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Department of Biology, Lund University, Lund, Sweden

Abstract Living with relatives can be highly beneficial, enhancing reproduction and survival.

High relatedness can, however, increase susceptibility to pathogens. Here, we examine whether

the benefits of living with relatives offset the harm caused by pathogens, and if this depends on

whether species typically live with kin. Using comparative meta-analysis of plants, animals, and a

bacterium (nspecies = 56), we show that high within-group relatedness increases mortality when

pathogens are present. In contrast, mortality decreased with relatedness when pathogens were

rare, particularly in species that live with kin. Furthermore, across groups variation in mortality was

lower when relatedness was high, but abundances of pathogens were more variable. The effects of

within-group relatedness were only evident when pathogens were experimentally manipulated,

suggesting that the harm caused by pathogens is masked by the benefits of living with relatives in

nature. These results highlight the importance of kin selection for understanding disease spread in

natural populations.

Introduction
High relatedness between individuals can favour the evolution of cooperative interactions that

increase reproductive success and survival (Hamilton, 1964a; Hamilton, 1964b). For example, it has

been repeatedly shown that individuals can pass on their genes indirectly by providing vital resour-

ces to relatives and assisting them with tasks that are difficult to do alone, such as caring for off-

spring (Alexander, 1974; Rubenstein and Abbot, 2017; West et al., 2007). However, living with

relatives can also increase susceptibility to pathogens that spread more easily among genetically

similar individuals, with similar immune defences (Anderson et al., 1986; Baer and Schmid-Hempel,

1999; Hamilton, 1987; Liersch and Schmid-Hempel, 1998; Schmid-Hempel, 1998; Sherman et al.,

1998). This phenomenon has been referred to as the ‘monoculture effect’ (Elton, 1958) in agricul-

tural settings after it was observed that clonal crops were highly susceptible to disease outbreaks

(Garrett and Mundt, 1999; Tooker and Frank, 2012; Wolfe, 1985; Zhu et al., 2000). More

recently it has also been established that such effects occur in natural populations, with higher

genetic similarity between individuals increasing rates of parasitism (Ekroth et al., 2019). What

remains unclear is whether this translates into higher rates of mortality, or whether the benefits of liv-

ing with relatives are large enough to offset the costs of increased disease risk (Hughes et al.,

2002).

Previous research into the effects of relatedness on disease spread have been conducted on an

expansive range of species including bacteria, plants, and animals. These studies have revealed

remarkable variation in how changes in relatedness influence parasitism and mortality. For example,

in honeybees, Apis melifera, high relatedness among individuals increases the risk of disease and

colony death (Tarpy et al., 2013), whereas in Pharoah ants, Monomorium pharaonis, high related-

ness reduces the abundance of pathogens (Schmidt et al., 2011). Such differences between species

may in part be due to how data are collected. In some studies, relatedness and pathogens have
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been experimentally manipulated, whereas in other studies relatedness and the abundances of

pathogens are only observed (‘observational studies’). In observational studies, results can be vari-

able and difficult to interpret because the causality behind relationships is uncertain (Lively et al.,

2014). For instance, a negative relationship between relatedness and the abundance of pathogens

can occur either because groups of relatives are less susceptible to pathogens, or because groups of

relatives die from pathogens and so are rarely observed (Ben-Ami and Heller, 2005; King et al.,

2011; Teacher et al., 2009).

Additionally, species may vary in their susceptibility to pathogens because of differences in past

selection to control disease spread among individuals (Loehle, 1995; Romano et al., 2020). In spe-

cies where relatives frequently interact, selection is predicted to favour the evolution of strategies

that mitigate the impacts of pathogens (Loehle, 1995; Romano et al., 2020). Limiting social interac-

tion through group-level organisation, such as task partitioning and other mechanisms of the so-

called ‘social immunity’, can prevent disease spread among relatives (Camargo et al., 2007;

Cremer and Sixt, 2009; Liu et al., 2019; Ugelvig et al., 2010; Waddington and Hughes, 2010).

However, whether species that typically live with kin are better able to cope with pathogens when

relatives interact, compared to species that live with non-kin, is unclear.

The spread of disease through populations also depends on how variable pathogen abundances

are across groups. Pathogen abundances are expected to be more variable among groups of rela-

tives because they either contain resistant or susceptible genotypes (Boomsma and Ratnieks, 1996;

van Baalen and Beekman, 2006). Groups of unrelated individuals, on the other hand, will contain a

mix of susceptible and resistant genotypes, leading to more predictable pathogen abundances and

rates of mortality across groups. Such differences in variation across groups of related and unrelated

individuals are nevertheless predicted to depend on pathogen diversity. When there are many differ-

ent pathogens, groups of relatives are more likely to be susceptible to at least one pathogen, which

can reduce variation in total pathogen abundance to a level that is similar to groups of unrelated

individuals (Ganz and Ebert, 2010; van Baalen and Beekman, 2006). While both increases and

decreases in variation in rates of parasitism and mortality have been found in specific study species

(Ganz and Ebert, 2010; Johnson et al., 2006; Seeley and Tarpy, 2007; Thonhauser et al., 2016),

whether variation among groups of relatives is generally higher across species remains to be tested.

Here, we use phylogenetic meta-analysis to first examine whether the benefits of living with rela-

tives counteract the costs of increased susceptibility to pathogens. Second, we tested if the ability

to detect such effects is dependent upon the experimental manipulation of pathogens and within-

group relatedness. Third, we examined if species that typically live with kin have evolved mecha-

nisms to reduce pathogen spread among relatives compared to species that typically live with non-

eLife digest Living in a group with relatives has many advantages, such as helping with child

rearing and gathering food. This has led many species to evolve a range of group behaviours; for

example, in honey bee populations, worker bees sacrifice themselves to save the colony from

incoming enemies.

But there are also downsides to living with family. For example, bacteria, viruses and other

disease-causing pathogens will find it easier to spread between relatives. This is because individuals

with the same genes have similar immune defences. So, is it better to live with relatives who can

help with life’s struggles or live with unrelated individuals where there is a lower chance of getting

sick?

To help answer this question, Bensch et al. analysed data from 75 studies which encompassed 56

different species of plants, animals, and one type of bacteria. This showed that creatures living in

family groups experienced more disease and had a higher risk of death. However, if groups had a

low chance of encountering pathogens, individuals living with relatives were more likely to survive.

This cancels out the disadvantages family groups face when pathogens are more common.

The analysis by Bensch et al. provides new insights into how pathogens spread in species with

different social systems. This information can be used to predict how diseases occur in nature which

will benefit ecologists, epidemiologists, and conservation biologists.
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kin. Finally, we investigated whether variation in the abundance of pathogens and rates of mortality

is higher across groups of relatives. The influence of relatedness on mortality and pathogen abun-

dances were quantified by extracting effect sizes (Pearson’s correlation coefficients r) from 75 pub-

lished studies across 56 species (Supplementary file 1—Tables S1-S3). Variation in pathogen

abundances and rates of mortality were measured using a standardised effect size of variance that

accounts for differences in means, the coefficient of variation ratio (CVR), which was possible to esti-

mate for 25 species (Supplementary file 1—Table S4).

Results

Relatedness and susceptibility to pathogens
Across species, within-group relatedness had highly variable effects on rates of mortality and the

abundance of pathogens (Figure 1. Bayesian Phylogenetic Multi-level Meta-

regression (BPMM): Mean effect size [posterior mode (PM)] of Zr = 0.06, credible interval

[CI] = �0.12 to 0.26, pMCMC = 0.40. Supplementary file 1—Table S5). Such variation was ubiqui-

tous across all taxonomic groups and was largely independent of phylogenetic history (% of variation

in Zr explained by phylogeny PM (CI) = 8.20 (0.11, 31.59). Figure 1; Supplementary file 1—Table

S5). Mortality was, however, consistently higher in groups of relatives in the presence of pathogens

compared to when they were absent (Figure 2. Zr pathogens absent versus present PM (CI) = �0.29

(�0.44, –0.12), pMCMC = 0.002. Supplementary file 1—Table S6). Similar effects of within-group

relatedness on pathogen abundances were found (Zr pathogen abundance versus mortality PM

(CI) = 0.01 (–0.10, 0.19), pMCMC = 0.51. Supplementary file 1—Table S6), but these were much

weaker (Zr pathogen abundance PM (CI) = 0.10 (–0.10, 0.33), pMCMC = 0.31. Supplementary file

1—Table S6).

Experimental studies reveal contrasting effects of relatedness in the
presence and absence of pathogens
There was evidence that pathogens causally increased mortality in groups of relatives (Figure 2;

Supplementary file 1—Table S7). In studies where pathogens were experimentally manipulated,

groups of relatives had significantly higher mortality when pathogens were present compared to

when they were absent (Zr pathogens absent versus present PM (CI) = �0.40 (�0.57, –0.21),

pMCMC = 0.001. Figure 2; Supplementary file 1—Table S7). The contrasting effects of relatedness

in the presence and absence of pathogens meant that overall the effect of relatedness on mortality

did not significantly differ from zero (Zr pathogens present PM (CI) = 0.17 (�0.09, 0.38),

pMCMC = 0.15. Zr pathogens absent PM (CI) = �0.23 (�0.49, 0.03), pMCMC = 0.11. Figure 2;

Supplementary file 1—Table S7). Therefore the greater susceptibility of groups of relatives to

pathogens appears to be masked by kin selected benefits of living with relatives when pathogens

are rare. This may also explain why in observational studies the effect of relatedness on mortality,

both in the presence and absence of pathogens, was close to zero (Zr pathogens present PM

(CI) = 0.06 (�0.10, 0.27), pMCMC = 0.36. Zr pathogens absent PM (CI) = 0.10 (�0.11, 0.50),

pMCMC = 0.26. Figure 2; Supplementary file 1—Table S7).

Experimental manipulations of relatedness were less important for detecting the effects of relat-

edness on mortality than manipulations of pathogens (Supplementary file 1—Table S8). Studies

that experimentally manipulated within-group relatedness found similar reductions in survival in

groups of relatives when pathogens were present to observational studies (Experimental studies: Zr

pathogens absent versus present PM (CI) = �0.19 (�0.42, –0.08), pMCMC = 0.01. Observational

studies: Zr pathogens absent versus present PM (CI) = �0.30 (�0.77, –0.10), pMCMC = 0.02.

Supplementary file 1—Table S8).

Responses to pathogens depend on whether species live in kin groups
Next, we tested whether species that typically live with relatives have evolved mechanisms to limit

the negative effects of pathogens when within-group relatedness is high. To do this, species that

typically live with relatives under natural conditions (r > 0.25 referred to as ‘kin’) were compared to

those that associate with unrelated individuals (r < 0.25 referred to as ‘non-kin’. See

Materials and methods for details of data used to classify species). When pathogens were present,
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Figure 1. The effect of relatedness on rates of mortality and pathogen abundance across animals, plants, and bacteria. Positive effect sizes (Zr) indicate

that mortality and/or pathogen abundances increase with the levels of relatedness within groups, negative values show decreases, and values of zero

(dotted line) are where there was no relationship. Points represent weighted means for each species and bars are 95% confidence intervals calculated

Figure 1 continued on next page
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the effect of relatedness on rates of mortality did not differ between species that live with kin and

non-kin (Zr kin versus non-kin pathogen present PM (CI) = 0.09 (�0.31, 0.37), pMCMC = 0.79.

Supplementary file 1—Table S9). However, when pathogens were absent, high relatedness reduced

mortality in species that live with kin, but increased mortality in species that live with non-kin (Zr kin

versus non-kin pathogen absent PM (CI) = �0.57 (�1.11, 0.02), pMCMC = 0.03. Figure 3,

Supplementary file 1—Table S9). For example, in the red flour beetle, Tribolium castaneum, and

the tube worm, Galeolaria caespitosa, that typically interact with non-kin, mortality was two to four

times higher when individuals were placed in groups of relatives compared to when individuals were

unrelated (Agashe, 2009; McLeod and Marshall, 2009). These results show that species that typi-

cally associate with non-kin suffer reductions in fitness when placed in groups of relatives, but only

when pathogens are rare. Conversely, species that live with kin have higher fitness in groups of rela-

tives when pathogens are absent, but such benefits disappear when pathogens are present (Zr

pathogens absent versus present PM (CI) = �0.33 (�0.53,–0.16), pMCMC = 0.001.

Supplementary file 1—Table S9).

Relatedness increases variance in mortality across groups, but not
pathogen abundances
Variation in rates of mortality and the abundance of pathogens were influenced by relatedness in

opposing ways (Figure 4; Supplementary file 1—Table S10-S13). Experimental manipulations of

pathogen presence were important for detecting these effects (Supplementary file 1—Table S12).

In observational studies, relatedness within groups had no effect on variance in mortality, either in

the presence or absence of pathogens, and did not influence variance in pathogen abundances

(Mortality pathogens absent: LnCVR PM (CI) = 0.44 (�0.32, 0.94), pMCMC = 0.32. Mortality patho-

gens present: LnCVR PM (CI) = �0.03 (�0.74, 0.65), pMCMC = 0.93. Pathogen abundance: LnCVR

PM (CI) = �0.15 (�0.71, 0.50), pMCMC = 0.83. Figure 4, Supplementary file 1—Table S12).

In contrast, in experimental studies mortality was more variable across groups of relatives when

pathogens were present (LnCVR PM (CI) = 0.88 (0.21, 1.41), pMCMC = 0.02. Figure 4,

Supplementary file 1—Table S12). The opposite pattern was true for pathogen abundances, with

groups of relatives being less variable. This meant that overall, mortality was significantly more vari-

able than the abundance of pathogens among groups of related versus unrelated individuals (LnCVR

PM (CI) = 1.18 (0.56, 1.88), pMCMC = 0.001. Figure 4, Supplementary file 1—Table S12). These

results suggest that pathogens spread more uniformly across groups of relatives, but effects on mor-

tality are more variable than across groups of unrelated individuals.

Discussion
Our analyses show that pathogens can increase rates of mortality in groups of relatives. The detri-

mental effects of pathogens were, however, counteracted by high relatedness reducing mortality

when pathogens were rare, particularly in species that live in kin groups. Such contrasting effects of

relatedness meant that experimental manipulations were crucial for detecting the costs and benefits

of living with relatives when the presence of pathogens varied. Additionally, high relatedness

resulted in more even abundances of pathogens across groups, but more variable rates of mortality,

highlighting the importance of population genetic structure in explaining the epidemiology of dis-

eases. We discuss these findings in relation to the environments favouring the evolution of different

social systems, the mechanisms that have evolved to prevent disease spread in social groups, and

the types of study system where more experimental data are required.

Figure 1 continued

from the sample sizes of the number of groups studied which are given in brackets. See Figure 1—figure supplements 1–3 for information on

obtaining effect size information and testing for publication bias.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The probability that studies were of interest (A) and were included (B) in relation to the abstract relevance score (see ‘Literature
searches’ in Materials and methods for details).

Figure supplement 2. Preferred reporting items for meta-analyses (PRISMA) diagram of literature search.

Figure supplement 3. Examining evidence of publication bias in estimates of Zr.

Bensch et al. eLife 2021;10:e66649. DOI: https://doi.org/10.7554/eLife.66649 5 of 24

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.66649


k = 20

k = 39

k = 18

k = 133

O
b

s
e

rv
a

tio
n

a
l d

a
tak = 18

k = 133

E
x
p

e
rim

e
n

ta
l d

a
ta

k = 20

k = 39

************

NSNSNSNS

P
a

th
o

g
e

n
s
 

 A
b

s
e

n
t

P
a

th
o

g
e

n
s
 

 P
re

s
e

n
t

P
a

th
o

g
e

n
s
 

 A
b

s
e

n
t

P
a

th
o

g
e

n
s
 

 P
re

s
e

n
t

−1 0 1

Effect of relatedness on rates of mortality and pathogen abundance (Zr)

Precision (1/SE) 5 10 15 20

Figure 2. Experimental manipulations are key to detecting the effects of pathogens on groups of relatives. Positive effect sizes (Zr) indicate that

mortality and/or pathogen abundances increase with the levels of relatedness within groups, negative values show decreases, and values of zero

(dotted line) are where there was no relationship. Studies that experimentally manipulated pathogen presence showed that groups of relatives had

higher rates of mortality when pathogens were present, but lower mortality when pathogens were absent. Points with black edges represent means,

thick bars are 95% CIs, thin bars are prediction intervals, and k is the number of effect sizes. Each dot is an individual effect size and with size scaled to

1/SE (orchard plots: Nakagawa et al., 2021). Statistical differences are from Bayesian Phylogenetic Multi-level Meta-regressions (BPMMs) and placed

mid-way between comparison groups denoted with symbols: NS = non-significant, *pMCMC < 0.05, **pMCMC < 0.01, ***pMCMC < 0.001.
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Figure 3. Species that live in kin groups responded differently to experimental manipulation of pathogens compared to species that live with non-kin.

Positive effect sizes (Zr) indicate that mortality and/or pathogen abundances increase with the levels of relatedness within groups, negative values show

decreases, and values of zero (dotted line) are where there was no relationship. When pathogens were experimentally removed species that live with

kin had higher survival, which was reversed when pathogens were present. In contrast, there was no effect of relatedness on mortality when pathogens

were present or absent in species that live with non-kin. The components of the orchard plots are the same as in Figure 2. Statistical differences are

from Bayesian Phylogenetic Multi-level Meta-regressions (BPMMs) and placed mid-way between comparison groups denoted with symbols: NS = non-

significant, *pMCMC < 0.05, **pMCMC < 0.01, ***pMCMC < 0.001.
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Figure 4. The effect of within-group relatedness on variance in mortality and pathogen abundance. Positive effect sizes (LnCVR) show that variation in

rates of mortality and/or pathogen abundances across groups (accounting for mean differences – see Figure 4—figure supplement 1 for mean
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Figure 4 continued on next page
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The interaction between kin selected benefits and mortality caused by pathogens has important

implications for our understanding of the ecological distributions of species and the evolutionary ori-

gins of different social systems. In some lineages, such as birds, cooperative species that live in fami-

lies have been found to inhabit areas that are hot and dry (Cornwallis et al., 2017; Jetz and

Rubenstein, 2011; Lukas and Clutton-Brock, 2017). This has been attributed to the benefits of

cooperative offspring care being higher in environments that are challenging for independent repro-

duction (Emlen, 1982). An additional, potentially important explanation is that the costs imposed by

pathogens when living with relatives may be lower in such environments (Campbell-Lendrum et al.,

2015). Parallel arguments have been made for social insects. Species with sterile worker castes, that

only evolved in groups with high levels of relatedness, are thought to have arisen in environments

protected from pathogens (Hamilton, 1987). For example, sterile soldier castes have evolved at

least six independent times in clonal groups of aphids, and the majority of these cases form galls

that provide protection against pathogens (Hamilton, 1987; Stern and Foster, 1996). Escape from

pathogens may therefore be a general feature governing the evolutionary origin, as well as the cur-

rent ecological niches, of species living in highly related groups.

The benefits of living with relatives are predicted to generate selection for increased resistance or

tolerance to disease spread (Loehle, 1995; Romano et al., 2020). Adaptations to limit pathogen

transmission in kin groups have been documented in some species. For example, in leaf cutter ants,

Acromyrmex spp., workers outside the colony, where pathogens are more prevalent, do not enter

the inner colony (Camargo et al., 2007). Contamination of food by pathogens is also limited by

workers outside the colony performing dedicated tasks, such as foraging versus waste management

(Waddington and Hughes, 2010). Changing the organisational structure of groups or living in

smaller groups can therefore increase social distancing and reduce pathogen transmission

(Loehle, 1995; Romano et al., 2020; Liu et al., 2019).

While examples of social immunity exist, there was little evidence that species that live with kin

have generally evolved mechanisms to limit the harm caused by pathogens. Species that live in kin

groups suffered similar reductions in survival from pathogens to species that live with non-kin (Fig-

ure 3). One explanation is that individuals respond to greater pathogen pressure by forming more

genetically diverse groups (Schmid-Hempel, 1998; Sherman and Morton, 1988). For example,

increases in mating promiscuity under higher disease risk can lower relatedness among offspring

recruited to groups (Busch et al., 2004; Singh et al., 2015; Soper et al., 2014). Such responses can

reduce disease spread, but also weakens selection for adaptations that limit pathogen spread

among related individuals. The relative costs of decreasing the effects of pathogens by reducing

relatedness versus other mechanisms remains unclear, but may provide insight into why different

responses to pathogens have evolved across species.

High relatedness was associated with higher and more variable rates of mortality in the presence

of pathogens, but had little effect on variation in pathogen load. Such differences may arise because

pathogen abundances are often weakly related to the virulence of pathogens (Leggett et al., 2012).

Genotypes can also be equally susceptible to pathogens, but vary in their ability to clear infections,

which may explain why within-group relatedness influenced mortality rates without strongly affecting

variation in pathogen abundances (Best et al., 2008; Howick and Lazzaro, 2014; Koskela et al.,

2002).

The effects of relatedness on mortality rates were only evident in experiments. There are a num-

ber of possible, non-mutually exclusive, explanations for this. It is possible that observational studies

fail to capture the true effect of pathogens because of sampling biases: groups of relatives infected

Figure 4 continued

pathogens were absent, relatedness did not influence variance in mortality. The components of the orchard plots are the same as in Figure 2.

Statistical differences are from Bayesian Phylogenetic Multi-level Meta-regressions (BPMMs) and placed mid-way between comparison groups denoted

with symbols: NS = non-significant, *pMCMC < 0.05, ** pMCMC < 0.01, ***pMCMC < 0.001. Figure 4—figure supplement 2 for examination of

publication bias.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Relationship between the mean (log) and SD (log) across studies used to estimate LnCVR.

Figure supplement 2. Examining evidence of publication bias in estimates of LnCVR.
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with pathogens can quickly die resulting in their effects being underestimated (Ben-Ami and Heller,

2005; King et al., 2011; Teacher et al., 2009). The diversity and abundance of pathogens may also

differ between experimental and observational studies. Although experiments often reported that

pathogens were manipulated in biologically realistic ways, it is possible that pathogen abundances

are generally higher in experiments leading to larger effect sizes. Additionally, experiments generally

only manipulated single pathogens whereas observational studies on natural populations often

involve communities of pathogens. Low pathogen diversity is predicted to increase variation across

groups of relatives (Boomsma and Ratnieks, 1996; van Baalen and Beekman, 2006). The lack of an

effect of relatedness on variance in mortality in observational studies may therefore be due to the

diversity of pathogens being higher. In our dataset, there was only one experimental study that

manipulated multiple pathogens. In Daphnia magna it was found that variance in parasitism was

higher in groups of relatives (‘clonal’ versus ‘polyclonal’ populations), but this diminished as the num-

ber of pathogens increased (Ganz and Ebert, 2010). This suggests that where pathogen diversity is

high, groups of relatives become increasingly susceptible to pathogens, reducing variance across

groups (Boomsma and Ratnieks, 1996; Parsche and Lattorff, 2018; van Baalen and Beekman,

2006).

How relatedness among individuals influences pathogen spread has been investigated in a

diverse range of species making our analyses possible. Nevertheless, experiments manipulating

pathogen presence, abundance, and diversity across species with different ecological niches and

social systems, especially those that typically associate with non-kin, remain limited. In-depth analy-

ses comparing species with ancestrally versus derived levels of high and low relatedness will also

help shed light on the importance of current versus past evolutionary responses to pathogens. We

hope that our results stimulate further research in these areas which appears crucial to understand-

ing the impact of pathogens on natural populations.

Materials and methods

Literature searches
A systematic literature review was performed to identify studies that have examined the relationship

between within-group relatedness and rates of mortality or the abundance of pathogens. One chal-

lenge with locating relevant literature was that some studies use the term relatedness while others

use the term genetic diversity. Genetic diversity encompasses studies that have examined within-

individual genetic diversity (e.g. heterozygosity), as well as genetic diversity of groups. The aims of

our study only relate to variation in genetic diversity of groups (relatedness). All studies where esti-

mates of within-group genetic diversity were potentially influenced by within-individual genetic

diversity were excluded (see below).

The literature search was performed using the Web of Science (WoS) including articles published

up to the 27 July 2020. Searches were restricted to articles in English and the WoS categories were

restricted to Behavorial Sciences, Ecology, Biology, Evolutionary Biology, Ecology, Multidisciplinary

Sciences, Genetics & Heredity, Biodiversity & Conservation, Entomology, Zoology as a preliminary

study (Bensch MSc thesis) showed these categories to be the ones of interest. WoS searches

included the following combinations of terms in the topic field: (((‘genetic diversity’ OR ‘genetic vari-

ability’ OR ‘genetic diversities’) AND parasite*) OR ((‘genetic diversity’ OR ‘genetic variability’ OR

‘genetic diversities’) AND disease*) OR ((‘genetic diversity’ OR ‘genetic variability’ OR ‘genetic diver-

sities’) AND pathogen*) OR ((‘genetic diversity’ OR ‘genetic variability’ OR ‘genetic diversities’) AND

survival) OR ((‘genetic diversity’ OR ‘genetic variability’ OR ‘genetic diversities’) AND mortality) OR

(relatedness AND pathogen*) OR (relatedness AND disease*) OR (relatedness AND parasite*) OR

(relatedness AND mortality) OR (relatedness AND survival*) OR ‘monoculture effect’ OR ‘Monocul-

ture effect’) AND (population* OR group* OR colony). Initial exploration of search terms included

other words (‘clone’, ‘clonal’, ‘social’). However, these terms inflated the number of search hits and

papers with relevant data were retrieved using other terms included in our search criteria (‘group’,

‘colony’, or ‘relatedness’). The search yielded a total of 4616 returns, 4615 after removing a

duplicate.

To aid finding relevant papers, abstracts were downloaded and imported into R for text analysis

using the quanteda package (Benoit et al., 2018). The frequency of words in each abstract was
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calculated and used to create a relevance score according to the number of words with positive and

negative interest for this study. The following words had positive associations (listed in order of pri-

ority): ‘genetic’, ‘diversity’, ‘diversities’, ‘variation’, ‘relatedness’, ‘related’, ‘unrelatedness’, ‘unre-

lated’, ‘diverse’, ‘parasite’, ‘ectoparasite’, ‘ectoparasites’, ‘parasites’, ‘pathogen’, ‘pathogenic’,

‘pathogens’, ‘disease’, ‘diseases’, ‘diseased’, ‘mortality’, ‘survival’, ‘resistance’, ‘infection’, ‘infec-

tions’, ‘prevalence’, ‘tolerance’, ‘transmission’, ‘population’, ‘group’, ‘colony’, ‘groups’, ‘colonies’,

‘populations’. The following words had negative associations: ‘human’, ‘humans’, ‘hospital’, ‘cancer’,

‘hiv’, ‘patients’. Papers were sorted according to their relevance scores and then manually screened

to examine whether they contained data that could be used to calculate an effect size of relatedness

and mortality and/or pathogen abundance. We did not include studies examining the relationship

between within-group relatedness and other fitness-related measures, such as fecundity or competi-

tive ability, because such measures are influenced by many factors other than pathogens.

We stopped screening after 2102 papers as number of new papers selected for in-depth screen-

ing decreased to less than 1% per 100 references (Figure 1—figure supplement 1). In addition to

WoS searches, reference lists of key studies and the papers from which we extracted effect sizes

were screened for relevant primary literature. PDF files of articles selected based on abstract screen-

ing were downloaded for in-depth examination of full texts. A preferred reporting items for meta-

analyses diagram (Moher et al., 2009) of the literature screening process is shown in Figure 1—fig-

ure supplement 2. In total our dataset consisted of 210 effect sizes from 75 studies and 56 species

(Abdi et al., 2020; Agashe, 2009; Aguirre and Marshall, 2012a; Aguirre and Marshall, 2012b;

Altermatt and Ebert, 2008; Anton et al., 2007; Baer and Schmid-Hempel, 2001; Baer and

Schmid-Hempel, 1999; Ben-Ami and Heller, 2005; Bensch and Cornwallis, 2017; Bichet et al.,

2015; Byrne and Robert, 2000; Byrne and Whiting, 2011; Cook-Patton et al., 2017; Cook-

Patton et al., 2011; Crutsinger et al., 2006; Crutsinger et al., 2008; Dagan et al., 2017;

Dagan et al., 2013; de Morais, 2020; Desai and Currie, 2015; de Vere et al., 2009;

Dobelmann et al., 2017; Ellison et al., 2011; Field et al., 2007; Franklin et al., 2012; Fraser et al.,

2010; Gamfeldt and Källström, 2007; Ganz and Ebert, 2010; Gardner et al., 2007; He and

Lamont, 2010; Hoggard et al., 2013; Hughes and Stachowicz, 2004; Hughes and Boomsma,

2006; Hughes and Boomsma, 2004; Johansson et al., 2007; Johnson et al., 2006;

Kapranas et al., 2016; Keeney et al., 2009; King et al., 2011; Kotowska et al., 2010; Lambin and

Krebs, 1993; Liersch and Schmid-Hempel, 1998; Mattila et al., 2012; McLeod and Marshall,

2009; Mott et al., 2019; Neumann and Moritz, 2000; Page et al., 1995; Parker et al., 2010;

Parsche and Lattorff, 2018; Pearman and Garner, 2005; Reber et al., 2008; Robinson et al.,

2013; Schmidt et al., 2011; Seeley and Tarpy, 2007; Sera and Gaines, 1994; Shykoff and

Schmid-Hempel, 1991; Siemens and Roy, 2005; Solazzo et al., 2014; Strauss et al., 2017;

Tarpy, 2003; Tarpy and Seeley, 2006; Tarpy et al., 2013; Teacher et al., 2009; Thonhauser et al.,

2016; Trouvae et al., 2003; Ugelvig et al., 2010; van Houte et al., 2016; Vanpé et al., 2009;

Walls and Blaustein, 1994; Wauters et al., 1994b; Weyrauch and Grubb, 2006; Winternitz et al.,

2014; Woyciechowski and Król, 2001).

Overview of study design and inclusion criteria
Studies were included if they presented data on the abundance/presence of pathogens and related-

ness for four or more groups. Relatedness was estimated from breeding designs, pedigrees, and

using molecular markers. A group was defined as three or more individuals as it has been shown to

be sufficient for group-level defences (Hughes and Stachowicz, 2004). That said, only three studies

used groups with three individuals (4%) with over 93% of studies using groups with five or more indi-

viduals. Some studies manipulated levels of relatedness by experimentally creating groups (referred

to as ‘experimental relatedness’), whereas other studies measured relatedness on already estab-

lished groups (referred to as ‘observational relatedness’). The presence and abundance of patho-

gens was also experimentally manipulated in some studies (referred to as ‘experimental pathogens’)

whereas in others pathogens were measured without any manipulations (referred to as ‘observa-

tional pathogens’).

Studies on plants were included that examined the effect of pathogens and herbivores, as it has

previously been argued that herbivory is equivalent to parasitism (see Price, 1980; Siemens and

Roy, 2005 for discussion of herbivores as pathogens). One study was included from unpublished

data collected by the authors on ostriches, Struthio camelus (Supplementary file 1—Tables S19).
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Studies were excluded if they were on domestic species or where there was the potential for within-

individual genetic diversity, including inbreeding, to influence estimates of within-group relatedness.

In some studies, inbreeding was not explicit but potentially possible (Supplementary file 1—Table

S1). We tested the sensitivity of our results to any potential inbreeding effects by removing these

effect sizes and repeating our analyses (see verification analyses; Supplementary file 1—Tables S14

and S15). If data of interest were missing in the text or figures, authors were contacted for supple-

mentary data or clarification. If authors did not respond within 3 months, the effect sizes were

excluded. If studies provided multiple measures of pathogen load and/or mortality, separate effect

sizes were extracted. Where studies presented abundances of specific pathogens as well as total

abundance of pathogens, the total was used.

Calculating the effect size of the relationship between relatedness and
rates of mortality and pathogen abundances
The relationship between within-group relatedness and mortality and/or pathogen abundance was

analysed by comparing groups with high and low relatedness (relatedness as a categorical variable),

or by analysing variation in average within-group relatedness as a continuous variable. Information

from both types of study was used to calculate a standardised effect size of the correlation between

within-group relatedness and mortality/pathogen abundance: Pearson’s correlation coefficient, r.

The statistical tests presented in studies were converted to r using the online meta-analysis calcula-

tor (Morris, 2019) and the R package ‘esc’ (Lüdecke, 2019). Measures of r were transformed to Zr

using ‘escalc’ function in the R package metafor (Viechtbauer, 2010).

In some studies, it was not possible to obtain effect sizes directly from the statistics reported in

studies, but r could be calculated from data presented in the text and/or figures in two ways. First,

in studies where groups with high and low relatedness were compared, means ± SD of mortality or

pathogen abundances were used to calculate r. Second, in studies where descriptive statistics (e.g.

means ± SD) were reported for multiple groups that varied in relatedness, we conducted our own

Pearson’s correlations in R (see R script ‘EffectSizeCalculations’ and Supplementary file 1—Table S2

column ‘Effect size Rscript reference’). In such cases, variation in measures of relatedness, mortality,

and pathogen abundances were included by creating distributions from descriptive statistics that

were sampled to create 1000 datasets. For each of these 1000 datasets, r was calculated and an

average taken across the 1000 datasets.

Calculating the effect size of variance in mortality and pathogen
abundances across groups of related and unrelated individuals
The effect of relatedness on variance in mortality and pathogen abundances was calculated using

the natural logarithm of the ratio between the coefficient of variation from groups with high and low

relatedness (LnCVR: Nakagawa et al., 2015). LnCVR provides a standardised measure of differences

in the variability of two groups accounting for differences in the means between groups. LnCVR was

used because estimates of variation increased with the mean (Figure 4—figure supplement 1).

LnCVR was calculated from studies that presented means and SDs (converted to SD if studies pre-

sented SEs or CIs) across groups when relatedness was low and high. This provides a standardised

measure of the effect of relatedness on variability across groups, not within groups (SDs were from

across groups, not individuals).

Data on study characteristics
For each effect size extracted, we collected information on: (1) whether pathogens were present or

absent; (2) whether pathogens were experimentally manipulated; (3) whether relatedness was exper-

imentally manipulated; (4) the method used for measuring relatedness (pedigree or molecular

markers); and (5) whether pathogen abundance or mortality were measured (where survival esti-

mates were presented, the sign of the effect size was reversed). If there was no mention of patho-

gens in the paper, then pathogens were assumed to be present when studies were conducted in the

field and absent if conducted in the laboratory.
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Data on species characteristics
For all species in our dataset we searched for whether they typically associate with kin (‘kin’) or not

(‘non-kin’) during the life stage that effect sizes were measured. Species were categorised as kin if

they lived in groups where r was estimated to be equivalent to 0.25 or higher and ‘non-kin’ if they

live in groups where relatedness was estimated to be lower than 0.25 (Supplementary file 1—Table

S4). Three sources of information were used to estimate levels of relatedness among individuals: (1)

estimates of relatedness acquired either directly from molecular genetic analyses or records of

groups of individuals with known relatedness; (2) information on the mating system; and (3) typical

dispersal patterns, as low dispersal from groups increases relatedness. The relevant information was

collected using Google Scholar including each species name combined with ‘genetic diversity’,

‘relatedness’, and ‘group’ as search terms to collect measures of within-group relatedness; ‘mating

system’ and ‘paternity’ for information on mating system; and ‘dispersal’ and ‘philopatry’ for infor-

mation on dispersal. The categorisation of each species as kin or non-kin along with evidence and

the list of literature to support these classifications can be found in Supplementary file 1—Table S4

(Abdi et al., 2020; Aguirre and Marshall, 2012a; Aguirre and Marshall, 2012b; Amiri et al., 2017;

Anton et al., 2007; Arnaud, 1999; Avise and Tatarenkov, 2015; Barrett et al., 2005; Bee, 2007;

Beermann et al., 2015; Ben-Ami and Heller, 2005; Bryja et al., 2008; Byrne and Robert, 2000;

Byrne and Whiting, 2011; Chapuisat et al., 2004; Croshaw et al., 2009; M. Crutsinger et al.,

2008; Dagan et al., 2013; Dean et al., 2006; de Morais, 2020; de Vere, 2007; de Vere et al.,

2009; Dobelmann et al., 2017; Edenbrow and Croft, 2012; Farentinos, 1972; Ficetola et al.,

2010; Field et al., 2007; Franklin et al., 2012; Fredensborg et al., 2005; Gamfeldt and Källström,

2007; Gardner et al., 2007; Getz et al., 1993; Goldberg et al., 2013; Goulson et al., 2002; Goy-

mann, 2009; Graham, 1941; Griffin, 2012; Haag et al., 2002; He et al., 2004; Head and Yu,

2004; Heppleston, 1972; Heske and Ostfeld, 1990; Hoffmann et al., 2003; Hoggard et al., 2009;

Hughes and Stachowicz, 2004; Johnson, 2007; Johnson et al., 2006; Kapranas et al., 2016;

Kawamura et al., 1991; Keeney et al., 2009; Kelly et al., 1999; Keough, 1989; Keough and

Chernoff, 1987; Kimwele and Graves, 2003; King et al., 2011; Kozakiewicz et al., 2009;

König, 1993; Lambin and Krebs, 1991; Laurila and Seppa, 1998; Lepais et al., 2010; Liker et al.,

2009; Liu et al., 2013; Mackiewicz et al., 2006; McLeod and Marshall, 2009; Meling-lópez and

Ibarra-Obando, 1999; Myers et al., 2011; Oettler and Schrempf, 2016; Osváth-Ferencz et al.,

2017; Pai and Bernasconi, 2007; Pietrzak et al., 2010; Platt et al., 2010; Reusch et al., 1999;

Rice et al., 2009; Rock et al., 2007; T. Russell et al., 2004; Schmid-Hempel and Crozier, 1999;

Schmid-Hempel and Schmid-Hempel, 2000; Schmidt et al., 2011; Schmidt et al., 2016;

Schradin et al., 2010; Schrempf et al., 2006; Seppä and Walin, 1996; Seppä et al., 2009;

Shapiro and Dewsbury, 1986; Siemens and Roy, 2005; Simeonovska-Nikolova, 2007;

Solomon et al., 2004; Stürup et al., 2014; Sutcliffe, 2010; Svane and Havenhand, 1993;

Tarpy, 2003; Tatarenkov et al., 2007; Thonhauser et al., 2016; Trouvae et al., 2003;

Vanpé et al., 2009; Verrell and Krenz, 1998; Walck et al., 2001; Waldman, 1982; Walls and

Blaustein, 1994; Wauters et al., 1990; Wauters and Dhondt, 1992; Wauters et al., 1994a;

Zenner et al., 2014). We also collected data on whether species always lived in social groups (‘obli-

gately social’) or whether species were only social during specific life stages (‘periodically social’).

However, it was not possible to analyse these data as experimental manipulations of pathogens, a

key factor influencing the relationship between relatedness and mortality and pathogen abundances,

were only performed for one periodically social species (Rana latastei).

Data limitations
Our dataset highlighted that there are several key variables where data are limited and where further

empirical work would be extremely useful. In particular, information on the following is currently lim-

ited: (1) species that typically live with non-kin (r: kin = 41, non-kin = 15. LnCVR: kin = 18, non-

kin = 7); (2) studies that quantify the effect of relatedness on rates of mortality in the absence of

pathogens, particularly under natural conditions. Out of 75 studies, pathogens were excluded in 16

laboratory studies and no studies tried to explicitly exclude pathogens under field conditions. For

LnCVR, pathogens were only excluded in seven laboratory studies out of a total of 32 studies; and

(3) variation across groups in rates of mortality and pathogen abundance (out of 210 mean effect

sizes, variance could only be examined in 106).
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Statistical analysis
General techniques
Data were analysed using Bayesian Phylogenetic Multi-level Meta-regressions (BPMM) with Markov

chain Monte Carlo (MCMC) estimation and Gaussian error distributions in R package MCMCglmm

(Hadfield, 2010). Data points were weighted by the inverse sampling variance associated with each

of the effect size using the ‘mev’ term in MCMCglmm.

Variancer¼ 1=n��3

VarianceLnCVR¼ s
2
L

nLx
2

L

þ 1

2 nL�1ð Þ� 2� lnxL; lnsL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2L

nLx
2

L

1

2 nL�1ð Þ

q

þ s
2
R

nRx
2

R

þ 1

2 nR�1ð Þ� 2� lnxR; lnsR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2R

nRx
2

R

1

2 nR�1ð Þ

q

where n corresponds to the number of groups, L and H are groups with low and high relatedness,

respectively. Unfortunately, the difference in relatedness between low and high relatedness treat-

ments could not be included as a moderator in analyses because exact estimates of relatedness

were not always given (e.g. monogamous versus polyandrous breeders) or comparable across stud-

ies (e.g. estimates of relatedness from molecular markers do not always equate to relatedness esti-

mates from pedigrees/breeding designs).

The non-independence of data arising from multiple effect sizes per study were modelled by

including study as a random effect. In one study (Reber et al., 2008), there were three relatedness

treatment groups (low, intermediate, and high) allowing effect sizes between low and intermediate,

and high and intermediate to be calculated. However, we excluded comparisons with the intermedi-

ate treatment to avoid non-independence of effect sizes within studies (Noble et al., 2017). The

non-independence of data arising from shared ancestry were modelled by including a phylogenetic

variance-covariance matrix of species relationships as a random effect. The phylogenetic variance-

covariance matrix was created from hierarchical taxonomic classifications using the ‘as.phylo’ func-

tion in the R package ‘ape’ (see Figure 1). We also created a phylogeny using information from the

open tree of life (Rees and Cranston, 2017) using the R package ‘rotl’ (Michonneau et al., 2016).

This produced a tree that was extremely similar, but several mollusc species were missing and we

therefore used the tree created from taxonomy. Branch lengths were estimated using Grafen’s

method (Grafen, 1989) implemented in the R package ‘ape’ (Paradis, 2012).

Fixed effects were considered significant when 95% credible intervals did not overlap with 0 and

pMCMC were less than 0.05 (pMCMC = percentage of iterations above or below a test value cor-

recting for the finite sample size of posterior samples). Default fixed effect priors were used (inde-

pendent normal priors with zero mean and large variance [1010]) and for random effects inverse

gamma priors were used (V = 1, nu = 0.002). Each analysis was run for 1,100,000 iterations with a

burn-in of 100,000 and a thinning level of 1000. Convergence was checked by running each model

three times and examining the overlap of traces, levels of autocorrelation, and testing with Gelman

and Rubin’s convergence diagnostic (potential scale reduction factors <1.1).

Specific analyses
Two sets of analyses were conducted, one on the effect of relatedness on mean rates of mortality

and pathogen abundances (Zr) and one on variances (LnCVR). All models were fitted with a Gaussian

error distribution, study, species, and phylogeny as random effects and each data point was

weighted by the inverse sampling variance. Six analyses of mean effect sizes were conducted that

had the following fixed effects (moderators): (1) intercept-only model to test whether overall related-

ness increased susceptibility to pathogens and increased mortality; (2) three-level factor of whether

mortality was measured in the presence of pathogens, mortality was measured in the absence of

pathogens, or whether the abundance of pathogens was examined (referred to here as ‘fitness mea-

sure’); (3) four-level factor of the effect of presence and absence of pathogens in experimental versus

observational studies; (4) four-level factor of the effect of experimentally manipulating or observing

relatedness in the presence and absence of pathogens; and (5) eight-level factor of the effect of liv-

ing with kin and non-kin in the presence and absence of pathogens in experimental and
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observational studies. All analyses were repeated for LnCVR apart from five, as variance estimates

were only available for seven species that live with non-kin.

Verification analyses
We checked the robustness of our results to potential inbreeding effects (Zr and LnCVR:

Supplementary file 1—Tables S14 and S15), whether studies were conducted in laboratories or

under natural conditions (Zr and LnCVR: Supplementary file 1—Tables S16 and S17), and the type

of statistical tests used in studies (Zr: Supplementary file 1—Table S18). To check for effects of

potential inbreeding, we repeated analysis 4 (see above) removing data points where there was any

chance of inbreeding (see Supplementary file 1—Table S1 for effect size details. See

Supplementary file 1—Tables S14-16 for re-analysis). There was a large overlap in whether studies

were conducted in laboratories and whether they were observational or experimental: All studies

conducted in laboratories were experimental whereas for observational studies 141 effect sizes were

from field studies and 23 from laboratory studies. To check for laboratory effects, we therefore

restricted data to observational studies and tested if effect sizes differed between laboratory and

field studies (Supplementary file 1—Tables S16 and S17). To examine the influence of the type of

statistical tests used in studies (number of different analysis techniques = 15), we included ‘analysis

technique’ as a random effect in our main model (analysis 4 above: see R script ‘ZrModels’ M9). The

main conclusions of our study remained unchanged and quantitatively similar in all verification analy-

ses (Supplementary file 1—Tables S14-S18).

Testing for publication bias
Publication bias across studies was checked using funnel plot visualisation and Egger’s regression

(Egger et al., 1997). Egger’s regressions of both Zr and LnCVR were performed by including the

inverse sampling variance as a covariate in our full model (analysis 4 above: see R script ‘Publication-

Bias’). In both analyses, the slope of the inverse sampling variance was not significantly different

from zero (BPMM: inverse sampling variance on Zr CI = �0.03 to 0.01 and LnCVR CI = �0.04 to

0.12) and funnel plots of residuals were also generally symmetrical (Figure 1—figure supplement 3;

Figure 4—figure supplement 2), indicating there was little evidence of publication bias.
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