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Similar to obesity, aging is associated with visceral adiposity and insulin resistance.

Inflammation in adipose tissue, mainly evidenced by increased accumulation and

proinflammatory polarization of T cells and macrophages, has been well-documented

in obesity and may contribute to the associated metabolic dysfunctions including insulin

resistance. Studies show that increased inflammation, including inflammation in adipose

tissue, also occurs in aging, so-called “inflamm-aging.” Aging-associated inflammation

in adipose tissue has some similarities but also differences compared to obesity-related

inflammation. In particular, conventional T cells are elevated in adipose tissue in both

obesity and aging and have been implicated in metabolic functions in obesity. However,

the changes and also possibly functions of regulatory T cells (Treg) in adipose tissue

are different in aging and obesity. In this review, we will summarize recent advances in

research on the changes of these immune cells in adipose tissue with aging and obesity

and discuss their possible contributions to metabolism and the potential of these immune

cells as novel therapeutic targets for prevention and treatment of metabolic diseases

associated with aging or obesity.
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OVERVIEW

The rapidly increasing elderly population worldwide can cause a wide range of implications in
healthcare policies of all nations. In the United States, the population aged 65 and over is projected
to be 83.7 million by 2050, almost double the estimate of 43.1 million in 2012 (1). Both aging and
obesity are associated with low-grade, chronic inflammation that may be detrimental to health.
While obesity is triggered by excessive nutrient intake and sedentary lifestyle, aging is caused by
deteriorative changes in adult organisms with advancing age. In certain circumstances, aging is
termed “inflamm-aging,” whereas increased inflammation of adipose tissue in obesity is described
as “meta-flammation” or metabolically activated inflammation (2, 3).

DEVELOPMENT OF “INFLAMM-AGING”

Aging is an intricate, dynamic, and physiologic process that adversely affects most body functions,
including the development and maintenance of the immune system (4). Basic aging mechanisms
such as cellular senescence and diminished number or dysfunction of immune progenitor cells
are causative factors of development of low-grade inflammation (5). Immunosenescence is a term
to describe the decline of immune function associated with aging, which can lead to increased
susceptibility to infections, cancer, and metabolic and autoimmune disorders (6, 7).
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During the state of infection or tissue damage in healthy young
individuals, the innate immune system, including neutrophils,
monocytes, and natural killer (NK) cells, responds quickly.
In addition, the adaptive immune system is activated by the
action of antigen-presenting cells (APCs), and effector T and
B lymphocytes are developed and fight against the insult
with a refined antigen-specific immune response. After the
effective removal of the invading pathogen, the host immune
response must be deactivated and return to a quiescent state
to prevent further tissue damage. A subset of T lymphocytes
called regulatory T cells (Treg) are responsible for suppressing
the deleterious effects of immune response (6). In general, both
innate and adaptive immune systems are affected by aging,
but adaptive immunity, especially T lymphocytes, are most
susceptible to the detrimental effects of aging. The thymus is
the key organ orchestrating production of new T lymphocytes,
but age-associated chronic involution of the thymus results in a
reduced proportion of naïve to memory T cells in the periphery
(6, 8). As the number of naïve CD8+ T cells declines with aging,
the diversity of naïve and memory T cell receptors (TCRs) is
also reduced significantly in mice and humans (9). In parallel,
aging represents a striking decline in humoral and cell-mediated
responses mainly caused by the senescence of T lymphocytes
(10). Hence, gradual deterioration of the immune system over
the course of time leads to a mismatch between proinflammatory
and anti-inflammatory signals that may disrupt inflammatory
homeostasis causing “inflamm-aging.”

ADIPOSE TISSUE INFLAMMATION IN
AGING

Aging is commonly accompanied by obesity, especially
abdominal/visceral adiposity that leads to numerous health
problems such as insulin resistance, metabolic syndrome,
cardiovascular disease, and disability (11, 12). Adipose tissue
functions as the connecting link among nutrition, metabolism,
thermoregulation and proper immune system function in
healthy individuals (13). Alterations in adipose tissue are major
contributors to age-associated metabolic dysfunctions and
other health issues (5, 14, 15).There are two types of adipose
tissue depots: (1) brown adipose tissue, composed of brown
adipocytes, which contain numerous mitochondria and lipid
droplets and function as the site of adaptive thermogenesis
(16); (2) white adipose tissue, which includes visceral adipose
depots and subcutaneous adipose depots and acts as the prime
location where metabolic energy is stored in the form of
triglycerides during periods of nutritional excess (17). In healthy
young individuals, subcutaneous depots act as a metabolic
sink where all the excess calories are stored in adipocytes
in the form of triglycerides (18). But after the middle age,
the ability of subcutaneous fat depots to store lipids declines
(19), leading to relocation of excess fat to visceral fat depots,
causing visceral adiposity (20). This excessive lipid accumulation
in visceral fat depots, along with the surrounding tissue
microenvironment, may drive adipose tissue inflammation.
Indeed, when compared to subcutaneous adipose tissue, visceral

adipose tissue contains more immune cells and plays a more
critical role in immunometabolic homeostasis (21). The main
immune cell types in visceral adipose tissue include macrophages
(ATMs) and T lymphocytes, and other immune cell types which
may change in numbers and phenotypes in aging and obesity
(22–29). In this review, we focus on changes in T lymphocytes in
adipose tissue in aging and the potential roles of adipose tissue T
cells in metabolic functions.

CHANGES IN ADIPOSE TISSUE T CELLS IN
AGING

The changes in adipose tissue T cells in obesity have been
well-documented in mice and humans (24, 30–33). In contrast,
information on age-related changes in adipose tissue T cells
is limited. Most studies showing the effects of aging on T
cells has focused on lymphoid tissues and blood. It has been
well-recognized that aging in humans and mice increases the
proportion of memory T cells in blood and lymphoid organs
(34, 35). Further, T cells in aging tend to polarize to a
proinflammatory phenotype, secreting high levels of type 1
cytokines such as IFN-γ, TNF-α, and IL-6 (34, 36–39) and
expressing elevated levels of chemokine receptors with enhanced
chemotaxis to chemokines (40–42). In humans, one study
showed that peripheral blood CD8+ T cells that are positive
for IFN-γ, IL-2, and TNF-α are significantly increased with age
among all three CD8+ subsets, i.e., naïve, effector/cytotoxic, and
memory T cells (38). Another study revealed that intracellular
TNF-α and IL-6 levels in blood T cells were significantly
increased in the older age (37). This aging-associated elevation
of proinflammatory cytokines could be one of the reasons
for thymic involution and the reduced proportion of naïve to
memory T cells (8). Thymic involution and immune system
aging could result in alterations of T cell development, activation,
homeostasis, and trafficking in peripheral tissues.

Limited numbers of studies have shownT cell changes in aging
adipose tissue; data were generated mainly from mouse models
at different ages [from 10 to 15 months [“middle age”] to >18
months [“old age”]]. Aging is commonly associated with visceral
obesity and has some similarities but also differences in changes
of adipose tissue immune cells, including T cells, when compared
to diet-induced obesity (Figure 1).

Conventional CD4+ T Cells and CD8+ T
Cells
Similar to obesity, aging is associated with significant increases
in adipose tissue T cells. Compared to young mice, aged mice
(18–22 months old) have ∼2-fold increases in CD3+ T cells
in adipose tissue when normalized to tissue weight (43). Both
conventional CD4+ T cells and CD8+ T cells are significantly
increased, with a greater increase in CD8+ than CD4+ T cells, in
visceral fat of aged mice compared to that of young mice (43),
which is also similar to the change with obesity (31, 44). The
increases in adipose tissue T cells, particularly CD8+ T cells,
were also observed in 11- to 16-months-old middle-aged mice
(23, 45) and appeared to be influenced by sex, with females having
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FIGURE 1 | Changes in adipose tissue T cells, macrophages and eosinophils in obesity and aging.

a higher percentage of CD8+ T cells than males (45), in contrast
with obesity, in which a greater change in adipose tissue T
cells occurred in males than females (24). Furthermore, CD69+-
activated and IFN-γ-expressing CD8+ T cells and activated
CD4+ T cells are increased in adipose tissue of middle-aged mice
(23, 45). These changes are similar to those in obesity (31, 44).
However, the age-associated changes in adipose tissue T cells
appear to be independent of adiposity (46). The increases in
adipose tissue T cells in aging are tissue specific and are not
observed in blood or lymphoid organs (43, 45).

Regulatory T Cells (Treg)
Treg normally represent a small portion of CD4+ T cells, and
regulate inflammation and prevent autoimmune responsemainly
by suppressing conventional T cell proliferation and activation
(47–49). Compared to lymphoid tissues and blood, adipose
tissue is highly enriched with Treg in normal conditions. When
compared to their spleen and lymph node counterparts, adipose
Treg are a unique population having a specific antigen repertoire
and a different transcript profile (30), with overexpression
of transcripts encoding transcription factors (e.g., peroxisome
proliferator–activated receptor (Ppar)–γ, Gata-3), chemokines or
their receptors (e.g., CCR1, CCR2), cytokines or their receptors
(e.g., IL10, IL1rl1), and proteins important in lipid metabolism
(e.g., Dgat1, Pcyt1a) (50). In diet-induced obesity, adipose tissue
Treg are dramatically reduced (30), and this Treg reduction
is accompanied by loss of the adipose Treg signature in the
remaining Treg population (50). In contrast to obesity, in aging,
Treg are elevated in adipose tissue and continuously rise from
young age to adult, middle-age and old age in mice (23, 30, 43,
51). Compared to young mice, middle-aged to old mice have
7–11-fold increases in adipose tissue Treg, which account for
>50% of total CD4+ T cells in adipose tissue (23, 43). When
compared to those in young mice, Treg of aged mice (25 weeks)
have substantial increases in a set of transcripts (Ppar-γ, Gata-3,
Klrg1, Ccr2, and l1rl1), which continue to increase with aging and
may result in local adaptation to the lipophilic, hypoxic adipose
tissue environment (50).

Other Immune Cells
In addition to adaptive T lymphocytes, innate T lymphocytes
such as γδT cells and invariant natural killer T (iNKT) cells are
also located in adipose tissue. Both γδT cells and iNKT cells

are resident cells in adipose tissue. While γδT cells tend to be
increased (52), iNKT cells are decreased in adipose tissue in
obesity (53–55). Similarly, a recent study showed that adipose
tissue γδT cells also increased with age in mice from 5 to 28
weeks, whereas adipose tissue iNKT cells decreased significantly
with age (51).

It is also worth notice that aging is different from obesity
in changes of some other important immune cells in adipose
tissue. For example, it is well recognized that macrophages are
increased and eosinophils are decreased in obese adipose tissue
(25–28, 56). However, available data indicate that the numbers
of adipose tissue macrophages and eosinophils show no or only
modest changes in aging (23, 43, 46). Nevertheless, adipose tissue
macrophages appear to have proinflammatory phenotypes in old
mice (43).

FUNCTIONS OF ADIPOSE TISSUE T CELLS

In healthy young humans and mice, various T cell
subpopulations harboring in adipose tissue may play pivotal
roles in homeostasis and maintenance of immune cells,
energy metabolism, and thermogenesis. Changes in adipose
T cells in aging and obesity may contribute to adipose
tissue inflammation and associated metabolic dysfunctions
(Figure 2).

Role of T Cells in Adipose Tissue
Inflammation
Conventional T cells, including CD4+ Th1 cells and effector
CD8+ T cells, are elevated in adipose tissue and may
play important roles in adipose tissue inflammation in both
aging and obesity (31, 43–46). Conventional T cells are
important inflammatory components producing high levels of
inflammatory molecules such as IFN-γ, thereby contributing
to inflammation. In addition, altered T cells and related
inflammatory molecules may contribute to aging- or obesity-
related adipose inflammation by influencing other immune cells
such as macrophages in adipose tissue (31, 43, 44, 46). Some
reports showed that in obesity induced by high-fat diet (HFD),
conventional T cell infiltration and accumulation are the primary
events and play important roles in the initiation of adipose tissue
inflammation and in ATM infiltration and activation (31, 57, 58).
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FIGURE 2 | Schematic representation of functions of T cells and associated immune cells in young and aging adipose tissue. In young adipose tissue,

insulin-sensitive (IS) white adipocytes, beige adipocytes, and stromal cells are surrounded by “type 2” immune cells, including alternatively activated macrophages

(M2), T helper type 2 (Th2) cells, eosinophils, innate lymphoid type 2 (ILC2) cells, regulatory T cells (Treg), and invariant natural killer T (iNKT) cells, which interact with

each other and produce type 2 cytokines such as IL-4, IL-5, and IL-13 and may help maintain normal adipose functions, including adipocyte insulin sensitivity and

beige fat thermogenesis. In aging, adipose tissue contains increased numbers of T cells including conventional CD4+ cells, CD8+ T cells and Treg and also

proinflammatory M1-like macrophages/dendritic cells (DCs), which produce proinflammatory molecules such as IFN-γ and TNF-α and may contribute to adipose

dysfunctions such as insulin resistance (IR) and impaired beige fat thermogenesis.

Indeed, combined CD4+ and CD8+ T cell deficiency in obese
mice decreased ATMs and reduced adipose tissue inflammation
(59). In addition, γδT cells, Vγ4, and Vγ6 subsets in
particular, may also contribute to macrophage accumulation and
inflammation in adipose tissue in obesity. Deletion of γδT cells or
Vγ4/6 prevents obesity-induced macrophage accumulation and
inflammation in mice (52). In contrast to conventional CD4+,
CD8+ T cells, and γδT cells, Treg are dramatically decreased in
adipose tissue in obesity, and expansion of Treg in obese mice
protects against adipose tissue inflammation, with decreased
ATMs and related inflammatory markers (30, 60). Conversely,
depletion of Treg in young mice may increase adipose tissue
levels of several inflammatory markers (30). These data suggest
a protective role of Treg in obesity-induced adipose tissue
inflammation. In contrast, Treg are increased in adipose tissue
of aging mice, and depletion of adipose tissue Treg did not
significantly enhance systemic and tissue inflammation in aging
mice (23).

iNKT cells are enriched in adipose tissue and may play
a role in adipose tissue Treg homeostasis by producing IL-
2 in young mice (see section Regulatory T Cell Maintenance

in Adipose Tissue). However, data are not consistent about
the roles of iNKT in adipose tissue inflammation and insulin
resistance associated with obesity, which were recently discussed
in other review articles (61–63) and are not included in this
review.

In addition to their crucial role in visceral adipose
inflammation, T cells, conventional CD4+ and CD8+
T cells in particular, also infiltrate into skeletal muscle,
mainly localized within intermyocellular and perimuscular
adipose tissue, and play substantial roles in skeletal muscle
inflammation in obesity (59, 64, 65). Their potential role in
aging-related inflammation in skeletal muscle remains to be
investigated.

Inflammation has been involved in adipose tissue
remodeling (28). In particular, proinflammatory M1-like
macrophages have been implicated in adipose tissue remodeling
associated with obesity (66). Given the crucial roles of T cells,
especially Th1 cells and cytokine IFN-γ, in macrophage M1
polarization(66, 67), T cells may also play a role in adipose
tissue remodeling via regulation of macrophage phenotypes.
However, a potential direct role of T cells in adipose tissue
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remodeling, particularly in relation to aging, remains to be
studied.

Roles of Conventional T Cells in Insulin
Resistance
Inflammation in adipose tissue has been implicated in insulin
resistance and metabolic dysfunctions associated with obesity.
Depletion of CD8+ T cells ameliorated systemic insulin
resistance, while adoptive transfer of CD8+ T cells aggravated
insulin resistance in obese mice, demonstrating a crucial role
of CD8+ T cells in systemic metabolic dysfunctions in obesity
(31). CD4+ Th1 cells may have similar contributions to obesity-
related insulin resistance; reductions in adipose tissue Th1 by
ablation of major histocompatibility complex (MHC) class II
molecule (MHCII) on adipocytes or ATMs were associated with
improved insulin resistance in obese mice (58, 68, 69). Our
study showed that combined deficiency of CD4+ and CD8+ T
cells in obese mice, with reduced inflammatory status, improved
insulin resistance systemically and in adipose tissue as well
as in skeletal muscle (59, 65). The mechanisms underlying
contributions of proinflammatory T cells (mainly CD4+Th1 and
effector CD8+ T cells) to insulin resistance may include direct
adverse effects of these T cells or T cell cytokines such as IFN-
γ on metabolic functions and insulin sensitivity in adipocytes or
skeletal muscle through the JAK/STAT1 pathway (24, 65, 70) and
T cell effects on other immune cells such as macrophages, which
also play important roles inmetabolic functions including insulin
resistance. In contrast to Th1 and effector CD8+ T cells, Th2
cells, which produce type 2 cytokines such as IL-4 and IL-5, may
protect against obesity and related insulin resistance; transfer of
CD4+ T cells reverses weight gain and insulin resistance in HFD-
fed lymphocyte-free mice, mainly through polarization into Th2
cells (32).

Aging is commonly associated with insulin resistance and
increased prevalence ofmetabolic syndrome inmost populations.
Given the massive increases of CD8+ T cells and conventional
CD4+ T cells in aging adipose tissue (43) and the discussed
roles of T cells in metabolic functions, it is plausible that
adipose tissue T cells may also contribute to age-related
metabolic dysfunction and insulin resistance (5, 9). However,
more elaborate studies are needed to unveil aging-related changes
in the phenotypes of adipose tissue T cells and the exact
roles of adipose tissue T cells in age-associated metabolic
functions.

Role of Treg in Metabolic Function
Visceral adipose tissue of lean mice contains more Treg cells
than that of obese counterparts (30). Possible functions of Treg
in lean adipose include monitoring the activity of conventional
T cells and regulating proper functioning of neighboring
macrophages and adipocytes (30). Gain-of-function and loss-of-
function approaches demonstrated that Treg play a protective
role in insulin sensitivity and energy homeostasis in obesity
(30, 60). Treg may improve insulin sensitivity through the release
of anti-inflammatory molecules such as IL-10 and TGF-β that
may counteract the proinflammatory signals in both humans
and rodents (71, 72). Consistent with these findings, Deng

et al. also showed that maintenance of adipose Treg in obese
mice with adipocyte-specific deletion of MHCII was associated
with improved insulin resistance (69). In contrast to obesity,
in aging adipose tissue, Treg undergoes significant expansion.
Depletion of adipose Treg was found to be protective against age-
associated metabolic dysregulation. Aging mice with depletion
of adipose Treg exhibited increased insulin sensitivity compared
to control mice (23), suggesting that Treg in adipose tissue may
play a detrimental role in age-associated insulin resistance. The
inflammatory status of mice with adipose Treg depletion did
not change significantly compared to control mice. Although
the mechanisms whereby adipose Treg contribute to age-related
insulin resistance remain to be investigated, it seems likely that
the pathophysiological mechanisms that regulate age-associated
insulin resistance and obesity-induced insulin resistance may be
different (23, 30).

Roles of T Cells in Thermogenesis
Adipose tissue is one of the key organs responsible for whole body
energy homeostasis via energy storage/dissipation depending on
nutrient intake and external temperature fluctuations (73). Beige
adipocytes, which may develop within white adipose depots,
particularly in subcutaneous adipose depots, have a similar
energy dissipation function as that of brown adipocytes, which is
mainly induced by cold and beta-adrenergic activation (74–76).
Innate and adaptive immune system components are reported
to contribute to and regulate the energy storage/dissipation
functions of adipose tissue (77–79). Recent reports suggest that
along with macrophages, T cells may play a significant role in
the regulation and maintenance of thermogenesis and overall
adipose tissue energy homeostasis.

Th2 cells and associated type 2 immune cell populations
such as innate lymphoid type 2 (ILC2) cells and eosinophils in
young lean adipose tissue have a significant role in defining a
favorable adipose niche for beige adipocyte development and
thermogenesis (80). The major cytokines produced by Th2 cells,
eosinophils, and ILC2 cells during type 2 immune response
are IL-4, IL-5, and IL-13 (81, 82), which may promote the
proliferation and differentiation of PDGFRα+ adipose stromal
precursor cells to thermogenic beige adipocytes and therefore
help to maintain thermogenesis in young lean conditions (83).
In addition, type 2 cytokines and eosinophils are essential
factors for the differentiation and propagation of alternatively
activated M2 macrophages (56), which may play a role in
inducing adipose thermogenesis by producing catecholamine
(77). However, a more recent study by Fischer et al did
not show a role of M2 macrophages in inducing adipose
thermogenesis (84).

In addition to Th2 cells, PLZF+ γδT cells, and iNKT cells may
also contribute to induction of adipose thermogenic function
(51, 85, 86). Adipose-residing γδT cells are important for the
preservation of body temperature and thermogenic function,
possibly by producing IL-17A. Under cold challenge, mice
deficient in either γδT cells or IL17A have reduced UCP-1
expression and are unable to survive (51). In obesity, activation
of iNKT cells induces adipose thermogenesis, leading to weight
loss, in mice, likely through induction of FGF21 (86). The action
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of FGF21 in white adipose tissue is implicated by the activation
of PGC1α along with induction of adiponectin, resulting in
improved energy expenditure (87, 88).

In aging, the functional beige adipocytes decline, as the
number of fully active beige adipocytes in human and mice
depend on the whole body metabolic fitness (89–91). How
changes in adipose tissue immune cells contribute to age-
related decline in adipose thermogenic functions remain largely
unknown. Depletion of adipose Treg in mice reduced age-
associated weight gain and adiposity, with enhanced energy
expenditure (23), indicating a role of adipose Treg in age-related
energy metabolism. Recently, Moysidou et al. demonstrated an
inhibitory effect of CD8+ T cells on adipose thermogenesis in
mice, possibly by secreting IFN-γ, which may have direct effects
on thermogenesis or interfere with the effects of other immune
cells, such as eosinophils and ILC2 cells, on thermogenesis (79).
It is possible that conventional CD4+ T cells, particularly Th1
cells, have similar functions in adipose thermogenesis because
of IFN-γ expression (79). Based on the elevations in CD8+
and conventional CD4+ T cells in aging adipose tissue, it is
reasonable to hypothesize that these immune cells may play a
role in age-associated decline in adipose thermogenic functions
and energy expenditure. However, this hypothesis remains to be
tested.

MECHANISMS FOR CHANGES IN
ADIPOSE TISSUE T CELLS

Regulatory T Cell Maintenance in Adipose
Tissue
Treg are resident cells in adipose tissue (30). These adipose
Treg in mice are seeded from the thymus during an early
stage of life and expand within adipose with aging (23, 43,
92). Recently, Li et al. showed that immature Treg from the
thymus undergo a priming step in the spleen prior to infiltration
into adipose tissue, which may permit them to leave lymphoid
organs and to survive in non-lymphoid organs, including adipose
tissue (93). While iNKT cells, a type of lipid-sensing innate T
cells, may assist in regulating adipose tissue Treg number and
function in young mice by producing IL-2 (85), two factors,
i.e., interaction of TCR-antigen-MHCII on APCs and cytokines
such as IL-33, may be the main drivers of visceral adipose
Treg accumulation in aging (92). Treg in aging adipose tissue
express high levels of ST2, a receptor for IL-33, and IL-33
efficiently induces Treg differentiation and expansion in aging
visceral adipose tissue (23, 93, 94). Recently, a subpopulation
of γδT cells termed PLZF+ γδT cells was demonstrated to play
a considerable role in age-related adipose Treg accumulation
via producing IL-17A, which induces stromal cell production
of IL-33 in adipose tissue (51). Two subpopulations of APCs
have been identified in aging mouse visceral adipose tissue—
MHCII+CD11b+CD11c+ macrophages and MHCII+CD11b-
CD11c+ dendritic cells—both of which were colocalized with
Tregs and may play important roles in Treg maintenance within
adipose tissue in aging, possibly via the TCR-antigen-MHCII
interaction (92). Importantly, PPAR-γ, the master regulator

of adipocyte differentiation, has been shown to be a crucial
molecular driver for Treg cell accumulation and function in
visceral adipose tissue (95). In obesity, Th1 inflammation
mediated by obese adipocyte- or macrophage-expressed MHCII
may contribute to the reduction in adipose Treg in diet-induced
obesity via producing IFN-γ, which blocks the effects of IL-
33 on Treg proliferation. Adipocyte-specific deletion of MHCII
prevents diet-induced adipose inflammation and Treg reduction
(69). In addition, influx of inflammatory macrophages, release of
inflammatory cytokines and imbalance of adipokines in obesity
may restrict the survival of adipose tissue Treg by modulation of
the adipose tissue microenvironment (30, 67, 96).

Conventional T Cell Infiltration Into
Adipose Tissue
Infiltration or migration of T cells into lymphoid organs
or peripheral tissues is tightly and specifically regulated
by collective effects of various adhesion molecules and
chemokines/receptors (97–99). Several reports explained
the mechanisms for infiltration of conventional T cells into
adipose tissue and the roles of adhesion molecules and
chemokines/receptors under obese conditions, but few reports
are available for those related to aging. Using mouse models
of obesity, our group observed that CD11a, a β2 integrin that
is highly expressed on T cells, is upregulated in obesity and
plays a crucial role in CD8+ T cell infiltration in adipose tissue
in obese mice (44). In addition, dysfunctional, damaged or
necrotic adipocytes and immune cells, including T cells, can
secrete chemokines that may accelerate lymphocyte homing
into adipose tissue (100). In our earlier study, we observed that
RANTES, a CC chemokine (CCL5), and its receptor, CCR5, were
upregulated in adipose tissue of obese mice and humans and
that RANTES was colocalized with T cells within mouse adipose
tissue. Our ex vivo/in vitro studies indicated that RANTES is
an adipokine that can be produced by adipocytes and plays an
important role in T cell migration, suggesting a potential role
of the RANTES/CCR5 axis in adipose T cell accumulation in
obesity (24). Another report showed that the preadipocyte- and
endothelial cell-derived stromal-derived factor-1α (CXCL12),
mediated early infiltration of CD4+ T lymphocytes in obesity,
which preceded the increase of macrophages in adipose tissue of
mice on HFD (101). In obese humans, adipocyte-secreted CCL20
may contribute to the accumulation of CD4+ helper and CD8+
cytotoxic T lymphocytes within adipose tissue, possibly via
interaction with CCR6 that was upregulated on T cells in obese
adipose tissue (100). However, the key molecules that mediate
T cell infiltration into adipose tissue in aging remain to be
identified.

Activation of Conventional T Cells in
Adipose Tissue
CD4+ T Cell Activation

TCRs identify the presence of a specific antigen by binding
to short peptide sequences from the antigen that is displayed
on APCs. These short peptide sequences from the antigen are
usually presented on the cell surface of APCs with the help of
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MHCII molecules, which are crucial for activation of CD4+ T
cells (102). Classically, naïve CD4+ T cells become activated
and differentiated to effector T cells by three signals: signal
1, interaction of TCR with a peptide antigen-MHCII complex
carried by APCs; signal 2, costimulatory signals such as CD28
and cytotoxic T lymphocyte antigen (CTLA) expressed on T
lymphocytes and their ligands CD80 and CD86 expressed on
APCs; and signal 3, cytokines such as IL-12, TGF-β, and IL-
10 secreted by APCs and Treg (29, 58). Deng et al. reported
that both visceral and subcutaneous adipocytes from obese
humans and mice expressed all MHCII components required
for antigen presentation and increased levels of CD80 and
CD86, and may therefore function as APCs. Indeed, the primary
adipocytes isolated from obese mice could induce antigen-
specific CD4+ T cell activation (58). Xiao et al. further described
that mostly large adipocytes from obese adipose tissue exhibited
an elevated expression level of MHCII molecules and acted
as APCs to activate CD4+ T cells to secrete IFN-γ (103). In
the early stage of obesity induced by HFD, elevated free fatty
acids may be the initial stimulus for adipocyte hypertrophy
and MHCII-related gene upregulation, possibly via activation
of JNK and STAT1, which may further activate CIITA, a
prime regulator of MHCII expression (103, 104). As obesity
progresses, free fatty acids may act synergistically with IFN-
γ to upregulate MHCII on adipocytes. Studies by Morris and
Cho et al. indicated that ATMs colocalized with T cells in
lymphoid clusters within adipose tissue and may act as APCs,
which express high levels of MHCII and also costimulatory
molecules and process and present antigens to induce CD4+ T-
cell proliferation and activation in adipose tissue of obese mice
(29, 68, 105). Taken together, one importantmechanism for obese
adipose CD4+T cell activationmay bemediated throughMHCII
expressed on ATMs and adipocytes. However, its role in aging-
related adipose tissue CD4+ T cell activation remains to be
investigated.

CD8+ T Cell Activation

Compared to CD4+ T cells, CD8+ T cells show a greater
increase in adipose tissue in obesity and in aging (31, 43, 106).
Similar to CD4+ T cells, CD8+ T cells exhibit effector memory
or effector phenotypes expressing elevated levels of IFN-γ in
obese adipose tissue (31, 44). The mechanism for CD8+ T cell
activation in adipose tissue is not fully understood. Nishimura
et al. showed that adipose tissue from obese mice induced
proliferation of splenic CD8+ T cells, indicating a CD8+ T cell-
activating environment in obese adipose tissue (31). In addition
to a role in adaptive immunity, memory CD8+ T cells are
involved in innate immunity, being able to become activated
and to proliferate under cytokine stimulation (107, 108). Indeed,
CD8+ T cells from mouse adipose tissue respond to cytokines
and become activated and proliferate under stimulation of IL-12
and IL-18, which are mainly produced by APCs and are elevated
in obese adipose tissue (44). Results from a CD11a-knockout
mouse model revealed that CD11a also plays a pivotal role in
adipose CD8+ T cell trafficking, proliferation, accumulation and
activation (44).

In parallel to the changes in adipose CD8+ T cells in obesity,
aging is reported to accelerate accumulation of CD8+ T cells
in adipose tissue, which may contribute to increased adipose
inflammation. However, the mechanisms for the aging-related
changes in adipose tissue CD8+ T cells remain unknown.
From the above discussion regarding the impact of immune
system aging on T cell homeostasis and phenotypes in lymphoid
organs and peripheral blood, it is reasonable to hypothesize
that immune system aging may contribute to the changes
in adipose tissue T cells and inflammation associated with
age.

CONCLUSIONS AND PERSPECTIVES

Similar to obesity, aging is associated with visceral adiposity and
metabolic dysfunctions, including insulin resistance. Numerous
studies have investigated the potential mechanisms and functions
of various subpopulations of adipose T cells in obesity and
relatedmetabolic complications. Limited reports have also shown
expansion of T cells, including conventional T cells and Treg,
in adipose tissue in aging. However, little is known about the
mechanisms of adipose T cell accumulation and their role in
metabolic diseases associated with aging. Hence, future studies
will need to address mechanisms and functions of adipose T
cell populations in aging. In particular, some key questions need
to be addressed. First, do the changes in adipose tissue T cells
observed in aging mice also occur in humans? Second, what
are the major factors that drive accumulation and phenotypes
of various types of T cells in adipose tissue in aging? Third,
why do adipose Treg function differently in age- and obesity-
associated insulin resistance? Fourth, how do other T cell
subpopulations, conventional T cell populations in particular,
contribute to age-related metabolic disease? Finally, and most
importantly, will targeting immune cells and inflammation be
practical and beneficial in preventing and treating age-related
metabolic disease?

In recent years, some clinical trials have illustrated the
potential of targeting inflammation with pharmacological agents
to treat metabolic diseases. Improvements of glucose metabolism
and β-cell function and reduction of HbA1c were reported in
diabetic patients after treatment with anakinra, a recombinant
analog for IL-1Ra that blocks the action of the inflammatory
cytokine IL-1β (109, 110). In another study, a selective
JAK1/JAK2 inhibitor, baricitinib, was found to be effective
in treating diabetic kidney disease and also lowering HbA1c
in patients with type 2 diabetes and diabetic nephropathy
(111, 112). Cenicriviroc, an oral dual chemokine receptor
CCR2/CCR5 antagonist, was recently shown to ameliorate
insulin resistance, hepatic inflammation and fibrosis in obese
humans and mice with non-alcoholic steatohepatitis (113, 114).
However, to date, inflammation-targeting therapies have not
been very successful in treating metabolic diseases, particularly
in humans. Further, because of the chronic nature of most
metabolic diseases, the potential side effects (vs. benefits) of
long-term use of inflammation-targeting drugs need to be
evaluated. Nevertheless, further advances in our understanding
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of the roles and mechanisms of inflammation in metabolic
diseases may open up novel avenues for the discovery of newer
classes of pharmacological targets/agents for diabetes treatment,
which may also provide novel opportunities for prevention and
treatment of age-associated metaboli disease.
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