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Embryonic stem cells (ESCs) can differentiate into diverse cell types and have the ability of self-renewal.
Therefore, the study of cell fate decisions on embryonic stem cells has far-reaching significance for regen-
erative medicine and other biomedical fields. Mathematical models have been used to study emryonic
stem cell differentiation. However, the underlying mechanisms of cell differentiation and lineage repro-
gramming remain to be elucidated. Especially, how to integrate the computational models with quanti-
tative experimental data is still challenging. In this work, we developed a data-constrained modelling
approach, and established a model of mouse embryonic stem cells. We used the truncated moment equa-
tions (TME) method to quantify the potential landscape of the ESC network. We identified two attractors
on the landscape, which represent the embryonic stem cell (ESC) state and differentiated cell (DC) state,
respectively, and quantified high dimensional biological paths for differentiation and reprogramming
process. Through identifying the optimal combinations of gene targets based on a landscape control strat-
egy, we offered some predictions about the key regulatory factors that govern the differentiation and
reprogramming in ESCs.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Embryonic stem cells have the capacity of self-renewal, high
proliferation and multilineage differentiation. Therefore, they have
an important and far-reaching influence on new drug discovery
and development, disease models, organ transplantation and tissue
repair [1,2]. Studies have shown that the reprogramming of human
somatic cells and lineage reprogramming can be achieved by reg-
ulating several key genes [3–8]. Some key genes that determine
whether embryonic stem cells exit or remain in a pluripotent state
have been extensively studied [9–14]. However, the underlying
mechanisms of cell differentiation and lineage reprogramming
have not been fully clarified. It remains challenging to control
whether cells exit or remain in the pluripotent state, which needs
further explorations.

The pluripotency of mouse embryonic stem cells has been con-
sidered to be controlled by underlying gene regulatory networks
[15–19]. Dunn et al. developed a data-constrained, computational
approach to construct a simplified gene regulation network of
embryonic stem cells, which comprises 12 gene components and
three input signals. This model can explain the known phenotypes,
predict some results of combined genetic perturbations and test
the relative stability of embryonic stem cells under different cul-
ture conditions [20]. Recently, a simulation approach has been pro-
posed to investigate the stochastic dynamics of pluripotency in
mouse embryonic stem cells based on the network of Dunn et al.
[21]. However, the global stability of pluripotency network of
mouse stem cells has yet to be explored. More importantly, how
to identify the optimal combinations of interventions from gene
networks to induce reprogramming remains challenging.

Here, we aim to apply the landscape theory to study the dynam-
ical mechanisms of the underlying gene regulatory network of
embryonic stem cells. The classic Waddington landscape has been
proposed as a metaphor for the development and differentiation of
cells [22]. Recently, the epigenetic landscapes for biological net-
works have been quantified from various approaches [23–29],
and employed to study the stochastic dynamics of embryonic
development [23,30–34]. From the perspective of landscape, differ-
ent cell types are depicted as attractors on a potential surface. The
cell differentiation process is viewed as a ball rolling from one
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basin to another on the landscape surface by crossing certain bar-
riers. The barrier heights among the attractors quantify the feasi-
bility of the cell transformation from one cell type to the other.

In this work, we try to identify the important factors affecting
the differentiation and reprogramming of mouse embryonic stem
cells from the perspective of dynamics. Based on an embryonic
stem cell network [20], we built models of ordinary differential
equations (ODEs) to describe the time evolution of expression
levels of different components. One critical issue in constructing
a gene regulation network model is how to determine the param-
eters of the system. Here, we adopted a data constrained modelling
strategy, and estimated the parameters in the models to fit the bin-
ary experimental data from Dunn et al. [20]. Then we obtained the
potential landscape of the network by truncated moment equa-
tions (TME) method [35,36]. We identified two attractors on the
landscape, which represent the embryonic stem cell (ESC) state
and the differentiated cell (DC) state, respectively. We further cal-
culated the minimum action paths (MAPs) to quantify the transi-
tion processes of the differentiation and reprogramming. By
single factor sensitivity analysis of parameters, we predicted some
critical regulations in cell differentiation and reprogramming. From
the perspective of gene networks, an effective intervention strat-
egy should be targeting multiple factors in the network, rather
than one. By optimizing the transition action from DC state to
ESC state, we identified some optimal combinations of key regula-
tions among genes, which can promote reprogramming. These
analyses on the landscape and the transition actions will promote
our understanding on the mechanisms of differentiation and repro-
gramming, and help to identify key genes and interactions for
inducing reprogramming.
2. Results

2.1. Mathematical model of embryonic stem cell network

Our model is based on the embryonic stem cell network
inferred by Dunn et al. [20]. This network includes 26 interactions
(regulations) and 15 components (12 genes and 3 signals). The
three extra-cellular signals are cytokine leukemia inhibitory factor
(LIF) and two selective inhibitors, including glycogen synthase
kinase 3 (CH) and mitogen-activated protein kinase (PD) [37].
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Fig. 1. The network of the core circuit of an embryonic stem cell system including 15 nod
activation and red bars represent inhibition. Orange nodes represent input signals, and
links calculated from the optimization of transition actions (Table 1). (For interpretation
version of this article.)
Some direct transcriptional targets of LIF, CH, and PD have been
identified, including Stat3, Gbx2, Klf4, Tcf3, Tfcp2l1, Esrrb, MEKERK
and Nanog [38–43] (see Supplemental information Fig. S1 for
direct transcriptional targets). The other regulations among genes
are predicted from experimental data of mouse embryonic stem
cells [20]. Based on this network, we constructed models of ODEs
to describe the time evolution of expression levels of each compo-
nent, which can be written as the following form:

dXi

dt
¼ g0 þ

XN
j¼1

Aji � Xn
j

Sn þ Xn
j

þ
XN
j¼1

Bji � Sn

Sn þ Xn
j

� k� Xi; ð1Þ

where, Xi; i ¼ 1; � � � ;N represents the expression level of gene i. g0

and k represent the basal production and degradation rates of xi,
respectively.

We used Hill functions to describe the regulations (activations
and inhibitions) in the network (links in Fig. 1). The Hill function
is a sigmoidal function. It has been commonly used to describe
gene regulations in gene network models [44–46]. S in Eq. (1) rep-
resents the threshold of a sigmoidal function. n is the Hill coeffi-
cient, which determines the steepness of the sigmoidal function.
Aji and Bji are the scale factors for the activation and inhibition,
respectively. When the scale factor Aji is equal to zero, it means
that there is no activation from gene j to gene i. When the scale fac-
tor Bji is equal to zero, it means that there is no inhibition from
gene j to gene i.

2.2. Estimate parameters of the model from experimental data

We built the models of ODEs based on the embryonic stem cell
network. Then, we used experimental data of Dunn et al. to esti-
mate the parameters in our model [20]. The experimental data
are binary gene expression data of 12 genes from PCR under five
various combinations of external signals (LIF, CH, PD) (Fig. 2C). In
the work of Dunn et al., there are totally five different combina-
tions of signals, including 2i + LIF, 2i, LIF + CH, LIF + PD, and no sig-
nals. Therefore, we used gene expression data from these five
various combinations of external signals to estimate the parame-
ters in our model. In order to reduce the dimension of parameters
space, we assumed that all the nonzero Aji are equal to undeter-
mined constant a and nonzero Bji are equal to undetermined
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es and 26 interaction links (18 activations and 8 inhibitions). Black arrows represent
pink nodes represent genes. The width of the links represents the sensitivity of the
of the references to colour in this figure legend, the reader is referred to the web



Fig. 2. Comparison of gene expression profiles between modeling and experiments. (A) The gene expression profiles from the model using the picked parameter set. (B) The
binary expression profiles corresponding to (A). (C) The gene expression profiles from experiments [20]. Gene expression is discretized to high (blue) or low (white). The input
signal is discretized to high (green) or low (white). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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constant b. Moreover, LIF, CH and PD are regarded as signals of the
network. Therefore, the unknown parameters in our model include
a; b; S; k;n and g0. Next, we aimed to estimate these parameters
from the binary experimental results of Dunn et al. [20]. Since
the experimental data are dimensionless, we specified the
parameter range based on previous works [23,45]. Here, the Hill
coefficient n determines the steepness of the sigmoidal function,
i.e. the degree of nonlinearity (the cooperativity for gene
regulations). Following previous works [30,46], we assumed
n ¼ 3 or 4 to represent certain degree of cooperativity for gene
regulations. We set the basal production rate g0 ¼ 0:01 and
degradation rate k ¼ 1, and the ranges of other parameters are
a 2 0;4ð Þ; b 2 0;4ð Þ; S 2 0;4ð Þ and n 2 3;4f g.

Then, we followed three steps to estimate the parameters of the
model:

1. First, we reduced the searching range of parameters based on
the biological significance of stable states. A major biological
constraint is multistability, because in an embryonic
developmental system there should be at least two cell states,
i.e. ESC state and DC state. In our model, it means that there
will be multiple stable states when t ! 1 for different initial
conditions. Therefore, we performed a search in the parame-
ter space: a 2 0;4ð Þ; b 2 0;4ð Þ; S 2 0;4ð Þ;n 2 3;4f g and LIF;
CH;PD 2 3;4;5;6;7;8f g. For each parameter set, we numeri-
cally solved the ODEs under different initial values to acquire
stable fixed points of the ODEs, i.e. stable steady states. We
recorded the parameter sets that generate bistable states and
corresponding stable states. Then, we binarized the stable
states by the mean value of stable states, i.e., if the expression
level of a gene is larger than the mean value, it is denoted as
1 and if the expression level of a gene is less than the mean
value, it is denoted as 0. Further, we picked the parameter sets
that can generate biologically significant bistable states (Fig. 3),
i.e., one stable state should represent pluripotent ESC state,
which has higher expression level (with the expression level
of 1 after binarization) of OCT4, Nanog, Sox2, Esrrb and Tfcp2l1
(ESC markers), and the other stable state should represent DC
state, which has lower expression level (with the expression
level of 0 after binarization) of OCT4, Nanog, Sox2, Esrrb and
Tfcp2l1.

2. For each parameter set including eight parameters:
a; b; S;n; k; LIF;CH;PDð Þ obtained in the previous step, we per-
formed simulations under five experimental conditions to find
parameter sets that mostly fit the five groups of experimental
data. Since embryonic stem cells can be stably cultured as a
substantially homogeneous population in different environ-
ments [20], if the model has multiple stable states under a cer-
tain experimental condition, we choose the steady state with
high probability as the expression level under this signal. Here
our fitting procedure is based on deterministic ODEs. To con-
sider the heterogeneity of populations, future work can develop
methods to fit models based on the distribution of expression
data among populations. In this way, we can obtain a 12� 5
(expression levels of 12 different gene variables in five different
conditions) real-valued matrix. Then we took the average of
gene expression levels under different signals as a threshold
to acquire a binary matrix.

3. To find parameters that mostly fit the experimental gene
expression profile (benchmark data) (Fig. 2C), we calculated
the Hamming distance (the discrepancy between two binary
matrices) between the experimental gene expression profile
and discretized gene expression profile from the model (step
2), and sorted them by hamming distance to find the most suit-
able parameter set. Fig. 2A shows the gene expression profiles
generated from the selected parameter set, and Fig. 2B shows
the binary expression profile corresponding to Fig. 2A. Fig. 3
shows the points in parameter space which can generate ESC
state and DC state.

2.3. Potential landscape and the minimum action path for the
embryonic stem cell model

Lately, several studies have employed the landscape approach
to investigate the stochastic dynamics of biological systems
[23,25,44]. Here we used the TME method (see Methods) to



Fig. 3. The points in parameter space which can generate two stable states (ESC state and DC state), from parameter searching. The color of the points denotes the Hamming
distance between the benchmark data and 12 � 5 real matrix generated from the model using corresponding parameter set. Blue points represent smaller Hamming distance
and yellow points represent larger Hamming distance. The triangular points represent the parameters used for optimization. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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calculate the potential landscape of the embryonic stem cell
model. Since it is hard to visualize the landscape in 12-
dimensional space, we selected two gene variables as coordi-
nates for landscape and projected the 12-dimensional landscape
into two dimensions. Here, we chose two marker genes of
embryonic stem cells, OCT4 and Nanog, as the coordinates of
landscape. Oct4 is a mammalian POU transcription factor
expressed by early embryo cells and germ cells [47]. Nanog’s
overexpression enables self-renewal of embryonic stem cells,
and Nanog is accordingly considered as a core element of the
pluripotent transcriptional network [48]. Of note, our main con-
clusions do not depend on the specific choice of the coordinates
because the transition actions among different attractors are
based on the 12-dimensional space (see Supplemental informa-
tion Fig. S2 for landscapes using other pairs of variables as coor-
dinates). In this way, two stable states emerge on the landscape
for the embryonic stem cell system (Fig. 4). Here, the ESC state
has a high OCT4, Nanog, Sox2, Esrrb and Tfcp2l1 expression
level, while the DC state has a low OCT4, Nanog, Sox2, Esrrb
and Tfcp2l1 expression level.

To study the transition processes between ESC state and DC
state, we calculated the kinetic transition paths between two cell
states by minimizing the transition actions, which are called MAPs
(see Methods for how to acquire the MAPs). Fig. 4 shows the land-
scape and MAPs shown in Oct4 and Nanog coordinates. The white
line represents the transition path from ESC state to DC state (dif-
ferentiation), while the magenta line represents the transition path
from DC state to ESC state (reprogramming). The transition paths
for cell differentiation process and cell reprogramming process
are not identical, which is reflected by the disparity between the
forward and backward kinetic transition paths. The kinetic paths
of the system deviating from the conventionally expected potential
gradient paths is caused by the non-gradient force, i.e. curl flux
[26].
2.4. Single factor sensitivity analysis on model parameters

To further study the effect of interactions among the genes on
the dynamics of the embryonic stem cell model, we performed sin-
gle factor sensitivity analysis on the 26 parameters (18 activation
constants and 8 inhibition constants) of embryonic stem cell
model. Specifically, we increased or decreased each parameter by
10% to modulate the regulation strengths among genes, and calcu-
lated how the transition actions between ESC state and DC state
change after these perturbations. In this way, we can identify some
critical regulations that govern the transition between DC state and
ESC state. From the results of sensitivity analysis (Fig. 5), we con-
clude that the increase of all activation constants and inhibition
constants (the increase of activation strength or the decrease of
inhibition strength) will increase the transition actions from ESC
state to DC state, and make ESC state more stable. These key regu-
lations are sorted according to their sensitivities (defined as the
difference between MSESC!DC and MSDC!ESC). The top nine sensitive
regulations are shown in Table S1. The sensitivity analysis predicts
some key links including LIF ! Stat3, Tfcp2l1 ! Sall4 and Esrrb !
Tfcp2l1. Here ! represents activation regulation. The increase of
these link strengths can critically enhance the stability of ESC state.
2.5. Cellular reprogramming-promoting interventions

To predict the combination of target regulations among genes
which can maintain the totipotency of embryonic stem cells, we
used an approach of optimization to predict the critical combina-
tions of parameters [44,49]. The optimization goal is to make ESC
state more stable and DC state less stable by tuning the 26 param-
eters (18 activation constants and 8 inhibition constants) while
keeping the number of steady states unchanged (see Methods for
details).



Fig. 4. The landscape and paths for the ESC model shown in Oct4 and Nanog coordinates. The blue region represents higher probability or lower potential and the yellow
region indicates lower probability or higher potential. The white line represents the transition path from ESC state to DC state, and the magenta line represents the transition
path from DC state to ESC state. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Sensitivity analysis for the 26 parameters (regulatory strengths, including 18 activation constants and 8 inhibition constants) on the transition actions. Y axis
represents the 26 parameters. X axis represents the percentage of the change of the transition action (S) relative to S with default parameters. Here, SESC�>DC represents the
transition action from attractor ESC to attractor DC (cyan bars), and SDC�>ESC represents the transition action from attractor DC to attractor ESC (magenta bars). (A) Each
parameter is increased by 10%, individually. (B) Each parameter is decreased by 10%, individually. ESC: Embryonic stem cell; DC: Differentiated cell.
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In this work, we selected six different initial parameter sets to
perform optimization (the triangular points in Fig. 3). These six
parameter sets can generate two stable states (ESC state and DC
state), where the DC state is more stable. Due to the heterogeneity
of biological individuals, these six initial parameter sets can be
regarded as the corresponding cells of six different individuals.
For each initial parameter set, we found an optimal intervention
to induce the transition from DC state to ESC state. The results of
optimizing transition actions are shown in Fig. 6 (also marked in
Fig. 1).

Specifically, we identified nine critical regulations from 26 reg-
ulatory parameters. Table 1 shows the top nine sensitive regula-
tions and the corresponding sensitivity (sensitivity is defined as
the average of the changes in the parameters (strength of



Table 1
Cellular reprogramming-promoting interventions identified from optimization
of transition actions for the model. Direction represents the direction of parameter
changes for the corresponding interventions. Here, the inhibition constant Bji

represents the maximal synthesis rate when the inhibition regulation is completely
not working. So, the increase of Bji represents the decrease of the corresponding
inhibition strength. Sensitivity is defined as the average of the changes in the
parameters (strength of regulations) caused by each intervention across the six
parameter sets.

Direction Regulation Sensitivity References

" LIF !Stat3 0.123 [60]
" Tcf3 a Tfcp2l1 0.114 Prediction
" Esrrb a Oct4 0.104 [61]
" PD a MEKERK 0.089 [62]
" CH a Tcf3 0.089 Prediction
" MEKERK a Tcf3 0.089 Prediction
" MEKERK a Nanog 0.086 [63]
" Oct4 a Tfcp2l1 0.083 [11]
" Tcf3 a Esrrb 0.077 Prediction

Fig. 6. Predictions for reprogramming-promoting interventions based on the optimization of transition actions. X axis shows 6 different individual model results (different
initial parameter sets), reflecting the heterogeneity in stem cell populations, and Y axis shows 26 parameters (link strengths, 18 activation links and 8 inhibition links).
Different colors indicate the changes in the parameters (strength of links) caused by each intervention, with purple grids representing the increase of targets (link strength),
and cyan grids representing the decrease of targets.
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regulations) caused by each intervention across the six parameter
sets). From Table 1 and Fig. 6, we found that the important inter-
vention for the transition action SDC!ESC includes LIF ! Stat3,
Tcf3 a Tfcp2l1 and Esrrb a Oct4, which correspond to the first three
rows of Table 1. Therefore, our results suggest a combinatory strat-
egy for reprogramming by increasing the activation of LIF on Stat3,
decreasing the inhibition of Tcf3 to Tcfp2l1 and the inhibition of
Esrrb to Oct4, simultaneously.

To see the difference between single factor sensitivity analysis
and the optimization approach, we compare the results of opti-
mization and single factor sensitivity analysis. From the sensitivity
analysis, the top three targets are LIF ! Stat3, Tfcp2l1 ! Sall4 and
Esrrb ! Tfcp2l1. The increase of the strengths of these links can
critically enhance the stability of the ESC state. It can be seen from
the network that the increase of these link strengths will eventu-
ally increase the expression of Sall4. This indicates that these reg-
ulations have the similar functions. By contrast, the top three
target regulations from optimization are not identical to those
from single factor sensitivity analysis. The optimization result
shows that we can simultaneously increase the strengths of LIF
! Stat3, Tcf3 a Tfcp2l1 and Esrrb a Oct4 to inhibit differentiation.
Both single factor sensitivity analysis and optimization indicate
that an efficient reprogramming-promoting intervention should
include LIF ! Stat3, while the optimization result includes two
other target links, and the function of these two other links are dif-
ferent from LIF ! Stat3. Therefore, the optimization result seems
to suggests that a better strategy should target links with different
functions instead of links with the same functions.
3. Discussion

Embryonic stem cells have the potential to differentiate to any
tissue in the body, which provides the motivation for the applica-
tion of stem cell in regenerative medicine and other fields. How-
ever, the mechanisms of cellular differentiation and
reprogramming remain to be elucidated. In this study, we estab-
lished a data-constrained theoretical approach to model the gene
regulatory network of mouse embryonic stem cells described by
Dunn et al. [20]. Here, we built a model of ODEs for ESC, and pro-
posed a data constrained approach to estimate the parameters of
the models from the binary experimental data from Dunn et al.
[20]. We identified a parameter set which can fit the experimental
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data well, and the models using this parameter set can generate
biologically significant bistable states. We calculated the potential
landscape of the ESC network and identified two attractors, which
represent the pluripotent ESC state and DC state, respectively. We
further quantified the MAPs between ESC state and DC state. The
results show that the differentiation path and reprogramming path
are irreversible. This irreversibility of MAPs is a consequence of
non-gradient force, i.e. curl flux [26].

By single factor sensitivity analysis of parameters, we provided
some predictions about the key links affecting differentiation and
reprogramming. The results from sensitivity analysis indicate that
LIF/Stat3 signalling and gene Tfcp2l1 play important roles in main-
taining the stability of the ESC state. These predictions agree well
with previous experimental studies. For example, LIF is suggested
to inhibit differentiation for mouse embryonic stem cells that
maintains embryonic stem cells in a totipotent state and stimu-
lates self-renewal [10,50]. Stat3 is seen to be the most important
signal transducer following stimulation by LIF and the one which
mediates most of the cellular effects. Overexpression of a
dominant-negative Stat3 construct in ES cells also leads to both
differentiation and a loss of self-renewal [9]. Additionally, the
CP2 family transcription factor Tfcp2l1 is a common target in
LIF/Stat3- and 2i-mediated self-renewal, and forced expression of
Tfcp2l1 can recapitulate the self-renewal-promoting effect of LIF
or either of the 2i components. This means that Tfcp2l1 is at the
intersection of LIF- and 2i-mediated self-renewal pathways and
plays a critical role in maintaining ESC identity [11].

Although single factor sensitivity analysis can uncover some
single key parameters in the network, the cell fate decision in bio-
logical system is often governed by multiple factors rather than
one. In the mean time, the multi-factor sensitivity analysis is not
easy to implement due to the large computational cost. Therefore,
it is necessary to develop an approach to predict the optimal com-
binations of multiple regulations that are critical to the dynamics
of the embryonic stem cell model. Here, we used an approach of
optimization to predict the critical combinations of parameters
[44,49]. We identified an optimal combinatory strategy by increas-
ing the activation of LIF on Stat3, decreasing the inhibition of Tcf3
to Tcfp2l1 and the inhibition of Esrrb to Oct4, to induce reprogram-
ming. It is now well established that LIF/Stat3 signaling plays an
indispensable role in the self-renewal of mouse embryonic stem
cells [9,10,12,50]. Recently, activation of LIF-JAK1-STAT3 signaling
to delay contact inhibition has been put forward as a strategy to
facilitate engineering of HCEC (human corneal endothelial cells)
grafts to solve the unmet global shortage of corneal grafts [12].
In addition, Esrrb and Tcf3 have been demonstrated to be required
for efficient self-renewal of embryonic stem cells in vitro [13,14].
According to our model predictions, we propose that relevant
experiments can be designed, e.g., to test the reprogramming
effects by targeting multiple gene regulations simultaneously (in-
cluding LIF ! Stat3, Tcf3 a Tfcp2l1 and Esrrb a Oct4). We expect
that these predictions can be tested with the further development
of experimental techniques and will provide the guidance for
designing the strategies of inducing reprogramming. These analy-
ses on the landscape and transition actions will promote our mech-
anistic understanding on differentiation and reprogramming in
embryonic stem cells.

In the field of systems biology, it remains challenging to com-
bine ‘‘model driven” approach (such as gene network models)
and ‘‘data driven” approach (such as single cell data analysis) in
systems biology [51]. In this work, we used binary gene expression
data to estimate the parameters in the model. We performed a
search in the parameter space based on specific biological con-
straints. In principle, this approach can be applied to other data
sets, such as single cell data. Recently, single cell data of gene
expression have been extensively explored from different
approaches [52,53]. One limitation of current methods for single
cell analysis is that the molecular mechanisms and kinetic transi-
tions are hard to be studied. Our approach is based on dynamical
models, and we use experimental data to infer the parameter
regime for the models. This provides a potential way to combine
‘‘model-driven” approach and ‘‘data-driven” approach. It will be
of great interest to develop a single cell data-constrained dynami-
cal modelling approach, and construct more accurate energy land-
scapes for ESC and other biological networks.

4. Methods

4.1. Truncated Moment Equations (TME)

The time evolution of the gene expression level can be studied
as a complex dynamical system. The gene expression level

x tð Þ ¼ x1 tð Þ; x2 tð Þ; � � � ; xn tð Þð ÞT can be regarded as a stochastic pro-
cess, and f x tð Þð Þ represents the driving force of the system. Then
the Langevin equations describing the dynamics of the gene
expression level take the form:

_x tð Þ ¼ f x tð Þð Þ þ g x tð Þð ÞC tð Þ; ð2Þ
Here, g x tð Þð ÞC tð Þ is the noise term of the system, and coefficient

matrix g x tð Þð Þ is a matrix-valued function of x tð Þ, while

C tð Þ ¼ C1 tð Þ;C2 tð Þ; � � � ;Cn tð Þð ÞT is n-dimensional independent
Gaussian white noise, which means:

E Ci tð Þ½ � ¼ 0; ð3Þ

E Ci tð ÞCj t0ð Þ� � ¼ 2Ddijd0 t � t0ð Þ; ð4Þ
where D is constant diffusion coefficient and

dij ¼
1; i ¼ j;

0; i– j:

�
ð5Þ

The time evolution of a dynamical system is determined by
probabilistic diffusion equations (Fokker–Planck equation). How-
ever, when the drift part of Fokker–Planck equation is nonlinear,
it is difficult to find an analytic solution. Nonetheless, the solutions
of nonlinear system and linear system have similar form when the
diffusion coefficient D � 1. Therefore, when D � 1, the solution
could be approximated by Gaussian distribution and the mean
and covariance satisfy the following equations [54,55]:

_�x tð Þ ¼ f �x tð Þð Þ; ð6Þ

_r tð Þ ¼ r tð ÞAT tð Þ þ A tð Þr tð Þ þ 2D �x tð Þð Þ: ð7Þ
r tð Þ denotes the covariance matrix in time t, and A tð Þ is the

jacobian matrix of f xð Þ when x is equal to �x tð Þ, which means

Aij tð Þ ¼ @f i xð Þ
@xj

jx¼�x tð Þ. Furthermore, D �x tð Þð Þ is n� n matrix which is

equal to D � g �x tð Þð Þg �x tð Þð ÞT . Then the time evolution of density func-
tion p x; tð Þ for this system can be expressed by Eq. (8).

p x; tð Þ ¼ 1

2pð Þn2jr tð Þj1=2
exp �1

2
x� �x tð Þð ÞTr�1 tð Þ x� �x tð Þð Þ

� �
; ð8Þ

In this work, we assume that the noise is homogeneous and
only consider the external noise. Therefore, g xð Þ is equal to I, which
is an identity matrix in n-dimensional space. Then Eq. (7) is mod-
ified to:

_r tð Þ ¼ r tð ÞAT tð Þ þ A tð Þr tð Þ þ 2D � I: ð9Þ
When t ! þ1, we can get the density function p xð Þ of the sys-

tem at the steady state by solving Eqs. (6) and (9). The probability
distribution acquired above corresponds to one steady state. If the
system has multiple steady states, there should be several proba-
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bility distributions localized at each basin with different covari-
ance. Therefore, the total probability is the weighted sum of all
these probability distributions.

If we only focus on the distribution of two variables such as x1
and x2, we can get the marginal distribution by integrating the
other variables in p xð Þ. Finally, we can construct the potential land-
scape U by U ¼ � ln P xð Þ [26,30,44]. Here P xð Þ is steady state prob-
ability distribution, and U xð Þ is dimensionless potential.

4.2. Minimum action paths

The differential equation _x tð Þ ¼ f x tð Þð Þ is an autonomous sys-
tem, which does not explicitly depend on the independent variable
t. Assuming that the initial time is 0 and the terminal time is T, we
define the path between ith attractor xi and jth attractor xj as

xij tð Þ ¼ xij1 tð Þ; xij2 tð Þ; � � � ; xijn tð Þ
� �T

for t 2 0; T½ �, where the path xij tð Þ
should satisfy following terminal conditions:

xij1 0ð Þ; xij2 0ð Þ; � � � ; xijn 0ð Þ
� �T

¼ xi;

xij1 Tð Þ; xij2 Tð Þ; � � � ; xijn Tð Þ
� �T

¼ xj:

8><
>: ð10Þ

The transition action Sij between xi and xj is defined as:

S ij xij �ð Þ� 	 ¼ Z T

0
Lij t; xij tð Þ;dx

ij tð Þ
dt


 �
dt: ð11Þ

Here, Lij is the Lagrangian function that denotes the distance
between the driving force f and the velocity along the path:

Lij t;xij tð Þ;dx
ij tð Þ
dt


 �
¼ dxij1 tð Þ

dt
;
dxij2 tð Þ
dt

; � � � ;dx
ij
n tð Þ
dt

 !T

� f xij tð Þ� 	������
������
2

:

ð12Þ
Following the approaches [56,57] based on Wentzell-Freidlin

theory [58], the most probable transition path from ith attractor
to jth attractor at time T can be acquired through minimizing the
transition action functional over all possible paths:

min
xij �ð Þ

Sij xij �ð Þ� 	
: ð13Þ

We calculated MAPs numerically by applying minimum action
methods used in [44,57], and treated the MAPs as the biological
paths in our models. In this work, T is set to be 5 and we verified
that larger values of T would not improve accuracy of simulations
significantly.

4.3. Transition action optimization

For a stochastic differential equation:

dx tð Þ ¼ f xð Þdt þ ffiffiffi
e

p
dW tð Þ; ð14Þ

the corresponding deterministic components are described by
_x tð Þ ¼ f xð Þ, and the time-independent stable states �x can be defined
by f xð Þ ¼ 0. When there are more than one stable states in this sys-
tem, the transitions between two stable states i and j occur as a
Poisson process with a certain transition rate Rij. The transition rate
represents the transition probability per unit of time along the most
likely transition path(s) between the stable states i and j. They can
be obtained by an asymptotic formula [59]:

Rij / exp �Sij

e


 �
; ð15Þ

where, S ij is minimum action computed from MAPs. In order to
achieve the goal of making ESC state more stable and DC state less
stable, we minimized the ratio of RDC!ESC to RESC!DC by tuning the 26
parameters (18 activation constants and 8 inhibition constants). We
used the fmincon function of the optimization toolbox of MATLAB
to implement the optimization.
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