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ABSTRACT
Objective  The aim of this systematic literature review 
was to provide a comprehensive and exhaustive overview 
of the use of machine learning (ML) in the clinical care of 
osteoarthritis (OA).
Methods  A systematic literature review was performed 
in July 2021 using MEDLINE PubMed with key words 
and MeSH terms. For each selected article, the number 
of patients, ML algorithms used, type of data analysed, 
validation methods and data availability were collected.
Results  From 1148 screened articles, 46 were selected 
and analysed; most were published after 2017. Twelve 
articles were related to diagnosis, 7 to prediction, 4 to 
phenotyping, 12 to severity and 11 to progression. The 
number of patients included ranged from 18 to 5749. 
Overall, 35% of the articles described the use of deep 
learning And 74% imaging analyses. A total of 85% of 
the articles involved knee OA and 15% hip OA. No study 
investigated hand OA. Most of the studies involved the 
same cohort, with data from the OA initiative described 
in 46% of the articles and the MOST and Cohort Hip and 
Cohort Knee cohorts in 11% and 7%. Data and source 
codes were described as publicly available respectively 
in 54% and 22% of the articles. External validation was 
provided in only 7% of the articles.
Conclusion  This review proposes an up-to-date overview 
of ML approaches used in clinical OA research and will 
help to enhance its application in this field.

INTRODUCTION
The development of artificial intelligence 
(AI), especially machine learning (ML), in 
healthcare has led to important improvements 
and discoveries, notably in rheumatology and 
osteoarthritis (OA).1–3 There are many defini-
tions for AI, but it could be summarised as the 
ability for a computer system to perform intel-
lectual tasks normally requiring human skills.

AI includes ML4 5 defined as the ability to 
‘learn’ or progressively improving perfor-
mance from data. ML methods can be super-
vised or unsupervised. In supervised analysis, 
outcomes are known, and data are labelled. 

Conversely, in unsupervised ML, the outcomes 
and data are unknown and unlabeled. Two 
additional categories have been further 
proposed: semisupervised learning and rein-
forcement learning, with the outcome only 
partially known.6 Semisupervised learning 
models consist of a mix of labelled and unla-
beled data and are based on weak supervision, 
with limited labelled data used to provide 
information and supervision for unlabeled 
data. However, reinforcement learning is an 
ML paradigm in which learning occurs iter-
atively via a series of trial-and-error cycles to 
maximise the reward received after each trial 
and therefore improve the learning. Super-
vised ML methods are the most commonly 
used in medicine and healthcare.7 Among 
supervised ML, we can distinguish different 
algorithms such as random forest, support 
vector machine, and convolutional neural 

Key messages

What is already known about this subject?
	► This is the first systemic literature review of machine 
learning and osteoarthritis.

What does this study add?
	► Most (85%) of the machine learning articles focused 
on knee osteoarthritis, and radiological data investi-
gation predominated clearly over clinical or biologi-
cal data.

	► Almost half of the selected articles described use of 
the osteoarthritis initiative database, and external 
validation was poorly used (7% of the articles).

How might this impact on clinical practice or 
further developments?

	► Application of machine learning is needed in other 
sites of osteoarthritis such as the hand or foot os-
teoarthritis, and new cohorts need to be established.

	► Improving reproducibility and understanding of ma-
chine learning in the osteoarthritis field is needed.
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networks according to the type of analyses8 (figure  1). 
Deep learning (DL) is a subtype of ML based on multiple 
layers of a neuron-architecture network allowing the 
model to improve and train itself and leading to high 
accuracy via high-level feature extraction from data.9

In these ML algorithms, we can distinguish explain-
able ML models (eg, linear models, naïve Bayes, logistic 
regression) from unexplainable ML models (eg, decision 
tree models, neural network, support vector machine), 
also known as interpretable ML or ‘white-box’ models 
for which the results of the algorithm can be understood 
by human intelligence. In contrast, unexplainable ML 
models (or ‘black-box models’) are algorithms for which, 
theoretically, one cannot possibly explain how and why 
the algorithm achieved a specific decision. Interpret-
ability tools and methods developed to improve the 
models explainability include gradient-based methods 
for convolutional neural networks (eg, gradient class acti-
vation map10), shapley additive explanation for decision-
tree models11 and local interpretable model-agnostic 
explanation.12 These interpretability tools are important 
because they help determine which features contribute 
to a specific model decision.13

In supervised ML, usually, the data used are separated 
in two parts with a training dataset to teach the algo-
rithm and a testing dataset to test the performance of the 
model. Performance in ML is evaluated with different 
prediction metrics such as accuracy, sensitivity, specificity 
and precision. Finally, a step of validation is needed to 
assess the reproducibility of the dataset and avoid over-
fitting, which can be applied by k-fold cross-validation, 
bootstrap, leave one-out or splitting dataset, or using 
external data. Validation plays a key role in ML study 
because reproducibility remains one of the main critical 
issues and challenges in ML.14

In rheumatology, ML analyses have improved our 
knowledge of patient trajectories via disease and care 
modelling as well as response to treatment or disease 
phenotyping predictions with immunological signa-
tures.15–17 With the growing number of studies using AI 
or ML in rheumatology,18 heterogeneous methodolo-
gies have been identified. Thus, the European League 
Against Rheumatism proposes ‘Points to Consider’ to 
improve the approach for better results.19

ML is also applied in the field of OA, especially with the 
establishment of large cohorts such as the OA Initiative 
(OAI),20 an observational cohort study of knee OA; the 
Multi-Centre Osteoarthritis Study (MOST),21 a longitu-
dinal prospective and observational study of knee OA; 
and the Cohort Hip and Cohort Knee (CHECK),22 a 
prospective observational cohort of knee and hip OA. 
However, despite its trending and increasing applica-
tions, ML remains an emerging field with incredible 
potential but also limitations. Thus, a better delineation 
and understanding of the ML methods used in OA is 
needed.

The aim of this systemic literature review was to give a 
comprehensive overview of ML in clinical OA.

MATERIALS AND METHODS
Information sources and search strategy
The systemic literature review was conducted in accord-
ance with the Preferred Reporting Items for Systematic 
Reviews and Meta-analyses guidelines23 24 and was regis-
tered in the International Prospective Register of Systemic 
Review PROSPERO25 (CRD42021272975). Articles in 
MEDLINE PubMed were searched beginning on 9 July 
2021, by using the following MeSH and standard terms 
((human [MeSH Terms]) AND (osteoarthritis [MeSH Terms]) 
AND ((algorithms [MeSH Terms]) OR (machine learning) 
OR (“information systems”[MeSH Terms]) OR (“artificial 
intelligence”[MeSH Terms]) OR (artificial intelligence)). The 
choice of these terms was motivated by the complexity of 
the definition of ML and by a willingness to be as exhaus-
tive as possible. The definition of ML was based on classi-
fication and algorithms listed by scikit-machine learning 
module documentation.26

Eligibility criteria
We searched for and included only original articles using 
AI and ML algorithms with clinical application in human 
OA. We excluded articles in a language other than 
English and articles related to surgery (especially those 
related to robotics and outcomes after total knee replace-
ment); articles focused on locomotor metrics related 
to physical therapy outcomes; articles related to thera-
peutics, spine OA and temporo-mandibular OA; basic 

Figure 1  Definition of artificial intelligence (AI), machine learning (ML)and deep learning and summary of the different 
algorithms used in ML.
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research articles and/or studies using murine models; 
basic cellular or molecular biology articles; and articles 
related to basic and fundamental imaging as well as theo-
retical ML (table 1).

Article selection and data extraction
Two article selection steps based on eligibly criteria have 
been used. A first selection was based on abstracts and a 
second selection on full-text articles. The final choice of 
articles was independently validated by the three coau-
thors. Data have been extracted data by using a csv file 
extraction from the National Center for Biotechnology 
Information (NCBI) database.

For each article we collected the following:

	► The domain of application of the article: diagnosis, 
prediction, phenotyping, severity, and progression of 
OA.

	► Number of patients, year of publication, localisa-
tion of OA (knee, hand, foot and/or hip), main 
ML method of analysis and the notion of supervised 
and unsupervised analysis, use of DL, explainable 
ML and interpretability tools, type of data analysed 
(clinical, biological and imaging data), name of the 
cohort, presence of testing and training dataset, vali-
dation method when used and data and source code 
availability.

Statistical analysis
Descriptive analyses, tabulation, visual display of the 
results and subgroup analysis were performed with R 
V.4.1.1 (2021-08-10). Graphical visualisation involved 
using the software BioRender and Affinity Designer.

RESULTS
Selection flow chart
We retrieved 1148 articles from the search. The flow 
chart is in figure 2. In the first selection step based on 
the abstracts for 1148 articles, 956 articles were excluded, 
including 196 reviews, 240 articles related to surgery, 134 
on fundamental and theoretical imaging, 43 on reedu-
cation, 57 related to treatment, 42 on basic research and 
60 related to other diseases, and 192 articles remained. 
After reading complete articles, we excluded 43 articles 
related to theoretical radiology, 9 to surgery outcomes 
and robotics, 10 to reeducation outcomes, 45 to molec-
ular biology and 10 to other diseases. We finally selected 

Table 1  Inclusion and exclusion criteria of the systemic 
literature review

Inclusion criteria

	► OA
	► Human
	► Machine learning algorithms

Exclusion criteria 	► Review and meta-analysis
	► Non-clinical OA articles

	– Surgery.
	– Non-applied radiology.
	– Physical therapy.
	– Treatments.

	► Experimental OA
	– Molecular biology.
	– Murine model.
	– Cell biology.

	► Temporo-mandibular OA
	► Spine OA
	► Non-available articles

	– Full text not available.
	– Non-English articles.

OA, osteoarthritis.

Figure 2  Flow of article selection.
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and analysed 46 articles9 27–72 (online supplemental table 
S1).

Systematic literature overview
Among the 46 identified articles published between 2007 
and 2021, 74% were published after 2017 (figure 3); 12 
were devoted to the diagnosis of OA at an early stage, 7 to 
the prediction of developing OA in healthy volunteers, 4 
to the identification of OA phenotypes, 12 an automated 
estimation of OA structural severity classification and 11 
to the identification of the progression of OA, notably 
patients with rapid disease progression. A complete 
descriptive analysis of the review is summarised in table 2 
and online supplemental table S2.

Number of patients
The number of patients in each study was heteroge-
neous. Indeed, the mean number of patients was 1359 
and median 525 (range 18 –5749). Studies related to OA 
severity had a high number of patients, with mean 1803 
and median 942 (range 18–4504); and studies related to 
phenotypes had the smallest number of patients, with 
mean 518 and median 559 (range 102–52). The first 
studies of ML in the field of OA were mainly related to 
diagnosis and OA prediction (median publication year 
2017 (range 2008–2020)), whereas recent articles mainly 
focused on phenotype identification (median year 2018 
(range 2015–2019)), and disease progression (median 
year 2019 (range 2012–2020)).

Source of the data
Most of the analyses involved knee OA, 85% (N=39) of 
the articles, whereas only 15% (N=7) involved hip OA. 
No study investigated hand or foot OA. Overall, 64% 
of the articles described use of the OAI, the MOST and 
CHECK cohorts. The OAI database was described in 46% 
(N=21) of articles, the MOST database in 11% (N=5) and 
the CHECK database in 7% (N=3).

ML methods
ML methods included the use of supervised algorithms, 
in 87% of articles (N=40), and unsupervised and semi-
supervised algorithms, in 9% (N=4) and 4% (N=2). 
The most frequently used algorithms were convolu-
tional neural network approaches. In total, 80% of the 
supervised algorithms were linked to classifications 
(N=32) and 20% (N=8) to regression analysis. Mixed ML 

algorithms were described in 28% (N=13) of articles. The 
ML methods differed according to the field of interest.

	► In diagnosis articles, methods with convolutional 
neural network and random forest were predominant.

	► Studies related to OA prediction involved methods 
such as elastic net regularisation and the multipur-
pose image classifier method: weighted neighbor 
distance using compound hierarchy of algorithms 
representing morphology (WND-CHARM).73

	► Studies related to phenotypes involved unsupervised 
methods such as latent cluster analysis.

	► Studies related to estimation of OA severity involved 
methods such as convolutional neural network and 
densely connected convolutional neural network.

	► In progression-related articles, 45% (N=5) described 
methods derived from logistic regression.

DL algorithms were described in 35% of the selected 
articles (N=16) and in 75% (N=9) related to OA severity. 
Explainable ML was described in only 28% of the arti-
cles (N=13). Among the articles with unexplainable ML 
models, only 10/31 (32%) described interpretability 
tools, mainly gradient based. All studies related to pheno-
types used explainable ML models, whereas all those 
related to OA severity used unexplainable ML models. 
A complete description of the algorithms used, and the 
interpretability tools is in online supplemental table S2.

Type of data
The main type of data studied was imaging, in 74% (N=34) 
of articles; 61% (N=28) of the articles described analysis 
of X-ray data and 22% (N=10) MRI. Overall, 41% (N=19) 
of articles described analysis of clinical data, mainly 
demographic data and OA evaluation scores. Only 15% 
of the articles (N=7) described analysis of biological data 
in ML models, including 13% (N=6) patient serum and 
4% (N=2) synovial fluid. Most of these studies focused on 
only one type of data, and only 24% (N=11) of articles 
described considering multiple data in their model (≥2 
types of data), such as clinical and imaging data. Data 
analysis differed according to the field of interest:

	► Articles related to OA prediction, representing 86% 
of articles, described use of imaging data (N=6), as 
compared with only 50% of articles related to OA 
early diagnosis.

	► Studies related to OA severity estimation did not use 
biological data in their model.

	► Studies related to phenotypes always used multiple 
types of data in their models, whereas those related to 
early diagnosis used a single type of data.

Reproducibility
A separate training and testing set were described in 63% 
(N=29) of articles: internal validation in 80% (N=37), 
cross validation as the main internal validation method 
in 43% (N=20), leave one-out in 9% (N=4) and bootstrap 
in 4% (N=2). Only 26% (N=12) of the articles described 
splitting the cohort to validate the data. No validation 
was described in articles related to phenotypes, using 

Figure 3  Evolution of publications related to machine 
learning and osteoarthritis.

https://dx.doi.org/10.1136/rmdopen-2021-001998
https://dx.doi.org/10.1136/rmdopen-2021-001998
https://dx.doi.org/10.1136/rmdopen-2021-001998
https://dx.doi.org/10.1136/rmdopen-2021-001998
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unsupervised algorithms. External validation with an 
independent dataset was described only in 7% (N=3) of 
the articles. Datasets were described as publicly available 
in 54% (N=25) of the articles; however, source codes 
were available in only 22% (N=10).

DISCUSSION
This systematic review gives an exhaustive overview of 
ML approaches in OA research, currently a very dynamic 
field. Indeed, most of the articles related to ML in OA 
were published in the last 5 years. Our study highlights 
that (1) 85% of the ML articles focused on knee OA, 
mainly using the OAI database, with only 15% focusing 
on hip OA and none focusing on other sites such as hand 
or foot OA; (2) radiological data investigations predom-
inated over clinical or biological data; (3) DL is increas-
ingly being used and was described in 35% of the articles 
and (4) external validation was poorly used (7% of the 
articles) (figure 4).

Importantly, one major strength of applying ML in 
OA research is the wide range of clinical applications, 
covering the current scientific questions and main chal-
lenges in OA such as diagnosis of OA at an early stage, 
predicting the development of OA in the population, 
identifying OA phenotypes, estimating OA structural 
severity and identifying patients with slow and rapid 
disease progression. However, we found few articles on 
OA symptoms such as pain, function, or physical activity, 
and articles related to phenotypes were few (N=4), repre-
senting only 9% of the selected articles.

Our review revealed several limitations in how ML is 
applied in OA studies. First, most of the ML algorithms 
applied were based on supervised approaches, which may 
limit the power of identifying novel phenotypes based on 
data. In addition, we found high heterogeneity in terms 
of algorithms used depending on the study. Explainable 
ML was described in 33% (N=15) articles, and among 

the articles based on unexplainable ML models, only one 
third described interpretability tools (N=10/31 (32%)). 
These results highlight the need for increasing awareness 
of the need to develop explainable AI and ML models. 
Second, 74% of the selected articles were related to 
imaging, and few articles described the use of clinical and 
biological data, which limits the discovery of new pheno-
types, biomarkers of severity progression or diagnosis. 
Third, the major focus on knee OA in studies using ML 
is questionable because of high heterogeneity among OA 
subtypes or localisations, which remains unclear and calls 
for diversifying the studies to better understand these 
diseases. With the several available hand-OA cohorts such 
as the Digital Cohort Design cohort,74 the Hand Osteo-
arthritis in Secondary care75 and the Nor-hand study,76 
studies using ML tools in hand OA research are expected 
to better understand the characteristics, specificities and 
course of this OA localisation in the future. Finally, data 
and source codes for analyses were not available in 46% 
and 78% of the articles, but they are critical to ensure 
reliability and reproducibility of the ML analyses.77 78 
Furthermore, external validation was described in only 
7% of the selected articles, which is also a crucial point 
because ‘reproducibility crisis’ is one of the main chal-
lenges in science, particularly the ML field14 79

One major bias that could be highlighted in the studies 
applying ML to OA is that they mostly involved using the 
OAI, MOST and CHECK cohorts, with 46% of the arti-
cles involving the OAI database. Importantly, most of the 
cohorts currently available predate the interest of ML 
analyses in the field. Therefore, the study design and 
consent form may not have included broad data-sharing, 
which limits the use of the data for ancillary studies. This 
situation reinforces the need for purpose-built cohorts 
for ML analyses. As an example, the consortium for 
Applied Public–Private Research enabling OsteoArthritis 
Clinical Headway (APPROACH) aims at creating a broad 

Figure 4  Overview of machine learning application in osteoarthritis.
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OA multicentric cohort based on ML patient selection. 
APPROACH selected 297 patients with knee OA from five 
European established cohorts by using ML models. The 
patients will be further followed for 2 years, with addi-
tional data collection, and ML will be used to improve 
OA progression prediction.80 81

Finally, the definition of ML and AI are constantly 
evolving, so delineating articles using such approaches 
over time is difficult. In our review, we chose general 
terms and retrieved a large number of articles in our first 
selection, but rheumatology scientific societies should 
prompt for common language usage to ensure future 
reviews in the field.

To our knowledge, this is the first systematic review 
giving a comprehensive overview of the ML application 
in OA research. This work gathers the current applica-
tions of ML in OA and gives insights into several ways to 
enhance the ML application in research (summarised in 
box 1).

We decided to focus on articles with direct clinical 
application in OA, so we excluded fundamental and theo-
retical articles in imaging, which are an important part of 
the current research in ML but did not fit our topic. Simi-
larly, we excluded articles related to basic science and 
molecular biology, which are also increasingly using ML 
tools.82 We also excluded ML articles related to therapeu-
tics because our study focused on the OA disease course 
and phenotypes. Articles related to OA surgery that were 
mainly based on robotic application and preoperative 
and postoperative prognosis were excluded. Because 
of high heterogeneity, we did not record the output of 
each article; however, we believe that these topics are of 
interest and the application of ML should also provide 
insights into the clinical care of OA patients.

Altogether, this work should prompt for more applica-
tion of ML with analysis of clinical and biological data 
as well as symptoms of patients to discover new pheno-
types, biomarkers of disease prediction, progression, and 
diagnosis. Our review results also strongly encourage the 
use of ML in hand OA because it is an important trait in 
OA, by taking advantage of available cohorts but also the 
development of additional ones. A better understanding 
of ML and its application is needed in our field and 
could be promoted by the development of specific ML 
consensus and training for the OA scientific community. 

The use of ML check-lists has been promoted in other 
fields83 84 and in an interventional clinical trial using ML 
according to the Consolidated Standards of Reporting 
Trials-Artificial Intelligence guidelines.85 The application 
of these checklists could improve the quality, standardi-
sation, and reproducibility of ML studies in OA research.

In conclusion, ML is a fast-growing field providing 
better knowledge of human OA disease (diagnosis assis-
tive tool especially for early OA, prediction for progres-
sion or severity of OA, characterisation of new therapeutic 
targets). This systematic review provides a comprehensive 
overview of ML applications in OA and delineates some 
methodological caveats that can and should be resolved 
to improve the quality of ML studies in OA research.

Author affiliations
1Department of Rheumatology, Hôpital Saint-Antoine, Assistance Publique – 
Hôpitaux de Paris (AP-HP), Centre de Recherche Saint-Antoine, Inserm UMRS_938, 
Assistance Publique – Hôpitaux de Paris (AP-HP), Sorbonne Universite, Paris, 
France
2Bakar Computational Health Science Institute, University of California, San 
Francisco, California, USA
3Immunology Immunopathology Immunotherapy UMRS_959, Sorbonne Universite, 
Paris, France
4Center for Intelligent Imaging (CI2), Department of Radiology and Biomedical 
Imaging, University of California, San Francisco, California, USA
5Biotherapy (CIC-BTi) and Inflammation Immunopathology-Biotherapy Department 
(i2B), Hôpital Pitié-Salpêtrière, AP-HP, Paris, France

Twitter Marie Binvignat @m_binvignat

Contributors  MB has contributed to the conception and design of the study, 
e acquisition, collection and assembly of the data, analysis and interpretation 
of data, drafting the article. VP has contributed to analysis and interpretation of 
data, revising it critically for important intellectual content and final approval of 
the article. AJB has contributed to analysis and interpretation of data, revising it 
critically for important intellectual content and final approval of the article. KL has 
contributed to analysis and interpretation of data, revising it critically for important 
intellectual content and final approval of the article. FB has contributed to the 
conception and design of the study, revising it critically for important intellectual 
content and final approval of the article. DK has contributed to analysis and 
interpretation of data, revising it critically for important intellectual content and 
final approval of the article. EM-F has contributed to the conception and design 
of the study, analysis and interpretation of the data, drafting the article, revising it 
critically for important intellectual content and final approval of the article. JS has 
contributed to the conception and design of the study, analysis and interpretation 
of the data, drafting the article, revising it critically for important intellectual content 
and final approval of the article. MB (​marie.​binvignat@​sorbonne-​universite.​fr), JS 
(​jeremie.​sellam@​aphp.​fr) and EM-F (​encarnita.​mariotti@​sorbonne-​univeriste.​fr) 
accept full responsibility for the work and/or the conduct of the study, had access 
to the data, and controlled the decision to publish

Funding  MB is funded by the Sorbonne Université doctoral award fellowship and 
by the French Society of Rheumatology mobility fellowship.

Competing interests  AJB is a cofounder and consultant to Personalis and 
NuMedii; consultant to Samsung, Mango Tree Corporation, and in the recent past, 
10 x Genomics, Helix, Pathway Genomics, and Verinata (Illumina); has served on 
paid advisory panels or boards for Geisinger Health, Regenstrief Institute, Gerson 
Lehman Group, AlphaSights, Covance, Novartis, Genentech, and Merck, and Roche; 
is a shareholder in Personalis and NuMedii; is a minor shareholder in Apple, 
Facebook, Alphabet (Google), Microsoft, Amazon, Snap, 10 x Genomics, Illumina, 
CVS, Nuna Health, Assay Depot, Vet24seven, Regeneron, Sanofi, Royalty Pharma, 
AstraZeneca, Moderna, Biogen, Paraxel, and Sutro, and several other non-health 
related companies and mutual funds; and has received honoraria and travel 
reimbursement for invited talks from Johnson and Johnson, Roche, Genentech, 
Pfizer, Merck, Lilly, Takeda, Varian, Mars, Siemens, Optum, Abbott, Celgene, 
AstraZeneca, AbbVie, Westat and many academic institutions, medical or disease 
specific foundations and associations, and health systems. AJB receives royalty 
payments through Stanford University, for several patents and other disclosures 
licensed to NuMedii and Personalis. AJB’s research has been funded by NIH, 
Northrup Grumman (as the prime on an NIH contract), Genentech, Johnson and 

Box 1  Prospective key points for osteoarthritis and 
machine learning research

Keys points
	► Increase the use of clinical and biological data.
	► Use machine learning for other osteoarthritis sites (hand or foot).
	► Establish additional cohorts.
	► Improve reproducibility with external validation and data/source 
code availability.

	► Develop machine learning checklists, consensus and training for 
the osteoarthritis scientific community.

https://twitter.com/m_binvignat


9Binvignat M, et al. RMD Open 2022;8:e001998. doi:10.1136/rmdopen-2021-001998

OsteoarthritisOsteoarthritisOsteoarthritis

Johnson, FDA, Robert Wood Johnson Foundation, Leon Lowenstein Foundation, 
Intervalien Foundation, Priscilla Chan and Mark Zuckerberg, the Barbara and 
Gerson Bakar Foundation, and in the recent past, the March of Dimes, Juvenile 
Diabetes Research Foundation, California Governor’s Office of Planning and 
Research, California Institute for Regenerative Medicine, L’Oreal, and Progenity. 
JS reports personal fees from MSD, Pfizer, Abbvie, Fresenius Kabi, BMS, Roche 
Chugai, Sandoz, Lilly, Gilead, Novartis, Janssen and grant research from Pfizer, 
MSD, Schwa Medico, BMS.

Patient consent for publication  Not applicable.

Ethics approval  Not applicable.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  All data relevant to the study are included in the 
article or uploaded as online supplemental information. All data relevant to the 
study are included in the article or uploaded as online supplemental information. 
Complementary data are available on request.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits 
others to copy, redistribute, remix, transform and build upon this work for any 
purpose, provided the original work is properly cited, a link to the licence is given, 
and indication of whether changes were made. See: https://creativecommons.org/​
licenses/by/4.0/.

ORCID iDs
Marie Binvignat http://orcid.org/0000-0001-7473-7636
Francis Berenbaum http://orcid.org/0000-0001-8252-7815

REFERENCES
	 1	 Bohr A, Memarzadeh K. The rise of artificial intelligence in healthcare 

applications. In: Artificial intelligence in healthcare. Elsevier, 
2020: 25–60.

	 2	 Pandit A, Radstake TRDJ. Machine learning in rheumatology 
approaches the clinic. Nat Rev Rheumatol 2020;16:69–70.

	 3	 Kokkotis C, Moustakidis S, Papageorgiou E, et al. Machine 
learning in knee osteoarthritis: a review. Osteoarthr Cartil Open 
2020;2:100069.

	 4	 Helm JM, Swiergosz AM, Haeberle HS, et al. Machine learning and 
artificial intelligence: definitions, applications, and future directions. 
Curr Rev Musculoskelet Med 2020;13:69–76.

	 5	 Cao L. Data science: a comprehensive overview. ACM Comput Surv 
2017;50.

	 6	 Sarker IH. Machine learning: algorithms, real-world applications and 
research directions. SN Comput Sci 2021;2:160.

	 7	 Lo Vercio L, Amador K, Bannister JJ, et al. Supervised machine 
learning tools: a tutorial for clinicians. J Neural Eng 2020;17:062001.

	 8	 Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in 
medicine: a practical introduction. BMC Med Res Methodol 
2019;19:64.

	 9	 Pedoia V. Machine learning and artificial intelligence. Osteoarthritis 
Cartilage 2020;28:S16.

	10	 Dubey SR, Chakraborty S, Roy SK, et al. diffGrad: an optimization 
method for Convolutional neural networks. IEEE Trans Neural Netw 
Learn Syst 2020;31:4500–11.

	11	 Nohara Y, Matsumoto K, Soejima H, et al. Explanation of machine 
learning models using shapley additive explanation and application 
for real data in hospital. Comput Methods Programs Biomed 
2022;214:106584.

	12	 Ribeiro M, Singh S, Guestrin C. “Why Should I Trust You?”: 
Explaining the Predictions of Any Classifier. In: Proceedings of the 
2016 Conference of the North American Chapter of the Association 
for Computational Linguistics: Demonstrations. San Diego, 
California: Association for Computational Linguistics, 2016: 97–101.

	13	 Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: 
a review of machine learning interpretability methods. Entropy 
2020;23:18.

	14	 McDermott MBA, Wang S, Marinsek N, et al. Reproducibility in 
machine learning for health research: still a ways to go. Sci Transl 
Med 2021;13:eabb1655.

	15	 Norgeot B, Glicksberg BS, Trupin L, et al. Assessment of a deep 
learning model based on electronic health record data to forecast 
clinical outcomes in patients with rheumatoid arthritis. JAMA Netw 
Open 2019;2:e190606.

	16	 Orange DE, Agius P, DiCarlo EF, et al. Identification of three 
rheumatoid arthritis disease subtypes by machine learning 
integration of synovial histologic features and RNA sequencing data. 
Arthritis Rheumatol 2018;70:690–701.

	17	 Eng SWM, Aeschlimann FA, van Veenendaal M, et al. Patterns of 
joint involvement in juvenile idiopathic arthritis and prediction of 
disease course: a prospective study with multilayer non-negative 
matrix factorization. PLoS Med 2019;16:e1002750.

	18	 Hügle M, Omoumi P, van Laar JM, et al. Applied machine learning 
and artificial intelligence in rheumatology. Rheumatol Adv Pract 
2020;4:rkaa005.

	19	 Gossec L, Kedra J, Servy H, et al. EULAR points to consider for the 
use of big data in rheumatic and musculoskeletal diseases. Ann 
Rheum Dis 2020;79:69–76.

	20	 Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report 
on the design rationale for the magnetic resonance imaging protocol 
for the knee. Osteoarthritis Cartilage 2008;16:1433–41.

	21	 Segal NA, Nevitt MC, Gross KD, et al. The multicenter osteoarthritis 
study: opportunities for rehabilitation research. Pm R 2013;5:647–54.

	22	 Wesseling J, Boers M, Viergever MA, et al. Cohort profile: cohort hip 
and cohort knee (check) study. Int J Epidemiol 2016;45:36–44.

	23	 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for 
systematic reviews and meta-analyses: the PRISMA statement. 
PLoS Med 2009;6:e1000097.

	24	 Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for 
reporting systematic reviews and meta-analyses of studies that 
evaluate healthcare interventions: explanation and elaboration. BMJ 
2009;339:b2700.

	25	 Booth A, Clarke M, Ghersi D, et al. An international registry of 
systematic-review protocols. Lancet 2011;377:108–9.

	26	 Pedregosa F, Varoquaux G, Gramfort A. Scikit-learn: machine 
learning in python. J Mach Learn Res 2012;12.

	27	 Kundu S, Ashinsky BG, Bouhrara M, et al. Enabling early 
detection of osteoarthritis from presymptomatic cartilage texture 
maps via transport-based learning. Proc Natl Acad Sci U S A 
2020;117:24709–19.

	28	 Tiulpin A, Klein S, Bierma-Zeinstra SMA, et al. Multimodal machine 
Learning-based knee osteoarthritis progression prediction from plain 
radiographs and clinical data. Sci Rep 2019;9:20038.

	29	 Nelson AE, Fang F, Arbeeva L, et al. A machine learning approach 
to knee osteoarthritis phenotyping: data from the FNIH biomarkers 
Consortium. Osteoarthritis Cartilage 2019;27:994–1001.

	30	 Hu T, Oksanen K, Zhang W, et al. An evolutionary learning and 
network approach to identifying key metabolites for osteoarthritis. 
PLoS Comput Biol 2018;14:e1005986.

	31	 Lim J, Kim J, Cheon S. A deep neural network-based method for 
early detection of osteoarthritis using statistical data. Int J Environ 
Res Public Health 2019;16:1281.

	32	 Brahim A, Jennane R, Riad R, et al. A decision support tool for early 
detection of knee osteoarthritis using X-ray imaging and machine 
learning: data from the osteoarthritis initiative. Comput Med Imaging 
Graph 2019;73:11–18.

	33	 Kotti M, Duffell LD, Faisal AA, et al. Detecting knee osteoarthritis and 
its discriminating parameters using random forests. Med Eng Phys 
2017;43:19–29.

	34	 Ahmed U, Anwar A, Savage RS, et al. Protein oxidation, nitration and 
glycation biomarkers for early-stage diagnosis of osteoarthritis of the 
knee and typing and progression of arthritic disease. Arthritis Res 
Ther 2016;18:250.

	35	 Han MY, Dai JJ, Zhang Y, et al. Identification of osteoarthritis 
biomarkers by proteomic analysis of synovial fluid. J Int Med Res 
2012;40:2243–50.

	36	 Marques J, Genant HK, Lillholm M. Diagnosis of osteoarthritis and 
prognosis of tibial cartilage loss by quantification of tibia trabecular 
bone from MRI: diagnosis of osteoarthritis and prognosis of cartilage 
loss. Magn Reson Med 2013;70:568–75.

	37	 Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the 
diagnostic value of deep learning in hip osteoarthritis. PLoS One 
2017;12:e0178992.

	38	 Heard BJ, Rosvold JM, Fritzler MJ, et al. A computational method 
to differentiate normal individuals, osteoarthritis and rheumatoid 
arthritis patients using serum biomarkers. J R Soc Interface 
2014;11:20140428.

	39	 Shamir L, Ling SM, Scott W, et al. Early detection of radiographic 
knee osteoarthritis using computer-aided analysis. Osteoarthritis 
Cartilage 2009;17:1307–12.

	40	 Üreten K, Arslan T, Gültekin KE, et al. Detection of hip osteoarthritis 
by using plain pelvic radiographs with deep learning methods. 
Skeletal Radiol 2020;49:1369–74.

	41	 Lazzarini N, Runhaar J, Bay-Jensen AC, et al. A machine learning 
approach for the identification of new biomarkers for knee 
osteoarthritis development in overweight and obese women. 
Osteoarthritis Cartilage 2017;25:2014–21.

	42	 Ashinsky BG, Bouhrara M, Coletta CE, et al. Predicting early 
symptomatic osteoarthritis in the human knee using machine 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-7473-7636
http://orcid.org/0000-0001-8252-7815
http://dx.doi.org/10.1038/s41584-019-0361-0
http://dx.doi.org/10.1016/j.ocarto.2020.100069
http://dx.doi.org/10.1007/s12178-020-09600-8
http://dx.doi.org/10.1145/3076253
http://dx.doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.1088/1741-2552/abbff2
http://dx.doi.org/10.1186/s12874-019-0681-4
http://dx.doi.org/10.1016/j.joca.2020.02.010
http://dx.doi.org/10.1016/j.joca.2020.02.010
http://dx.doi.org/10.1109/TNNLS.2019.2955777
http://dx.doi.org/10.1109/TNNLS.2019.2955777
http://dx.doi.org/10.1016/j.cmpb.2021.106584
http://dx.doi.org/10.3390/e23010018
http://dx.doi.org/10.1126/scitranslmed.abb1655
http://dx.doi.org/10.1126/scitranslmed.abb1655
http://dx.doi.org/10.1001/jamanetworkopen.2019.0606
http://dx.doi.org/10.1001/jamanetworkopen.2019.0606
http://dx.doi.org/10.1002/art.40428
http://dx.doi.org/10.1371/journal.pmed.1002750
http://dx.doi.org/10.1093/rap/rkaa005
http://dx.doi.org/10.1136/annrheumdis-2019-215694
http://dx.doi.org/10.1136/annrheumdis-2019-215694
http://dx.doi.org/10.1016/j.joca.2008.06.016
http://dx.doi.org/10.1016/j.pmrj.2013.04.014
http://dx.doi.org/10.1093/ije/dyu177
http://dx.doi.org/10.1371/journal.pmed.1000097
http://dx.doi.org/10.1136/bmj.b2700
http://dx.doi.org/10.1016/S0140-6736(10)60903-8
http://dx.doi.org/10.1073/pnas.1917405117
http://dx.doi.org/10.1038/s41598-019-56527-3
http://dx.doi.org/10.1016/j.joca.2018.12.027
http://dx.doi.org/10.1371/journal.pcbi.1005986
http://dx.doi.org/10.3390/ijerph16071281
http://dx.doi.org/10.3390/ijerph16071281
http://dx.doi.org/10.1016/j.compmedimag.2019.01.007
http://dx.doi.org/10.1016/j.compmedimag.2019.01.007
http://dx.doi.org/10.1016/j.medengphy.2017.02.004
http://dx.doi.org/10.1186/s13075-016-1154-3
http://dx.doi.org/10.1186/s13075-016-1154-3
http://dx.doi.org/10.1177/030006051204000622
http://dx.doi.org/10.1002/mrm.24477
http://dx.doi.org/10.1371/journal.pone.0178992
http://dx.doi.org/10.1098/rsif.2014.0428
http://dx.doi.org/10.1016/j.joca.2009.04.010
http://dx.doi.org/10.1016/j.joca.2009.04.010
http://dx.doi.org/10.1007/s00256-020-03433-9
http://dx.doi.org/10.1016/j.joca.2017.09.001


10 Binvignat M, et al. RMD Open 2022;8:e001998. doi:10.1136/rmdopen-2021-001998

RMD OpenRMD OpenRMD Open

learning classification of magnetic resonance images from the 
osteoarthritis initiative. J Orthop Res 2017;35:2243–50.

	43	 Hirvasniemi J, Gielis WP, Arbabi S, et al. Bone texture analysis for 
prediction of incident radiographic hip osteoarthritis using machine 
learning: data from the cohort hip and cohort knee (check) study. 
Osteoarthritis Cartilage 2019;27:906–14.

	44	 Yoo TK, Kim DW, Choi SB, et al. Simple scoring system and artificial 
neural network for knee osteoarthritis risk prediction: a cross-
sectional study. PLoS One 2016;11:e0148724.

	45	 Gielis WP, Weinans H, Welsing PMJ, et al. An automated workflow 
based on hip shape improves personalized risk prediction for 
hip osteoarthritis in the check study. Osteoarthritis Cartilage 
2020;28:62–70.

	46	 Waarsing JH, Bierma-Zeinstra SMA, Weinans H. Distinct subtypes 
of knee osteoarthritis: data from the osteoarthritis initiative. 
Rheumatology 2015;54:1650–8.

	47	 Carlesso LC, Segal NA, Frey-Law L, et al. Pain susceptibility 
phenotypes in those free of knee pain with or at risk of knee 
osteoarthritis: the multicenter osteoarthritis study. Arthritis 
Rheumatol 2019;71:542–9.

	48	 Pedoia V, Norman B, Mehany SN, et al. 3D convolutional neural 
networks for detection and severity staging of meniscus and PFJ 
cartilage morphological degenerative changes in osteoarthritis 
and anterior cruciate ligament subjects. J Magn Reson Imaging 
2019;49:400–10.

	49	 von Schacky CE, Sohn JH, Liu F, et al. Development and validation 
of a Multitask deep learning model for severity grading of hip 
osteoarthritis features on radiographs. Radiology 2020;295:136–45.

	50	 Abedin J, Antony J, McGuinness K, et al. Predicting knee 
osteoarthritis severity: comparative modeling based on patient's 
data and plain X-ray images. Sci Rep 2019;9:5761.

	51	 Norman B, Pedoia V, Noworolski A, et al. Applying densely 
connected Convolutional neural networks for staging osteoarthritis 
severity from plain radiographs. J Digit Imaging 2019;32:471–7.

	52	 Chen P, Gao L, Shi X, et al. Fully automatic knee osteoarthritis 
severity grading using deep neural networks with a novel ordinal 
loss. Comput Med Imaging Graph 2019;75:84–92.

	53	 Boniatis I, Costaridou L, Cavouras D, et al. Assessing hip 
osteoarthritis severity utilizing a probabilistic neural network based 
classification scheme. Med Eng Phys 2007;29:227–37.

	54	 Liu B, Luo J, Huang H. Toward automatic quantification of knee 
osteoarthritis severity using improved faster R-CNN. Int J Comput 
Assist Radiol Surg 2020;15:457–66.

	55	 Moustakidis SP, Theocharis JB, Giakas G. A fuzzy decision 
tree-based SVM classifier for assessing osteoarthritis severity 
using ground reaction force measurements. Med Eng Phys 
2010;32:1145–60.

	56	 Kwon SB, Ku Y, Han H-S, uk-soo HH, et al. A machine learning-
based diagnostic model associated with knee osteoarthritis severity. 
Sci Rep 2020;10:15743.

	57	 Nguyen HH, Saarakkala S, Blaschko MB, et al. Semixup: in- and 
Out-of-Manifold regularization for deep Semi-Supervised knee 
osteoarthritis severity grading from plain radiographs. IEEE Trans 
Med Imaging 2020;39:4346–56.

	58	 Schwartz AJ, Clarke HD, Spangehl MJ, et al. Can a Convolutional 
neural network classify knee osteoarthritis on plain radiographs as 
accurately as Fellowship-Trained knee arthroplasty surgeons? J 
Arthroplasty 2020;35:2423–8.

	59	 Swiecicki A, Li N, O'Donnell J, et al. Deep learning-based algorithm 
for assessment of knee osteoarthritis severity in radiographs 
matches performance of radiologists. Comput Biol Med 
2021;133:104334.

	60	 Törmälehto S, Aarnio E, Mononen ME, et al. Eight-Year trajectories 
of changes in health-related quality of life in knee osteoarthritis: data 
from the osteoarthritis initiative (OAI). PLoS One 2019;14:e0219902.

	61	 Du Y, Almajalid R, Shan J, et al. A novel method to predict knee 
osteoarthritis progression on MRI using machine learning methods. 
IEEE Trans Nanobioscience 2018;17:228–36.

	62	 Woloszynski T, Podsiadlo P, Stachowiak G, et al. A dissimilarity-
based multiple classifier system for trabecular bone texture in 
detection and prediction of progression of knee osteoarthritis. Proc 
Inst Mech Eng H 2012;226:887–94.

	63	 Passey C, Kimko H, Nandy P, et al. Osteoarthritis disease 
progression model using six year follow-up data from the 
osteoarthritis initiative. J Clin Pharmacol 2015;55:269–78.

	64	 LaValley MP, Lo GH, Price LL, et al. Development of a clinical 
prediction algorithm for knee osteoarthritis structural progression in 
a cohort study: value of adding measurement of subchondral bone 
density. Arthritis Res Ther 2017;19:95.

	65	 Leung K, Zhang B, Tan J, et al. Prediction of total knee replacement 
and diagnosis of osteoarthritis by using deep learning on knee 
radiographs: data from the osteoarthritis initiative. Radiology 
2020;296:584–93.

	66	 Widera P, Welsing PMJ, Ladel C, et al. Multi-classifier prediction 
of knee osteoarthritis progression from incomplete imbalanced 
longitudinal data. Sci Rep 2020;10:8427.

	67	 Tolpadi AA, Lee JJ, Pedoia V, et al. Deep learning predicts total 
knee replacement from magnetic resonance images. Sci Rep 
2020;10:6371.

	68	 Bonakdari H, Tardif G, Abram F, et al. Serum adipokines/related 
inflammatory factors and ratios as predictors of infrapatellar fat pad 
volume in osteoarthritis: applying comprehensive machine learning 
approaches. Sci Rep 2020;10:9993.

	69	 Rossi-deVries J, Pedoia V, Samaan MA, et al. Using multidimensional 
topological data analysis to identify traits of hip osteoarthritis. J 
Magn Reson Imaging 2018;48:1046–58.

	70	 Tiulpin A, Thevenot J, Rahtu E. Automatic knee osteoarthritis 
diagnosis from plain radiographs: a deep Learning-Based approach. 
Sci Rep 2018:8.

	71	 Watt EW, Watt E, Bui AAT, et al. Evaluation of a dynamic 
Bayesian belief network to predict osteoarthritic knee pain using 
data from the osteoarthritis initiative. AMIA Annu Symp Proc 
2008;2008:788–92.

	72	 Pedoia V, Haefeli J, Morioka K. MRI and biomechanics 
multidimensional data analysis reveals R 2 -R 1ρ as an early 
predictor of cartilage lesion progression in knee osteoarthritis: 
multidimensional data analysis to study oa. J Magn Reson Imaging 
2018;47:78–90.

	73	 Orlov N, Shamir L, Macura T, et al. WND-CHARM: multi-purpose 
image classification using compound image transforms. Pattern 
Recognit Lett 2008;29:1684–93.

	74	 Sellam J, Maheu E, Crema MD, et al. The DIGICOD cohort: A 
hospital-based observational prospective cohort of patients with 
hand osteoarthritis - methodology and baseline characteristics of 
the population. Joint Bone Spine 2021;88:105171.

	75	 Damman W, Liu R, Kroon FPB, et al. Do comorbidities play 
a role in hand osteoarthritis disease burden? data from the 
hand osteoarthritis in secondary care cohort. J Rheumatol 
2017;44:1659–66.

	76	 Gløersen M, Mulrooney E, Mathiessen A, et al. A hospital-based 
observational cohort study exploring pain and biomarkers in patients 
with hand osteoarthritis in Norway: the Nor-Hand protocol. BMJ 
Open 2017;7:e016938.

	77	 Research, reuse, repeat. Nat Mach Intell 2020;2:729.
	78	 The Lancet Respiratory Medicine. Opening the black box of machine 

learning. Lancet Respir Med 2018;6:801.
	79	 Beam AL, Manrai AK, Ghassemi M. Challenges to the 

reproducibility of machine learning models in health care. JAMA 
2020;323:305.

	80	 van Helvoort EM, van Spil WE, Jansen MP, et al. Cohort profile: 
the applied public-private research enabling osteoarthritis clinical 
Headway (IMI-APPROACH) study: a 2-year, European, cohort 
study to describe, validate and predict phenotypes of osteoarthritis 
using clinical, imaging and biochemical markers. BMJ Open 
2020;10:e035101.

	81	 Widera P. A machine learning “APPROACH” to recruitment in OA. 
Osteoarthritis Cartilage 2019;27:S15.

	82	 Mobasheri A, Kapoor M, Ali SA. The future of deep phenotyping in 
osteoarthritis: how can high throughput omics technologies advance 
our understanding of the cellular and molecular taxonomy of the 
disease? Osteoarthr Cartil Open 2021.

	83	 Scott I, Carter S, Coiera E. Clinician checklist for assessing 
suitability of machine learning applications in healthcare. BMJ Health 
Care Inform 2021;28:e100251.

	84	 Artrith N, Butler KT, Coudert F-X, et al. Best practices in machine 
learning for chemistry. Nat Chem 2021;13:505–8.

	85	 Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical 
trial reports for interventions involving artificial intelligence: the 
CONSORT-AI extension. Nat Med 2020;26:1364–74.

http://dx.doi.org/10.1002/jor.23519
http://dx.doi.org/10.1016/j.joca.2019.02.796
http://dx.doi.org/10.1371/journal.pone.0148724
http://dx.doi.org/10.1016/j.joca.2019.09.005
http://dx.doi.org/10.1093/rheumatology/kev100
http://dx.doi.org/10.1002/art.40752
http://dx.doi.org/10.1002/art.40752
http://dx.doi.org/10.1002/jmri.26246
http://dx.doi.org/10.1148/radiol.2020190925
http://dx.doi.org/10.1038/s41598-019-42215-9
http://dx.doi.org/10.1007/s10278-018-0098-3
http://dx.doi.org/10.1016/j.compmedimag.2019.06.002
http://dx.doi.org/10.1016/j.medengphy.2006.03.003
http://dx.doi.org/10.1007/s11548-019-02096-9
http://dx.doi.org/10.1007/s11548-019-02096-9
http://dx.doi.org/10.1016/j.medengphy.2010.08.006
http://dx.doi.org/10.1038/s41598-020-72941-4
http://dx.doi.org/10.1109/TMI.2020.3017007
http://dx.doi.org/10.1109/TMI.2020.3017007
http://dx.doi.org/10.1016/j.arth.2020.04.059
http://dx.doi.org/10.1016/j.arth.2020.04.059
http://dx.doi.org/10.1016/j.compbiomed.2021.104334
http://dx.doi.org/10.1371/journal.pone.0219902
http://dx.doi.org/10.1109/TNB.2018.2840082
http://dx.doi.org/10.1177/0954411912456650
http://dx.doi.org/10.1177/0954411912456650
http://dx.doi.org/10.1002/jcph.399
http://dx.doi.org/10.1186/s13075-017-1291-3
http://dx.doi.org/10.1148/radiol.2020192091
http://dx.doi.org/10.1038/s41598-020-64643-8
http://dx.doi.org/10.1038/s41598-020-63395-9
http://dx.doi.org/10.1038/s41598-020-66330-0
http://dx.doi.org/10.1002/jmri.26029
http://dx.doi.org/10.1002/jmri.26029
http://dx.doi.org/10.1038/s41598-018-20132-7
http://www.ncbi.nlm.nih.gov/pubmed/18999030
http://dx.doi.org/10.1016/j.patrec.2008.04.013
http://dx.doi.org/10.1016/j.patrec.2008.04.013
http://dx.doi.org/10.1016/j.jbspin.2021.105171
http://dx.doi.org/10.3899/jrheum.170208
http://dx.doi.org/10.1136/bmjopen-2017-016938
http://dx.doi.org/10.1136/bmjopen-2017-016938
http://dx.doi.org/10.1038/s42256-020-00277-9
http://dx.doi.org/10.1016/S2213-2600(18)30425-9
http://dx.doi.org/10.1001/jama.2019.20866
http://dx.doi.org/10.1136/bmjopen-2019-035101
http://dx.doi.org/10.1016/j.joca.2019.02.006
http://dx.doi.org/10.1016/j.ocarto.2021.100144
http://dx.doi.org/10.1136/bmjhci-2020-100251
http://dx.doi.org/10.1136/bmjhci-2020-100251
http://dx.doi.org/10.1038/s41557-021-00716-z
http://dx.doi.org/10.1038/s41591-020-1034-x

	Use of machine learning in osteoarthritis research: a systematic literature review
	Abstract
	Introduction﻿﻿
	Materials and methods
	Information sources and search strategy
	Eligibility criteria
	Article selection and data extraction
	Statistical analysis

	Results
	Selection flow chart
	Systematic literature overview
	Number of patients
	Source of the data
	ML methods
	Type of data
	Reproducibility

	Discussion
	References


