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Severe COVID-19 can be associated with a prothrombotic state, increasing risk of
morbidity and mortality. The SARS-CoV-2 spike glycoprotein is purported to directly
promote platelet activation via the S1 subunit and is cleaved from host cells during
infection. High plasma concentrations of S1 subunit are associated with disease
progression and respiratory failure during severe COVID-19. There is limited evidence
on whether COVID-19 vaccine-induced spike protein is similarly cleaved and on the
immediate effects of vaccination on host immune responses or hematology parameters.
We investigated vaccine-induced S1 subunit cleavage and effects on hematology
parameters using AZD1222 (ChAdOx1 nCoV-19), a simian, replication-deficient
adenovirus-vectored COVID-19 vaccine. We observed S1 subunit cleavage in vitro
following AZD1222 transduction of HEK293x cells. S1 subunit cleavage also occurred
in vivo and was detectable in sera 12 hours post intramuscular immunization (1x1010 viral
particles) in CD-1 mice. Soluble S1 protein levels decreased within 3 days and were no
longer detectable 7–14 days post immunization. Intravenous immunization (1x109 viral
particles) produced higher soluble S1 protein levels with similar expression kinetics. Spike
protein was undetectable by immunohistochemistry 14 days post intramuscular
immunization. Intramuscular immunization resulted in transiently lower platelet (12
hours) and white blood cell (12–24 hours) counts relative to vehicle. Similarly,
intravenous immunization resulted in lower platelet (24–72 hours) and white blood cell
(12–24 hours) counts, and increased neutrophil (2 hours) counts. The responses
observed with either route of immunization represent transient hematologic changes
and correspond to expected innate immune responses to adenoviral infection.
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INTRODUCTION

The COVID-19 pandemic has produced substantial global
morbidity and mortality, with more than 5 million deaths
reported as of November 15, 2021 (1). Individuals with severe
and critically severe COVID-19 commonly present with abnormal
platelet parameters, including decreased platelet counts, compared
with healthy individuals and those with mild/moderate COVID-
19 (2). Poor coagulation outcomes including venous
thromboembolism and arterial thromboembolism are associated
with hospitalization and mortality from COVID-19 (3).

The SARS-CoV-2 structural surface glycoprotein antigen
(‘spike protein’) has been observed to directly bind platelet
Angiotensin-Converting Enzyme 2 (ACE2) receptors,
enhancing platelet activation in vitro and potentiating
thrombus formation in vivo (2). Cleavage of the spike protein
S1 subunit (‘S1 subunit’) from host cells occurs during SARS-
CoV-2 infection, and high plasma S1 subunit concentrations
correlate with disease progression and respiratory failure in
patients with severe COVID-19 (4). Due to its indispensable
functions in mediating virus host-cell entry (5), the first wave of
COVID-19 vaccine candidates were predominantly developed to
target the spike protein, with several genetic vaccine platforms
inducing its expression in vaccinees (6). Although gene-based
spike protein vaccines have substantially reduced the risk of
hospitalization and death from COVID-19 (7–10), it is unknown
if vaccine-induced S1 subunit is similarly cleaved and present in
the blood at high concentrations, and whether this has
implications for the host immune response (11). There is also
limited evidence on host immune responses or effects on blood
parameters immediately following COVID-19 vaccination.

AZD1222 (ChAdOx1 nCoV-19), is a simian, replication-
deficient adenovirus-vectored COVID-19 vaccine that is being
used globally (1, 7), with >2 billion doses administered at the time
of manuscript preparation. We conducted these experiments to
test the hypothesis that S1 subunit is cleaved in vivo following
AZD1222 immunization and to assess the potential effects of
AZD1222 vaccination on host hematologic parameters.
MATERIALS AND METHODS

In Vitro Assessment of Spike Protein
Expression and Cleavage
Cell Culture, AZD1222 Transduction, and
Cytotoxicity Assessment
Human embryonic kidney (HEK) 293x cells (American Type
Culture Collection) were grown at 37⁰C, 8% CO2, in FreeStyle™

293 Expression Medium at a starting density of 1x106 cells/mL.
Cell cultures were transduced with AZD1222 at increasing
multiplicities of infection (MOI); ChAdOx1-GFP at MOI=10
and mock transduction (FreeStyle™ 293 Expression Medium)
were used as controls (Figure 1A). Cell pellets and culture
supernatants were collected 48 and 72 hours post transduction
for further analysis.

Cytotoxicity was assessed using the LDH-Glo™ assay
(Promega, J2380/J2381) per the manufacturer’s instructions (12).
Frontiers in Immunology | www.frontiersin.org 2
An aliquot of culture media from mock transduction control
received 40 µL of 10% Triton X-100 and was incubated at room
temperature for a minimum of 15 minutes. Cellular supernatants
for the assessment of lactate dehydrogenase (LDH) were diluted
1:20 in LDH storage buffer [200 mM Tris-HCl (pH = 7.3); glycerol
10%; bovine serum albumin 1%]. Supernatant from Triton-X-100-
treated cells was serially diluted to within the linear range of the
assay. Diluted samples were combined 1:1 with detection reagent
(LDH Detection Enzyme Mix with Reductase Substrate) and
added to a 384-well plate in duplicate. A standard curve was
prepared from the positive control and added to the plate in
triplicate. Samples were analyzed using an EnVision® plate reader
(PerkinElmer) following a 50-minute incubation at
room temperature.

SARS-CoV-2 S1 and S2 Subunit Western Blot
and ELISA
Cell pellets were examined for expression of spike protein by
Western blot. Cell pellet (10 mg protein per lane) samples were
run on sodium dodecyl sulphate–polyacrylamide gel
electrophoresis (SDS-PAGE) gels and then transferred onto
polyvinylidene fluoride (PVDF) membranes using the iBlot® 2
dry blotting system (Thermo Fisher Scientific). PVDF
membranes were blocked, washed and incubated with primary
and secondary antibodies using an iBind™ (Thermo Fisher
Scientific) system. Anti-SARS-CoV-2/2019-n-CoV Spike
receptor binding domain (RBD) and Spike S2 (Sino Biological,
40592-T62 and 40590-T62) were used as primary antibodies.
Anti-b-Actin (Sigma, A1978) was used as a loading control.
IRDye 680CW (Licor, 926-68073) and IRDye 800CW (Licor,
926-32212) were used as secondary antibodies. Fluorescence was
visualized using an Odyssey CLx imager (Li-Cor Biosciences).

Spike protein S1 and S2 subunit expression levels in culture
supernatant were measured by ELISA using 2130-wt or 2196-wt,
two monoclonal SARS-CoV-2 spike protein RBD neutralizing
antibodies (13), at 100 mg/mL as capture antibodies. 96-well
high-binding plates were coated with 100 mg/mL 2130-wt or
2196-wt in 1X PBS at 100 mL per well and incubated at 40°C
overnight. Wells were washed 4 times with Blocker™ Casein
phosphate buffered saline (PBS) buffer (Thermo 37528) and
blocked with 200 mL per well of casein for 1 hour at room
temperature. For spike protein standard curve, purified SARS-
CoV-2 S trimer was serially diluted 1:3 beginning with high
concentration of 3 mg/mL down to 0.001 ng/mL in casein.
Samples were tested undiluted and at 1:5 dilutions in casein.
Standards and samples were added to wells at 100 mL per well
and incubated for 1 hour at room temperature. Wells were
washed 4 times with 300 mL per well of casein. Next,
secondary antibodies (anti-mouse HRP [Dako P0447] or anti-
rabbit HRP (Cell Signaling, 7074S) were diluted 1:10,000 in
casein and added to wells at 100 mL per well and incubated for
1 hour at room temperature. Wells were again washed four times
with 300 mL per well of casein. 3,3,5,5-Tetramethylbenzidine
(TMB) KPL SureBlue (SeraCare, 5120-0074) (equilibrated to
room temperature) was added to wells at 100 mL per well and
incubated in the dark at room temperature for 5–10 minutes.
Reactions were stopped by adding 2N H2SO4 at 100 mL per well.
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Plates were analyzed with an EnVision® plate reader
(PerkinElmer) to read absorbance at 450 nm.

In Vivo Animal Procedures and Study Design
Animals
All in vivo experimental procedures were approved by the Home
Office, United Kingdom, with adherence to the Animals (Scientific
Procedures) Act 1986. The regulations conform to EU Directive
2010/63/EU and achieve the standard of care required by the US
Department ofHealth andHuman Services’Guide for theCare and
Use of Laboratory Animals. Animal studies were conducted
according to Good Laboratory Practice regulations for nonclinical
laboratory studies and complied with ARRIVE guidelines.

Animal procedures used equal numbers of male and female
CD-1 mice aged 8–12 weeks and weighing 20–50 g at the time of
dosing. Animals were obtained from Charles River Laboratories
(Charles River UK Limited). Mice were examined prior to
allocation to study stock. Mice were excluded if they presented
with lesions, masses, and/or swellings upon initial examination.
Males and females were randomized separately.
Frontiers in Immunology | www.frontiersin.org 3
Males were housed individually, while females were housed at 2–3
mice per cage. The targeted conditions for animal room environment
were 19–23°C, 40–70% humidity, ventilated with >10 air changes per
hour, and with a 12-hour light/dark cycle unless interrupted by study
procedures/activities. SDS Rat andMouse No. 1 Diet SQC Expanded,
and water, were provided ad libitum throughout the study, except
during designated procedures.

Test Agent
AZD1222 (MS00684-92) with a virus particle concentration of
2.13 x1012/mL was used as the test agent. For control
experiments, a buffer (vehicle) of 10 mM histidine, 7.5% (v/w)
sucrose, 35 mM sodium chloride, 1 mM magnesium chloride,
0.1% (v/w) Polysorbate-80, 0.1 mM ethylenediaminetetraacetic
acid (EDTA), and 0.5% (v/w) ethanol, pH 6.6, was used.

Study Design
This studywasperformedunblinded.Micewere randomlyassigned
to receive control (n= 12) orAZD1222 via intravenous (IV) (n=48)
or intramuscular (IM) (n = 48) injection. Mice assigned to the IV
A B

D

E

C

FIGURE 1 | The S1 subunit of the SARS-CoV-2 spike glycoprotein is cleaved in vitro following AZD1222 transduction. (A) Viability of HEK293x cell lines 48 and 72 hours
following transduction with AZD1222 at increasing input MOIs or ChAdOx1-GFP control. Error bars show the associated standard deviation for each sample. (B) Expression of
SARS-CoV-2 S1 and S2 spike protein subunits 48 or 72 hours post transduction with AZD1222. (C) Expression of GFP control 48 or 72 hours post transduction with
ChAdOx1-GFP. (D) Levels of SARS-CoV-2 S1 subunit and (E) full-length spike protein in cell culture supernatants at 48- and 72-hours post-transduction.
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route-of-administration group received AZD1222 at a
concentration of 1 x109 viral particles (VP) by single injection at a
fixed volume of 30 µL onDay 1. As this was the first time AZD1222
was administrated by IV dosing, mice were split into three batches
of increasing size, and 1-day pauses were added between dosing
batches 1, 2, and 3 to ensure the tolerability of test agent before
dosing larger cohorts of animals. Mice assigned to the IM route-of-
administration group received AZD1222 at a concentration of
1x1010 VP by single injection of a fixed volume of 30 µL to the
right hind limb (thigh) on Day 1.

In Life Procedures and Assessments
Mortality/moribundity were checked throughout the study at the
beginning and end of the working day. All mice received at least
one physical examination during the pre-treatment portion of
the study. Mice were examined regularly throughout the day post
dosing for potential reactions to AZD1222 or control, with
particular attention paid to the mice during and for the first
hour after dosing.

Body weights were collected as deemed necessary by the
technical staff for welfare purposes only. Therefore, due to the
lack of concurrent data, body weights were compared to
pretreatment values and no conclusions are drawn from this
dataset. In animals dosed with AZD1222 IV at 1x109 VP a
decrease in body weight was observed at various timepoints
throughout the first week of this study. There were no changes in
body weight in animals dosed with AZD1222 IM at 1x1010 VP.

Blood Sample Collection and Storage
Blood samples were collected from the orbital sinus following non-
recoverable isoflurane anesthesia for serum biomarker bioanalysis
and assessment of hematology parameters (Supplemental
Table 1). Blood samples for hematology assessments were
combined with K2EDTA anticoagulant. Serum samples for S1
sequential sandwich electrochemiluminescence immunoassay
were allowed to clot at ambient temperature for ≥60 mins
before centrifugation at 1500 x g for 10 mins at 4°C. Resultant
serum was separated and stored at –80°C prior to analysis.

Serum S1 Sequential Sandwich
Electrochemiluminescence (ECL) Immunoassay
S1 subunit levels in serum were assessed using a validated
immunoassay. MSD 96-well small spot streptavidin plates were
coated with biotinylated SARS-CoV-2 spike capture antibody
(MSD, C20ADB-3) and incubated overnight at 2–8°C. Wells
were washed three times with 1x Tris buffer. MSD diluent 11 was
added to the wells and allowed to incubate for 30 mins at 25°C.
Standard curve and samples were added to wells and allowed to
incubate for 120 mins at 25°C. Wells were washed three times
with 1x Tris buffer. Detection reagent was added to the wells and
allowed to incubate for 60 mins at 25°C. Wells were washed for a
final three times with 1x Tris buffer prior to the addition of MSD
Gold Read buffer. Spike protein was detected using SULFO-TAG
SARS-CoV-2 Spike detection antibody (MSD, D20ADB-3).
Plates were analyzed using a MSD S600 Meso Sector Imager
Microplate Reader within 10 mins of the addition of read buffer.
Frontiers in Immunology | www.frontiersin.org 4
The lower limit of quantification for the assay was 6.30 pg/mL
relative to the SARS-CoV-2 calibrator (MSD, C00ADB-2).

Assessment of Effects on Hematology Parameters
Changes in hematology parameters were assessed based on
reference ranges observed in mice under similar study
conditions at concurrent and non-concurrent timepoints from
historical control data for the testing facility. Group mean values
were determined for each timepoint post-vaccination and
compared to the reference range to assess for any potential
AZD1222-related changes.

Histology, Histopathology, and Immunohistochemistry
Samples of injection site, spleen and bone marrow (sternum and
femora-tibial joint) from animals sacrificed at Day 14 post IM
injectionwerefixed in10%neutral-buffered formalinandprocessed
toparaffinblocksusing routinemethods.Tissueswere sectionedat 4
µm thickness and stained with an immunohistochemical method
usinga rabbitmonoclonal antibody specific to theSARS-Cov2spike
protein (E5S3V, Cell Signaling Technology) at 0.1 µg/ml dilution,
on an automated Bond-RX immunostainer (Leica Biosystems),
using DAB as a chromogen. Whole slide images were obtained
using anAperio scanner (Leica Biosystems), andwere examined by
a board-certified veterinary pathologist.

Statistical Analyses
A formal power analysis was considered inappropriate due to the
exploratory nature of this study. Three male and three female
mice were used per timepoint per vaccination group to ensure
reliability of the toxicokinetic and tolerability estimates. Means
and standard deviations were calculated where appropriate.
RESULTS

S1 Subunit Is Cleaved In Vitro Following
AZD1222 Transduction of HEK293x Cells
We assessed the impact of SARS-CoV-2 transgene expression on
HEK293x cytotoxicity. Minor levels of cytotoxicity were expected
as HEK293x cells are permissive to adenovector propagation by
virtue of expressing the adenovirus E1A and E1B genes in trans
(14), thus incurring the lytic portion of the late-stage adenovirus
replication cycle (15). AZD1222-induced cytotoxicity was
greatest with MOI=1 and MOI=3 (both 5.5%) at 48 hours
post-transduction and with MOI=1 (23.6%) at 72 hours post-
transduction (Figure 1A, Supplemental Table 2). Cell death was
not a result of the spike transgene expression as cytotoxicity was
also observed 48 hours (12.6%) and 72 hours (19.5%) post
transduction with ChAdOx-1-GFP at MOI=10.

Presence of full-length spike protein in cell pellets was
confirmed by detection of S1 and S2 subunits by Western blot
(Figure 1B). S1 and S2 subunit expression was absent in cells
transduced with ChAdOx1-GFP or non-transduced controls
(Figures 1B, C). We observed the presence of cleaved S1
subunit in culture supernatant at 48 and 72 hours following
AZD1222 transduction (Figure 1D). Higher S1 subunit levels
April 2022 | Volume 13 | Article 836492
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were observed in cells transduced with lower MOIs at 72 hours,
perhaps due to more efficient production of spike protein, or due
to lesser cytotoxicity, with lower virus-to-cell ratios. Full-length
spike protein was not observed in the supernatant at either 48- or
72-hours post-transduction (Figure 1E). Similar results were
observed with Western blots of culture supernatants (data
not shown).

S1 Subunit Is Cleaved and Rapidly Cleared
In Vivo Following IM or IV AZD1222
Immunization With Similar Kinetics
We next assessed whether S1 subunit cleavage occurs in vivo
using CD-1 mice. Mice received higher doses of AZD1222 (per
dose/weight ratio) than those in clinical use (7) to maximize the
potential for detecting cleaved S1 subunit and to evaluate the
effects of exaggerated AZD1222 pharmacology. S1 subunit was
detectable in murine sera 12 hours post IM immunization
(Figure 2A). Mean soluble S1 subunit protein levels decreased
within 3 days (Table 1) and were below the limit of
quantification in 4/6 samples at 7 days and in 6/6 samples at
14 days post-IM immunization (Supplemental Table 3). IV
immunization produced higher mean levels of soluble S1
subunit protein with similar expression kinetics to IM
immunization (Figure 2B; Table 1; Supplemental Table 3).

It is possible that absence of S1 subunit detection after 14 days
is due to formation of host anti-S1-subunit antibodies, which
Frontiers in Immunology | www.frontiersin.org 5
would inhibit detection by serum immunoassay. However,
immunohistochemistry analyses on IM injection sites revealed
no significant expression of spike protein 14 days post AZD1222
immunization (Supplemental Figure 1). Bone marrow samples
from all animals contained abundant amounts of hematopoietic
cells of various lineages, including megakaryocytes. Spleen
samples contained variable numbers of hematopoietic cells, as
is common in mice. Although another study observed
persistence of AZD1222 at IM injection sites by quantitative
polymerase chain reaction 29 days post-immunization (16),
none of the tissue samples showed evidence of spike protein.
Sections of blood vessels did not show evidence of intravascular
positive staining in circulating cells including platelets.

AZD1222 Induced Modest/Transient
Changes to Host Hematology Parameters
Immediately Following Immunization
The effects of AZD1222 vaccination on host hematology
parameters and initial immune responses were assessed
through evaluating platelet and total white blood cell
(consisting of lower lymphocytes, monocytes, and/or
eosinophils) counts immediately following immunization
(Table 2). IM administration of AZD1222 resulted in
transiently lower platelets (~73% of vehicle mean; 12 hours),
and lower total white blood cells (12–24 hours) counts post
immunization. IV administration resulted in lower platelets (69–
A B

FIGURE 2 | Kinetics of S1 subunit detection following AZD1222 immunization. Levels of SARS-CoV-2 spike protein S1 subunit detected in serum following IM (A) or
IV (B) AZD1222 immunization. Data points represent mean SARS-CoV-2 Spike protein concentrations observed in male and female mice. Error bars indicate
minimum and maximum concentrations per timepoint.
TABLE 1 | Mean SARS-CoV-2 soluble S1 subunit levels post-AZD1222 immunization (pg/mL).

Males FemalesTotal Viral Particle (VP)/Dose

1x109 1x1010 1x109 1x1010
Hours post-AZD1222 immunization

IV IM IV IM

0 BLQ BLQ BLQ BLQ
2 hours BLQ BLQ BLQ BLQ
12 hours 356.0 233.0 1043.0 126.1
24 hours 244.0 206.3 249.0 187.0
48 hours 165.6 276.3 208.7 233.0
72 hours 325.3 166.7 55.2 227.3
168 hours 13.0 10.2 BLQ 10.6
336 hours BLQ BLQ BLQ BLQ
A
pril 2022 | Volume 13 | Article
BLQ, below the limit of quantification (6.3 pg/mL); IM, intramuscular; IV, intravenous; VP, viral particles.
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84% of vehicle mean; 24–72 hours) and lower white blood cells
(12–24 hours) post immunization. Neutrophils were transiently
higher 2 hours post IV immunization. Hematology parameters at
other timepoints were considered unrelated to AZD1222 and
were attributed to biological variation, as similar variations were
seen in vehicle control and/or were of a magnitude of change
commonly observed in mice under similar study conditions at
concurrent and non-concurrent timepoints, or within historical
control data for the testing facility.
DISCUSSION

The COVID-19 pandemic continues to cause substantial global
morbidity and mortality, with an estimated 28 million life-years
lost in 2020 (17). Gene-based vaccines that elicit production of
the spike protein in vaccinees have substantially reduced the risk
of severe disease and death from COVID-19 (7–10), and are an
invaluable tool for mitigating future SARS-CoV-2 outbreaks (18,
19). In vitro studies of SARS-CoV-2 have suggested that the spike
protein is directly responsible for mediating the thromboembolic
complications observed during severe COVID-19 (2, 20, 21).
Therefore, it was important to evaluate the effects of COVID-19
vaccine-induced spike protein on host immune and hematologic
parameters immediately following immunization.

Within this manuscript we demonstrate that AZD1222-
induced S1 subunit is cleaved in vitro and in vivo. S1 subunit
cleavage is likely the result of host proteolytic cleavage [e.g., via
transmembrane serine protease 2, cathepsin or furin (22, 23)]
rather than due to adenovirus-induced cell death (15), as
suggested by the low cytotoxicity and lack of S2 subunit
detection following AZD1222 transduction. We also
demonstrated that, following cleavage, the S1 subunit is rapidly
cleared and is no longer detectable from 7–14 days following
either IM or IV immunization. Similar quantities of S1 subunit
have also been observed in individuals with severe COVID-19
(4). We also observe similar expression kinetics to those observed
following IM immunization with mRNA-1273 COVID-19
vaccine (24). Cleavage of vaccine-induced spike protein from
host cells may complement other modes of host cell secretion
Frontiers in Immunology | www.frontiersin.org 6
(e.g., endosomal secretion) and facilitate subsequent processing
by antigen-presenting cells and the initiation of adaptive
immune responses (25).

We observed that IM vaccination induced modest/transient
changes to host platelet counts 12 hours following immunization,
with similar scale decreases observed 24–72 hours following IV
immunization. Murine models of thrombocytopenia (26), with
demonstrated physiological relevance to human platelet count/
function, suggest that the transient platelet reductions observed
following AZD1222 vaccination should not affect host thrombosis
or hemostasis. Total white blood cell counts were decreased within
the reference range for leukopenia (i.e., <2.0x109 total white blood
cells per liter) (27) 12 hours following IM and IV immunization
but increased to within normal reference ranges (i.e., 2.0–10.0x109

total white blood cells per liter) by 24 hours following IM
immunization. Transient leukopenia is a characteristic sign of
early responses to viral infections and is routinely documented
following vaccination (28–33). Following immunization,
AZD1222 enters host cells via the widely expressed coxsackie
and adenovirus receptor (34), wherein detection of AZD1222-
derived viral nucleic acids by host cell pathogen recognition
receptors initiates production of pro-inflammatory cytokines,
chemokines, and type I interferons (35). Neutrophil cell counts
were increased 2 hours following IV vaccination, corresponding to
expected initial cytokine and chemokine responses to adenoviral
infection (36). The initial innate immune response also attracts
antigen-presenting cells to the site of immunization, facilitating an
induction of S glycoprotein-specific CD8+ and CD4+ T helper 1 T
cells, and antibodies that have been observed from 14 days post-
immunization in other murine studies of AZD1222 (37–41).
Platelet, total white blood cell, and neutrophil counts were
unchanged at subsequent timepoints, suggesting that the
changes elicited by AZD1222 vaccination are transient and
quickly resolved following immunization.

It is important to note that we observed S1 subunit cleavage in
vivo using AZD1222 concentrations ~30 (IV dose; 1x109 VP) to ~300
(IM dose; 1x1010 VP) times greater than in current clinical use (based
on dose/weight ratio (7)) and therefore are assessing the effects of
exaggerated AZD1222 pharmacology within these experiments.
Additionally, a limitation of our study is the distinct differences in
TABLE 2 | Effects on host immune response and hematology parameters immediately following AZD1222 immunization.

Platelets (109/L) Total White Blood Cells (109/L) Neutrophils (109/L)Hours post-AZD1222 immunization

Vehicle IV 1x109 VP IM 1x1010 VP Vehicle IV 1x109 VP IM 1x1010 VP Vehicle IV 1x109 VP IM 1x1010 VP

0 1033.0 – – 6.933 – – 0.840 – –

2 NA – – NA – – NA 2.940↑ –

12 NA – 753.5↓ NA 1.593↓ 1.040↓ NA – –

24 NA 868.0↓ – NA 1.913↓ 3.267↓ NA – –

48 NA 721.3↓ – NA – – NA – –

72 NA 815.3↓ – NA – – NA – –

166 NA – – NA – – NA – –

336 1295.0 – – 6.977 – – 0.890 – –
April 2022
 | Volume 13 |
Values presented are group mean absolute values that were outside of the reference ranges observed in mice under similar study conditions at concurrent and non-concurrent timepoints
from historical control data for the testing facility.
IM, intramuscular; IV, intravenous; NA, Not applicable; VP, viral particles; – = Group mean value was within the reference range, indicating no AZD1222-related change; ↓ = decreased
versus reference range; ↑ = increased versus reference range.
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COVID-19 pathophysiology between humans and murine models,
which may limit the wider interpretation of our findings (42).
Although, the SARS-CoV-2 virus can be adapted to improve spike
protein binding to the murine ACE2 receptor by serial passage or by
using reverse genetics to improve RBD-murine ACE2 receptor
binding (43, 44), these adapted viruses still only confer mild forms
of COVID-19 disease. Thus, it would be interesting to explore the
kinetics and implications of S1 cleavage, and potential effects of
AZD1222 and other COVID-19 vaccines on host hematology
parameters immediately following vaccination in other animal
models (e.g., non-human primates, Syrian hamsters) that may
better reflect COVID-19 disease. K18-hACE2 is a transgenic mouse
strain that expresses a human ACE2 receptor driven by the
cytokeratin-18 (K18) gene promotor, and that has been observed to
succumb to SARS-CoV-2 infection due to lung and brain pathology
from severe lethal cytokine storm 4–6 days post-SARS-CoV-2
challenge (45, 46). Recombinant SARS-CoV-2 spike protein has
been observed to directly bind K18-hACE2 platelets and potentiate
thrombosis formation in wild-type mice following K18-hACE2
platelets transfusion (2), albeit using concentrations of spike protein
that greatly exceed the concentration of S1 subunit observed in sera of
individuals with COVID-19 (4) or following mRNA-1273
vaccination (24). It not yet known whether this finding can be
replicated with ‘live’ SARS-CoV-2 virus or whether spike protein
can be induced in sufficient quantities by COVID-19 vaccines to
produce a similar result. However, insights from this model may
prove invaluable for exploring the etiology of the rare hematologic
and vascular complications following COVID-19 vaccination (3).

In conclusion, our results provide further insight to the host
response to AZD1222 vaccination. We demonstrate the cleavage
of vaccine-induced SARS-CoV-2 spike protein S1 subunit in
vitro and in vivo following IM and IV immunization using
concentrations several magnitudes higher than currently used
in humans, without deleterious effects on the host. It is unlikely
that any potential adverse effects following AZD1222 vaccination
can be attributed to persistent S1 subunit expression as this
protein is no longer detectable in host sera by 14 days post-
vaccination. We also describe transient and quickly resolved
effects on host blood parameters immediately following
AZD1222 immunization. Collectively these findings, alongside
data from pivotal Phase 3 studies (7, 47) and ongoing
pharmacosurveillance, support the continued use of AZD1222
to mitigate the COVID-19 pandemic.
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