, respectively (Figure  3). A. fumigatus and related 
ascomycetes produced the above mentioned DHN melanin in 
their spores. However, A. terreus is a DHN-melanin synthesis 
deficient fungus and, instead, had a tyrosinase (TyrP), and an 
unusual NRPS-like enzyme (MelA) expressed under conidiation. 
MelA produced aspulvinone E, which is stimulated for 
polymerization by TyrP. The new pigment, Asp-melanin, in 
addition to its usual function conferring resistance against UV 
radiation, hindered phagocytosis by soil amoeba. Contrary to 
DHN melanin, Asp-melanin did not prevent acidification of 
phagolysosomes. Therefore, it is probable that it contributes 
to the endurance of A. terreus conidia in an acidic environment 
(Geib et  al., 2016).

Furthermore, the antibiotic compound fumagillin produced 
by A. fumigatus is active against microsporidia and several 
amoebae but is also poisonous when administered to mammals 
(Stevanovic et  al., 2008). However, this substance was widely 
used in apiculture against amoebal disease (Bailey, 1955).

The Aspergilli and Their Mycotoxins 
Versus Arthropods
Recently, roles of fungal SMs in the ecosystem have been 
demonstrated by toxicological, behavioral, and experimental 
evolutionary setups with a still limited number of arthropod 
species. Using fruit fly larvae (Drosophila), the role of AF in 
protection from fungivores is linked to its role in interference 
competition (Drott et  al., 2017), supporting Janzen’s (1977) 
old and not universally accepted hypothesis (Sherratt et  al., 
2006). Janzen postulated a fitness advantage of AF production 
in the presence of soil microbes, vertebrates, or arthropods 
with which the fungus engages in interference competition. 
Recent experiments have shown that deterring arthropods 
indeed confers a fitness advantage to the fungus colonizing 
nutrient-rich sources (e.g., decaying fruits, seeds, dung, and 
carrion) (Drott et  al., 2017), in addition to the more 
straightforward and previously described (Caballero Ortiz et al., 
2013; Doll et  al., 2013) deterring effect on fungal grazers. 
Mycotoxin production by colonizing fungi may create an adverse 

environment for arthropods competing for these nutrition 
sources (Rohlfs and Churchill, 2011). The fact that arthropods, 
especially insects, are not only competitors of the Aspergilli, 
but their feeding may predispose the plant or the harvested 
plant product upon which it feeds to Aspergillus infection (Beti 
et  al., 1995; Niu et  al., 2008; Ni et  al., 2011) further illustrates 
the complicated tripartite ecological interactions of these molds 
with plants and arthropods (summarized in Figure  3).

Naturally, the production of AFs may exert selective pressure 
on exposed arthropods to evolve resistance or tolerance mechanisms 
that can manifest in detoxification mechanisms or active antagonism 
towards the fungus. Arthropods are very diverse in their interactions 
with toxigenic molds, ranging from high susceptibility to remarkable 
tolerance, presumably, resulting from the variable nature of this 
evolutionary pressure across habitats. Variation in susceptibility 
to AF and other mycotoxins has been detected by various studies 
focusing on mycophagous mites (Racovitza, 2009), Drosophila 
species (Rohlfs and Obmann, 2009), soldier fly larvae (Hermetia 
illucens) (Bosch et  al., 2017; Camenzuli et  al., 2018), the maize 
weevil (Sitophilus zeamais) (Drott et  al., 2017), the yellow and 
lesser mealworms (Tenebrio molitor and Alphitobius diaperinus) 
(Bosch et al., 2017; Camenzuli et al., 2018), the navel orangeworm 
(Amyelois transitella) (Niu et  al., 2009), the cabbage looper 
(Trichoplusia ni) (Zeng et  al., 2013), or the corn earworm 
(Helicoverpa zea) (Zeng et  al., 2006; Niu et  al., 2008, 2009). It 
is plausible that species feeding on highly contaminated food 
sources are selected towards higher tolerance. Maize weevils are 
remarkable from this aspect: no mortality increase was observed 
among these pests even when their food sources contained up 
to 30,000  μg  kg−1 AFB1 (Drott et  al., 2017).

Additionally, using Drosophila melanogaster as a model organism, 
within-species variation in tolerating mycotoxins has also been 
observed (Rohlfs, 2006). This intraspecific variation may enable 
populations to adapt to increased fungal competition and mycotoxin 
exposure, as demonstrated with the same fly species and A. 
nidulans in an experimental evolutionary setup (Trienens and 
Rohlfs, 2011). The authors concluded that evolved lineages were 
more tolerant both to fungal and to purified ST exposure without 
increased resistance, i.e., without increased ability to impair fungal 
growth. At the same time, grazing by D. melanogaster larvae 
induced resistance in A. nidulans. Grazing activated the expression 
of many putative resistance genes of the fungus, along with laeA, 
the key SM regulator gene (Amaike and Keller, 2011). The reaction 
to the fungivores co-occurred with gene expression changes in 
signal transduction, epigenetic regulation, and SM biosynthesis. 
Reciprocal insect-fungus interactions may select the Aspergilli 
for inducible resistance resulting in higher fitness in habitats with 
a high abundance of fungivores (Caballero Ortiz et  al., 2013).

Feeding by D. melanogaster larvae induced synthesis of methyl 
farnesoate and juvenile hormone-III in A. nidulans upon expressing 
a heterologous regulatory protein (Nielsen et al., 2013). It indicates 
the probable importance of juvenile hormone biosynthesis in 
fungal-insect antagonistic relationships while also raising 
possibilities in insecticidal strategies, given the developmental 
and metabolic importance of juvenile hormones in arthropods 
(Nielsen et  al., 2013). Vice versa, insects may also develop 
behavioral adaptations to respond to toxic fungal competitors. 
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For example, Drosophila larvae have been shown to aggregate 
around aflatoxigenic A. nidulans colonies suppressing fungal 
growth, improving the chance of larval survival to the adult 
stage in natural habitats (Rohlfs, 2005; Trienens et  al., 2017).

Another fungal-bacterial-insect interaction was described with 
the connection of an endophytic herbivore, Dendroctonus rufipennis 
(spruce beetle), which is accompanied by an invasion of its 
galleries by several fungal species (e.g., A. fumigatus, A. nomius, 
Leptographium abietinum, Trichoderma harzianum) (Cardoza 
et  al., 2006). Trichoderma and Aspergilli significantly decreased 
the survival and reproduction of spruce beetle in controlled 
circumstances. Adult spruce beetle insects exuded an oral secretion, 
which inhibited the growth of tested fungi except for A. nomius 
or disrupted the fungal morphology in a dose-dependent way. 
Oral secretions on microbiological media revealed presence of 
bacteria responsible for the antifungal activity. The isolated bacteria 
belonged to the Actinobacteria, Firmicutes, Betaproteobacteria, 
and Gammaproteobacteria taxa that showed species-specific 
inhibitory activities (Cardoza et  al., 2006).

Tolerance requires effective detoxification of food-derived 
AFs, mechanisms of which have recently been uncovered, but 
so far only in a few species. H. zea has been shown to predispose 
the plant upon which it feeds to Aspergillus infection and 
concomitant AF contamination, and this pest insect was shown 
to be  able to efficiently metabolize AFB1 into the less toxic 
AFP1 (Figure 1) using cytochrome P450 monooxygenases (Niu 
et  al., 2008). However, the action of these monooxygenase 
enzymes is not yet fully understood, as some results indicate 
that bioactivation, not detoxification may also result from their 
activity in insects (Zeng et  al., 2006, 2013). Larvae of A. 
transitella, a significant pest of almonds and pistachios have 
been shown to metabolize AFB1 into three biotransformation 
products, mainly aflatoxicol, and to negligible amounts of AFM1 
and AFB2a (Figure  1). The relatively high production of 
aflatoxicol may reflect a detoxifying adaptation arising from 
the often mold-infected habitats of the A. transitella (Lee and 
Campbell, 2000). The codling moth Cydia pomonella, a pest 
infecting walnuts and pome fruits, produced none to low levels 
of AFB1 biotransformation products, suggesting a lower level 
of detoxification capability (Lee and Campbell, 2000).

A further aspect of insect mycotoxin tolerance and indirect 
mold-microbiome interactions may also be  relevant: the effects 
of insect symbionts during mycotoxin exposure (Figure  3). 
Insect microbial symbionts are ubiquitous, incredibly diverse, 
and their interactions with their hosts are far from being wholly 
understood (e.g., Dowd and Vega, 2004). At least one symbiotic 
yeast-like species, Symbiotaphrina kochii, can enzymatically 
detoxify and utilize mycotoxins as carbon sources (along with 
plant allochemicals and insecticides, even as sole carbon sources) 
(Shen and Dowd, 1991). More recently, Rohlfs and Kürschner 
(2010) reported that increased diversity of dietary yeast species 
benefited Drosophila larvae competing with, and exposed to 
the toxins of A. nidulans, by apparently ameliorating the effects 
of the toxins. These works call attention to the highly under-
researched interactions of invertebrate gut microbiotas and 
toxins. It is plausible that the microbiome of insects and other 
arthropods, especially of those that are fungal grazers or face 

interference competition from molds, is an essential factor 
contributing to the observed variation in resistance to AF and 
other mycotoxins, and hence the ability of certain arthropods 
to compete with highly toxigenic molds.

Finally, the application of entomopathogenic fungi is a 
capable alternative to chemical control of insects, e.g., mosquitoes. 
Aspergillus clavatus from Oedaleus senegalensis (Senegalese 
locust) was highly pathogenic against Culex quinquefasciatus, 
Aedes aegypti, and Anopheles gambiae mosquito larvae. 
Application of A. clavatus using spore concentrations ranging 
between 4.3 and 21  ×  107  ml−1 resulted in 11–68% mortality 
against C. quinquefasciatus, and 37–100% against A. aegypti 
(Seye et  al., 2010). Moreover, also in pheromone production, 
a possible biotechnological application is hiding. The VOC 
spiroketal (E)-conophthorin (7-methyl-1,6-dioxaspiro[4.5]decane) 
(Beck and Higbee, 2015) and the isomeric chalcogran are 
recognized as semiochemicals of some scolytid beetles. 
Conophthorin is produced by both insects and plants and 
widely known as a non-host plant VOC from the bark of 
angiosperm species. Interestingly, VOC production was tested 
as a response to primary fatty acids of the host plants by 
non-aflatoxigenic and aflatoxigenic A. flavus, as well as A. 
niger, A. parasiticus, Penicillium glabrum, and Rhizopus stolonifera. 
On linoleic acid, these fungi formed both spiroketals, while 
those on linolenic acid emitted only chalcogran. Conversely, 
no production was detected on palmitic and oleic acid, which 
also adds a new level of insect-plant-Aspergillus VOC interaction 
(Beck et  al., 2012).

Non-aflatoxigenic knockout and low toxin-producing strains 
of Aspergillus are less capable of antagonizing insect populations 
(Regulin and Kempken, 2018). In addition to balancing selection 
on mycotoxin production, it must be noted that insect adaptation 
to mold competition seems to favor tolerance instead of resistance 
(Trienens and Rohlfs, 2011). Thus, selective pressure on fungi 
competing with insects is less likely to fuel co-evolutionary 
arms races or Red Queen dynamics (Rabajante et  al., 2015) 
that would clearly favor more toxigenic strains.

CONCLUSIONS

Because of their economic and public health importance, research 
on fungal SM mycotoxins has mostly been focused on animal 
husbandry, the food chain, and human aspects. However, genome 
data analyses of numerous fungi and the analytical measurements 
revealed that most of the predicted SM-associated clusters are 
silent, demonstrating that fungi continue to be a yet undiscovered 
resource of biologically active molecules. It was also concluded 
that A. flavus might produce metabolites besides well-known 
mycotoxins that could be underrated contributors to the toxicity 
to humans and animals. By changing the culture conditions 
or the genetic regulation to activate silent clusters, new molecules 
may be  discovered that later can be  available for medicine or 
selective biocontrol of fungi or higher eukaryotes.

For a comprehensive understanding of toxigenic molds’ 
ecology and the evolutionary pressures shaping mycotoxin 
production, interactions with the micro- and macroflora and 
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fauna in different habitats need to be considered and investigated. 
The study of the overall role of microbial SMs in natural 
habitats is now an emerging field. However, the lack of current 
studies on plant-modified and masked Aspergillus mycotoxins 
calls for attention to a considerable gap in our understanding 
of mycotoxins’ fate and ecological roles.

Some interaction research revealed new levels of regulations 
of SM gene expressions through chemical interactions even 
without direct physical contact. Metabolomic studies at the 
level of VOCs can boost our knowledge to solve the puzzle 
of the interactions.

Microbial symbionts of insects are ubiquitous and incredibly 
diverse; however, their interactions with their hosts are far 
from being wholly understood. The review also calls attention 
to the highly under-researched interactions of invertebrate gut 
microbiotas and mycotoxins. The microbiome of insects and 
other arthropods is an essential factor contributing to the 
observed variation in resistance to AF and other mycotoxins, 
and, hence, in the ability of certain arthropods to compete 
with highly toxigenic molds.

Recently developed and applied plant protection or soil 
fertilization agents also should be  studied focusing on their 
effects on interkingdom interactions in soil, or on plants and 
in plant tissues. In connection with this, the recently approved 
non-aflatoxigenic A. flavus strains and fungal preparations are 
also a subject for further research on interactions of the soil 
macro- and microbiota. Studying metabolic pathways in pericarp 
and seeds that are activated differentially by non-aflatoxigenic 
and aflatoxigenic A. flavus may help to identify possible target 
genes to increase plant tolerance and resistance and to fight 
AF contamination. Mycotoxin biodegradation techniques with 
higher effectiveness may also be developed based on the existing 
data and novel research by identifying further microorganisms 
capable of biodegrading mycotoxins, by improving both their 
toxin tolerance and their degradation abilities, and by modification 
of the application.

This article also wanted to attract attention to the fact that 
most of the direct and indirect yeast-mold and bacteria-mold 
interactions have been tested only in in vitro conditions. Such 
studies targeted fungal growth inhibition mechanisms and the 
gene expression alterations in SM gene clusters. Therefore, studies 
initiated by the results of the last decades should focus on 
disentangling the interplay in vivo, both to understand the microbial 
ecology of mycotoxin production in crops and to evaluate the 
utilization strategies. Therefore, greenhouse or microplot 
experiments should be  applied for the extended data collection.
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