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Abstract

Systems genetics studies often involve the mapping of numerous regulatory relations between genetic loci and expression
traits. These regulatory relations form a bipartite network consisting of genetic loci and expression phenotypes. Modular
network organizations may arise from the pleiotropic and polygenic regulation of gene expression. Here we analyzed the
expression QTL (eQTL) networks derived from expression genetic data of yeast and mouse liver and found 65 and 98
modules respectively. Computer simulation result showed that such modules rarely occurred in randomized networks with
the same number of nodes and edges and same degree distribution. We also found significant within-module functional
coherence. The analysis of genetic overlaps and the evidences from biomedical literature have linked some eQTL modules
to physiological phenotypes. Functional coherence within the eQTL modules and genetic overlaps between the modules
and physiological phenotypes suggests that eQTL modules may act as functional units underlying the higher-order
phenotypes.
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Introduction

Recent advances in the integration of quantitative genetics and

expression genomics have provided a global view of gene

expression traits and their implications in high-order phenotype

variations [1,2,3,4,5,6,7,8]. The Genetical Genomics [9] ap-

proach systematically associates gene expression traits with

regulatory genomic regions called expression quantitative trait

loci (eQTLs) [10]. Typically, this high-throughput approach

identifies a large set of regulatory relations between genetic

markers and expression traits, which compose bipartite networks

that consist of two types of nodes, representing expression traits

and eQTLs respectively.

A module is usually defined as a subset of components in a

network that interact with each other and act in concert to

regulate biological processes, while maintaining relative indepen-

dence from other components in the network. Studies on the

architecture of biological networks, including protein-protein

interaction networks, metabolic networks, and transcriptional

regulatory networks [11,12,13] have revealed that modularity is

a common organizational principle of these networks. In a

previous work we discovered transcription modules and their

associations with higher-order phenotypes [14]. Recently a

Bayesian method for eQTL network partition was developed by

Zhang et al. [15]. The application of their method to a yeast

eQTL network identified 20 modules with one eQTL and 9

modules with two eQTLs [15].

In this work we define eQTL module as a set of highly

connected nodes with at least two eQTLs in different chromo-

somes. We analyzed the eQTL networks constructed from a yeast

dataset and a mouse liver dataset and found 65 and 98 modules

respectively. We also studied the associations between the eQTL

modules and higher-order phenotypes. Genes in many eQTL

modules showed significant functional coherence. Fifty yeast

morphologic phenotypes were mapped to genetic loci that

overlapped with the eQTLs in 19 modules. We identified an

eQTL module sharing genetic components with a mouse obesity

phenotype — the gonadal fat mass (GFM), and evidences from

previous studies strongly support the functional relevance between

the module genes and obesity. The analysis of eQTL modules may

provide important insights into the functional components

underlying complex phenotypes.

Results

Formulation of the Module Detection Problem and
Simulation Results

We exploited a network approach to systematically analyze

large numbers of modulatory relations between genetic loci and

gene expression traits. A module in an eQTL network is defined as

a set of highly connected nodes — eQTLs and genes whose

expression levels are regulated by some or all of the eQTLs. Only

eQTLs located on different chromosomes are allowed to be

included in a module to avoid trivial results caused by the linkage
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between markers. A conceptual representation of eQTL module is

shown in Figure 1. Module detection in an eQTL network can be

formulated as an optimization problem: searching for a set of m+n

nodes that maximizes the objective function Q(m, n, k) = k/(m6n),

where m is the number of eQTLs, n is the number of target genes

and k is the number of edges between them. In this bipartite

network, genes can be connected to QTLs, but there is no edge

between genes and between QTLs. The maximum number of

edges between n genes and m QTLs is m6n, therefore Q is a value

between zero and one. The objective function Q(m, n, k) is a

measurement of the connection density of a module. For a set of

completely connected nodes, Q = 1; for a set of unconnected

nodes, Q = 0. In this work, a module must have a Q value of 0.66

or above. Intuitively, this density criterion requires that on average

each gene node are connected to about 2/3 or more of the QTL

nodes and vice versa. Besides this density criterion, a module must

also be statistically significant, which means the module should be

highly unlikely to arise by chance in a randomized network with

the same numbers of nodes and edges and the same degree

distribution. The details of the module detection method are

described in Materials and Methods.

A simulation study was performed to assess the performance of

the module detection method. We generated random bipartite

networks with prescribed modules and used normalized mutual

information (NMI) [16] to evaluate the consistency between the

prescribed modules and the modules identified by the search

method. NMI is a robust performance indictor based on the

confusion matrix [16]. The rows of the confusion matrix

correspond to the prescribed modules, and the columns corre-

spond to the identified modules. The confusion matrix contains

the number of overlapped nodes between the prescribed modules

and the identified module. If the identified modules completely

match the prescribed modules, NMI takes the maximum value of

1.0; if the identified modules are unrelated to the simulated

module, NMI becomes 0. The simulated eQTL networks

consisted of 1200–1500 nodes and 3000–3500 edges, and

contained 10 modules with 2–3 eQTL nodes and 20–150 gene

nodes (typical sizes of the modules found in this work). Five

independent simulation runs were performed with each of the

following module homogeneity values: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8 and 0.9 (Figure 2). We then used our module detection

algorithm to identify modules in the simulated networks. The

details of the simulation procedure are described in Materials and

Methods. The module homogeneity (p) controls the formation of

the modular structures of the simulated network. For p = 1, the

simulated network has a clear-cut modular structure. For p = 0, the

prescribed modules become random partitions of the simulated

network and therefore the network has no modular structure at all.

The module detection algorithm is expected to be able to identify

the prescribed modules correctly when p is high, while no module

can be identified by any algorithm when p is too low. Our module

detection method performed reasonably well with a NMI value

above 0.8 when the module homogeneity was higher than 0.6, and

the NMI value was very close to its maximum value of 1.0 when

the module homogeneity is higher than 0.9. The NMI dropped

quickly when the module homogeneity was below 0.5. This is

because the modular structure became much fuzzier with such low

module homogeneity values. For example, at a module homoge-

neity value of 0.5, on average only half of the edges connected to

the nodes of a module come from members of the same module

and the other half of the connections are randomly connected to

nodes outside the module.

Expression QTL Network and Modules
The yeast eQTL network is a connected graph of 493 eQTL

nodes, 4583 gene nodes, and 33,584 edges. The median degrees

for the eQTL nodes and gene nodes are 25 and 7 respectively. In

the yeast network, we identified 65 modules (Table S1). The

number of eQTLs in each module ranges from 2 to 3, and the

number of target genes ranges from 4 to 276. These modules

contain 1756 unique genes, covering 38.3% of the genes in the

yeast eQTL network. Three identified modules and their

neighboring gene nodes in the yeast eQTL network are displayed

in Figure 3. The mouse liver eQTL network is a connected graph

of 408 eQTL nodes, 4086 gene nodes, and 11,458 edges. The

median degrees for the eQTL nodes and gene nodes are 15 and 2

respectively. In the mouse liver network, we identified 98 modules

(Table S2). The number of eQTLs in each module ranges from 2

to 4, and the number of target genes ranges from 4 to 84. These

modules contain 989 unique genes, covering 24.2% of the genes in

the mouse eQTL network. The size distributions of the yeast and

mouse modules are shown in Figure 4. We found that these

modules were highly unlikely to occur simply by chance in

randomly rewired networks with the same number of nodes and

edges and same degree distribution (P-value ,1024). Therefore

statistically significant modular structures exist in these eQTL

networks. The modular structures of genotype-phenotype map has

also been observed in some classical multiple-trait association

studies [17,18].

Functional coherence of module genes
We used the Ontologizer software [19] to assess the enrichment

of GO terms in each module. Ontologizer uses Parent-Child

Analysis, which takes the structure of the GO hierarchy and

parent-child relations into consideration when it performs the

enrichment analysis. The Westfall-Young-Single-Step method [20]

was used for multiple testing correction. A total of 42 yeast

modules and 21 mouse modules were associated with at least one

GO term at the significance level of P,0.05 (Tables S3 and S4).

Some modules were associated with common GO terms. For

example, yeast module 63 and 64 were associated with 8

common GO terms (e.g. organelle lumen, ribosome biogenesis

and assembly), and yeast module 45 and 61 were associated with

25 common GO terms (Table S3). They were identified as

separate modules in the eQTL network, however there might be

moderate but genuine links connecting them. These links are the

weaker associations between gene expression traits of one module

and eQTLs of another module, which did not pass the

significance test used in eQTL mapping. We added the moderate

links (with P-values ,0.01 but $0.001) to the yeast eQTL

Figure 1. A conceptual representation of eQTL module. This
module contains two eQTLs and three genes. The Q value of this
module is 5/6.
doi:10.1371/journal.pone.0014313.g001
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network to test if the distribution of the moderate links would

suggest potential relations between the modules. We randomly

rewired the moderate links in the eQTL network and counted the

number of moderate links that connected each pair of modules.

For each pair of modules, the maximum number of moderate

links from 1000 such randomly rewired networks was compared

to the number of moderate links bridging the two modules in the

original network. We then sorted the module pairs by the ratio of

these two numbers (original vs. rewired maximum) in a

descending order. The top 20 (1%) yeast module pairs are listed

in Table S5. Among the 2080 possible yeast module pairs,

modules 45 and 61 ranked 18th with a ratio of 4.6, and modules

63 and 64 ranked 19th with a ratio of 4.5. There were many more

(4.6 and 4.5 fold respectively) moderate links bridging these

module pairs in the original eQTL network than that expected by

chance in the randomly rewired networks. Other top ranked

Figure 2. The performance of module detection algorithm as a function of module homogeneity. The error bars mark the interval of
minus and plus one standard deviation.
doi:10.1371/journal.pone.0014313.g002

Figure 3. Three modules in the yeast eQTL network. The ellipses represents eQTLs, squares represent genes. White squares represent genes
that do not belong to the three modules. Green: Module 48; Yellow: Module 64; Red: Module 55.
doi:10.1371/journal.pone.0014313.g003
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module pairs that share common GO terms include: Module 46

and 64, Module 26 and 64, and Module 55 and 60. The non-

random distribution of the moderate links may help us to identify

modules that are more likely being functionally related.

Linking eQTL modules to physiological phenotypes
One major goal of systems genetics is to identify gene expression

modules underlying higher-order phenotypes. Recently, Nogami

et al. [21] measured more than 500 yeast morphologic phenotypes

and mapped 7 significant QTLs (false discovery rate

[FDR] = 0.05) (Table 2 and Table S4 of [21]). We assessed the

genetic overlap between these 7 morphologic QTLs and the yeast

eQTL modules we identified. We found that QTLs on three

chromosomes were shared by morphologic phenotypes and the

modules (Table 1). The morphologic phenotypes can be classified

into six categories, each representing an aspect of cellular

morphology (Table 2 of [21]). Phenotypes of same category were

usually mapped to QTLs on same chromosome. But there was a

surprising exception where the phenotypes concerning DNA

region size, position, and shape were mapped to two unlinked loci

on Chromosome 14 and 15, respectively [21]. The eQTL module

analysis may provide a possible explanation to the exception. The

modules with eQTLs on Chromosome 14 and 15 were associated

with different GO terms. Three modules (28, 45, and 61) with

eQTLs on Chromosome 14 were associated with protein

metabolism while three modules (7, 9, and 51) with the QTLs

on Chromosome 15 were associated with mitochondrial oxidative

phosphorylation and energy generation. This indicates different

molecular pathways may underlie the phenotypes mapped to

chromosome 14 and those mapped to chromosome 15 though

they all belong to same category.

We also analyzed the physiological relevance of the mouse liver

eQTL modules. The obesity phenotype gonadal fat mass (GFM)

was genetically dissected, and five ‘‘clinical’’ QTLs (cQTLs)

regulating this phenotype were mapped in a previous study (Table

2 of [22]). We analyzed the overlaps between the module QTLs

and these five cQTLs. Three modules (50, 74, and 84) had eQTLs

that overlapped with a cQTL on chromosome 19. Module 74 was

of particular interest because it had another eQTL located near a

cQTL on chromosome 5. The distance between the two QTL

markers is about 20 Mb. This module contains three eQTLs and

21 genes, seven of which were uncharacterized expressed sequence

tags (ESTs) (Figure 5). There is literature evidence for seven of the

module genes (i.e. 50% of the genes in this module with known

functions) being related to obesity. Lcat (lecithin cholesterol

acyltransferase) is involved in lipid metabolism which affects the

GFM trait [23]. Other module genes related to lipid metabolism

and obesity include Anxa5 (annexin A5) [24], Ccna2 (cyclin A2)

[25], Ces5 (carboxylesterase 5) [26], Cyp2c38 (cytochrome P450,

family 2, subfamily c, polypeptide 38) [27], Setd8 (SET domain

containing 8) [28], and Slc16a11 (monocarboxylic acid transport-

ers, member 11) [29]. Thus, literature evidence supports the

association between GFM trait and the eQTL module.

Discussion

In this work we exploited a network approach to systematically

analyze large numbers of modulatory relations between genetic

Figure 4. The size distributions of the yeast and mouse modules.
doi:10.1371/journal.pone.0014313.g004
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loci and gene expression traits. Like many other biological

networks eQTL networks have evolved functional modules. Such

modular structures may confer selective advantage by allowing the

optimization of gene expression within each module and therefore

minimizing the impact of genetic variants outside the module.

Recently Zhang et al. [15] used a Bayesian partition method to

identify eQTL modules from the same yeast dataset used in this

work. They identified 20 yeast modules with one eQTL and 9

modules with two eQTLs. In this work we are interested in

detecting eQTL modules with complex genetic architectures.

Therefore we focused on modules with at least two QTLs in

different chromosomes, and identified 21 yeast modules with two

eQTLs and 44 yeast modules with three eQTLs. The Bayesian

partition method [15] essentially performs eQTL mapping and

module identification simultaneously. Our module detection

method takes the eQTL mapping results as the input and can

be used with any eQTL mapping method; therefore it provides the

flexibility to reanalyze the eQTL network when new algorithms

for eQTL mapping become available.

Epistasis is a higher-order genetic interaction that go beyond the

pair-wise regulatory relations between a QTL and a trait. To test

the epistatic effects within the eQTL modules, we employed a

regression based model selection approach to find the best eQTL

model for each module gene. The expression values of each

Table 1. Genetic overlap of yeast eQTL modules and morphologic phenotypes.

Phenotype category QTL (bp) Module ID

DNA region size, position and shape chr14:440000-460000 21, 28, 50, 59, 61, 62, 63

chr14: 480000-500000 24, 52, 58

chr14: 500000-520000 13, 45

DNA region size, position and shape chr15: 520000-540000 9

chr15: 540000-560000 7, 21, 51

Mother cell size and shape chr8: 60000-80000 56, 58

chr8: 80000-100000 27, 37

chr8: 100000-120000 43

doi:10.1371/journal.pone.0014313.t001

Figure 5. Genetic overlaps between Mouse gonadal fat mass (GFM) trait and module 74. Red ellipses represent QTLs, yellow squares
represent genes and the blue square represents the GFM trait.
doi:10.1371/journal.pone.0014313.g005
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module gene were regressed on the genotypes of the module

eQTLs with or without interaction terms. Including interaction

terms in an eQTL model may improve the model fit but also

increases the model complexity. We used the standard Akaike

Information Criterion to select the eQTL model with the best

tradeoff between goodness-of-fit and model complexity [30]. Then

for each module, we computed the proportion of module genes

that could be best modeled by including the epistatic interactions.

We found that this proportion ranged from 0% to 59% in the yeast

modules with a median of 19%. Only four modules do not include

epistatic QTLs. These results have revealed the genetic complexity

of the eQTL modules.

We compared the eQTL modules of the two organisms and

found that 21 (32.3%) and 44 (67.7%) yeast modules have two and

three eQTLs respectively, while 12 (12.2%) and 85 (86.7%) mouse

modules have two and three eQTLs respectively, and one mouse

module has four eQTLs. The median module gene numbers for

the yeast and the mouse modules are 27 and 14 respectively. The

higher percentage of mouse modules with three eQTLs and the

lower number of genes in mouse modules (Fig. 4) indicates that the

regulation of gene expression in mouse is more genetically

complex than that in yeast.

Materials and Methods

Construction of eQTL networks
We used two data sets, a yeast dataset [31,32] and a mouse liver

dataset [22], to construct the eQTL networks. The yeast data set

contained genotype data of 2957 markers and gene expression

data of 6216 open reading frames in 112 F1 segregants that were

generated by crossing the BY4716 strain with the RM11-1a strain.

Linkage analysis was performed using the Wilcoxon test, and

statistical significance was estimated by permutations [31].

Significant linkage results with P-values ,0.001 were used to

construct the eQTL network. We divided the yeast genome into

bins of 20 Kb and mapped QTLs onto them. In an eQTL

network, two types of nodes were used to represent eQTLs and

gene expression traits respectively, and edges represent the

modulatory relations between the QTLs and gene expression

traits. Gene expression traits mapped to only one eQTL were not

included in the network because such nodes would not belong to

any module.

The mouse liver data set contained expression data of 23,574

mouse transcripts in the livers of 334 F2 mice generated by

crossing the C57BL/6J ApoE–/– strain with the C3H/HeJ

ApoE–/– strain [22]. Using this data set, Wang et al. [22] mapped

suggestive and significant eQTLs (Table S1 of [22]). Again, we

used P,0.001 as the cutoff value to construct the eQTL network.

We divided the mouse genome into bins of 5 Mb and mapped

QTLs onto them. The QTLs modulating the GFM trait of these

mice were also mapped by Wang et al. (Table 2 of [22]).

Module detection
We employed a two-step search algorithm: in the first step we

tried to find as many seed modules as possible and in the second

step we merged overlapping seed modules. We searched for seed

modules within a range of m (the number of eQTL nodes) from 2

to 6 and n (the number of gene nodes) from 4 to 14. For each

combination of m and n, we started with a randomly picked,

connected set of m eQTL nodes and n gene nodes. In each

following step, one node in the current set was randomly selected

and an attempt was made to replace it with a randomly picked

node that does not belong to the current set but is connected to the

current set by one or more edges. At the end of every 25 steps, one

node in the current set was replaced with a node that had no

connection to the current set to avoid getting stuck in local

maxima. Changes were accepted or rejected according to the

Metropolis criteria [33,34], i.e. a move was accepted with a

probability of the smaller of 1.0 or exp Qnew{Qoldð Þ|10½ � where

Qnew and Qold were the new and old Q values. The optimization

continued until Q = 1 or 500 moves had been made. One thousand

such searches with different random starts were performed and all

identified seed modules (i.e., sets of connected node with a Q

$0.66 and a P-value ,1024) were recorded. These seed modules

were then merged iteratively. Each time two overlapping seed

modules were merged if and only if the resulting module still had a

Q $0.66 and a P-value ,1024. This process continued until no

further merging was possible. The P-values for modules of

different sizes (i.e. each combination of m and n) were estimated

by random rewiring. One thousand networks were generated by

randomly rewiring the edges of the original eQTL network, while

keeping the edge degree of each node unchanged. The rewiring

scheme is adopted from [35]. Two edges (A–B and C–D) are

randomly selected and then rewired such that the new edges are

A–D and B–C, provided neither of these new edges exists in the

current network. This rewiring scheme is equivalent to randomly

switching pairs of 0 and 1 in the rows of the adjacency matrix

while keeping the raw and column margins unchanged. We then

applied the module detection algorithm to these randomized

networks to estimate the statistical significance of the Q value for

each combination of m and n. One thousand independent searches

with different random starts were performed for each randomized

network.

Simulation
In order to access the performance of our model detection

algorithm, we generated random networks with prescribed

modular structure and then used our method to identify the

predefined modules. We adopted the module simulation method

for bipartite network as described in [36] with minor changes to

accommodate the module density criterion (Q value) used in this

work. We first predefined the module membership for all the

eQTL and gene nodes being considered. We also predefined Ni,

the number of gene nodes within the i-th module. For each eQTL

node, we connected it to Ni gene nodes: with probability p, a gene

node randomly selected from the same module was connected to

the eQTL; otherwise a gene node randomly selected from the

whole gene node set was connected to the eQTL. The parameter p

controls the degree of homogeneity of a module and hence is

called module homogeneity. If a module generated this way did

not satisfy our module density criterion (Q$0.66), we extracted a

subset of nodes from the module that met this criterion as the final

module. The normalized mutual information (NMI) was used to

assess the performance of the search algorithm. Given a confusion

matrix in which rows are prescribed modules and columns are

detected modules, NMI is defined as

{2
P
M1

P
M2

Nij|log
Nij|N

Ni:|N:j

� �

P
M1

Ni:|log
Ni:

N

� �
z
P
M2

N:j|log
N:j

N

� � ,

where Nij is an element of the confusion matrix specifying the

number of overlapped nodes between the i-th prescribed module

and the j-th detected module. Ni. and N.j are the row means and

column means respectively, and M1 and M2 are the number of

prescribed and detected modules [16].

Expression QTL Module Analysis

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e14313



Supporting Information

Table S1 List of Yeast Modules

Found at: doi:10.1371/journal.pone.0014313.s001 (0.57 MB

XLS)

Table S2 List of Mouse Liver Modules

Found at: doi:10.1371/journal.pone.0014313.s002 (0.19 MB

XLS)

Table S3 Gene Ontology Analysis of Yeast Modules

Found at: doi:10.1371/journal.pone.0014313.s003 (0.06 MB

XLS)

Table S4 Gene Ontology Analysis of Mouse Liver Modules

Found at: doi:10.1371/journal.pone.0014313.s004 (0.03 MB

XLS)

Table S5 Yeast module pairs with significant numbers of

moderate between-module links

Found at: doi:10.1371/journal.pone.0014313.s005 (0.02 MB

XLS)

Acknowledgments

We thank Dr. Rachel Brem for providing the yeast genotype data and

eQTL mapping results. We thank Dr. Gael Yvert for providing yeast

morphological trait data.

Author Contributions

Conceived and designed the experiments: LB YC. Performed the

experiments: LB. Analyzed the data: LB. Contributed reagents/materi-

als/analysis tools: XX. Wrote the paper: LB YC.

References

1. Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev

Genet 7: 862–872.
2. Quigley D, Balmain A (2009) Systems genetics analysis of cancer susceptibility:

from mouse models to humans. Nat Rev Genet 10: 651–657.
3. Ayroles JF, Carbone MA, Stone EA, Jordan KW, Lyman RF, et al. (2009)

Systems genetics of complex traits in Drosophila melanogaster. Nat Genet 41:

299–307.
4. Schadt EE (2009) Molecular networks as sensors and drivers of common human

diseases. Nature 461: 218–223.
5. Rockman MV (2008) Reverse engineering the genotype-phenotype map with

natural genetic variation. Nature 456: 738.

6. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, et al. (2008)
Genetics of gene expression and its effect on disease. Nature 452: 423–428.

7. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, et al. (2008) Variations in DNA
elucidate molecular networks that cause disease. Nature 452: 429–435.

8. Bao L, Peirce JL, Zhou M, Li H, Goldowitz D, et al. (2007) An integrative
genomics strategy for systematic characterization of genetic loci modulating

phenotypes. Hum Mol Genet 16: 1381–1390.

9. Jansen RC, Nap JP (2001) Genetical genomics: the added value from
segregation. Trends Genet 17: 388–391.

10. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, et al. (2003) Genetics of
gene expression surveyed in maize, mouse and man. Nature 422: 297–302.

11. Barabasi A-L, Oltvai ZN (2004) Network biology: understanding the cell’s

functional organization. Nat Rev Genet 5: 101–113.
12. Rives AW, Galitski T (2003) Modular organization of cellular networks.

Proceedings of the National Academy of Sciences of the United States of
America 100: 1128–1133.

13. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, et al. (2003) Module
networks: identifying regulatory modules and their condition-specific regulators

from gene expression data. Nat Genet 34: 166–176.

14. Li H, Chen H, Bao L, Manly KF, Chesler EJ, et al. (2006) Integrative Genetic
Analysis of Transcription Modules: Towards Filling the Gap between Genetic

Loci and Inherited Traits. Hum Mol Genet 15: 481–492.
15. Zhang W, Zhu J, Schadt EE, Liu JS (2010) A Bayesian Partition Method for

Detecting Pleiotropic and Epistatic eQTL Modules. PLoS Comput Biol 6:

e1000642.
16. Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community

structure identification. Journal of Statistical Mechanics-Theory and Experi-
ment. 10 p.

17. Klingenberg CP, Leamy LJ, Cheverud JM (2004) Integration and modularity of
quantitative trait locus effects on geometric shape in the mouse mandible.

Genetics 166: 1909–1921.

18. Mezey JG, Cheverud JM, Wagner GP (2000) Is the genotype-phenotype map
modular? A statistical approach using mouse quantitative trait loci data.

Genetics 156: 305–311.
19. Robinson PN, Wollstein A, Bohme U, Beattie B (2004) Ontologizing gene-

expression microarray data: characterizing clusters with Gene Ontology.

Bioinformatics 20: 979–981.

20. Westfall PH, Zaykin DV, Young SS (2002) Multiple tests for genetic effects in

association studies. Methods Mol Biol 184: 143–168.
21. Nogami S, Ohya Y, Yvert G (2007) Genetic complexity and quantitative trait

loci mapping of yeast morphological traits. PLoS Genet 3: e31.
22. Wang S, Yehya N, Schadt EE, Wang H, Drake TA, et al. (2006) Genetic and

genomic analysis of a fat mass trait with complex inheritance reveals marked sex

specificity. PLoS Genet 2: e15.
23. Greaves KA, Going SB, Fernandez ML, Milliken LA, Lohman TG, et al. (2003)

Cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase
activities in hispanic and anglo postmenopausal women: associations with total

and regional body fat. Metabolism 52: 282–289.

24. van Tits L, de Graaf J, Toenhake H, van Heerde W, Stalenhoef A (2005) C-
Reactive Protein and Annexin A5 Bind to Distinct Sites of Negatively Charged

Phospholipids Present in Oxidized Low-Density Lipoprotein. Arterioscler
Thromb Vasc Biol 25: 717–722.

25. Laudes M, Bilkovski R, Oberhauser F, Droste A, Gomolka M, et al. (2008)
Transcription factor FBI-1 acts as a dual regulator in adipogenesis by

coordinated regulation of cyclin-A and E2F-4. Journal of Molecular Medicine

86: 597–608.
26. Soni KG, Lehner R, Metalnikov P, O’Donnell P, Semache M, et al. (2004)

Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase. J Biol Chem 279:
40683–40689.

27. Kudo T, Shimada T, Toda T, Igeta S, Suzuki W, et al. (2009) Altered expression

of CYP in TSOD mice: a model of type 2 diabetes and obesity. Xenobiotica 39:
889–902.

28. Wakabayashi K-i, Okamura M, Tsutsumi S, Nishikawa NS, Tanaka T, et al.
(2009) The Peroxisome Proliferator-Activated Receptor {gamma}/Retinoid X

Receptor {alpha} Heterodimer Targets the Histone Modification Enzyme PR-
Set7/Setd8 Gene and Regulates Adipogenesis through a Positive Feedback

Loop. Mol Cell Biol 29: 3544–3555.

29. Merezhinskaya N, Fishbein WN (2009) Monocarboxylate transporters: past,
present, and future. Histol Histopathol 24: 243–264.

30. Akaike H (1974) A New Look at the Statistical Model Identification. IEEE Trans
Autom Control 19: 716–723.

31. Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700

gene expression traits in yeast. Proc Natl Acad Sci USA 102: 1572–1577.
32. Brem RB, Storey JD, Whittle J, Kruglyak L (2005) Genetic interactions between

polymorphisms that affect gene expression in yeast. Nature 436: 701–703.
33. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953)

Equation of state calculations by fast computing machines. The Journal of
Chemical Physics 21: 1087–1092.

34. Spirin V, Mirny LA (2003) Protein complexes and functional modules in

molecular networks. Proceedings of the National Academy of Sciences of the
United States of America 100: 12123–12128.

35. Maslov S, Sneppen K (2002) Specificity and Stability in Topology of Protein
Networks. Science 296: 910–913.

36. Guimera R, Sales-Pardo M, Amaral LAN (2007) Module identification in

bipartite and directed networks. Physical Review E 76: 8.

Expression QTL Module Analysis

PLoS ONE | www.plosone.org 7 December 2010 | Volume 5 | Issue 12 | e14313


