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mQC: A Heuristic Quality-Control 
Metric for High-Throughput Drug 
Combination Screening
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Xiaohu Zhang1, Crystal McKnight1, Carleen Klumpp-Thomas1, Paul Shinn1, John Simmons3, 
Mike Gormally1, Sam Michael1, Craig J. Thomas1, Marc Ferrer1 & Rajarshi Guha1

Quality control (QC) metrics are critical in high throughput screening (HTS) platforms to ensure 
reliability and confidence in assay data and downstream analyses. Most reported HTS QC metrics are 
designed for plate level or single well level analysis. With the advent of high throughput combination 
screening there is a need for QC metrics that quantify the quality of combination response matrices. 
We introduce a predictive, interpretable, matrix-level QC metric, mQC, based on a mix of data-derived 
and heuristic features. mQC accurately reproduces the expert assessment of combination response 
quality and correctly identifies unreliable response matrices that can lead to erroneous or misleading 
characterization of synergy. When combined with the plate-level QC metric, Z’, mQC provides a more 
appropriate determination of the quality of a drug combination screen. Retrospective analysis on a 
number of completed combination screens further shows that mQC is able to identify problematic 
screens whereas plate-level QC was not able to. In conclusion, our data indicates that mQC is a reliable 
QC filter that can be used to identify problematic drug combinations matrices and prevent further 
analysis on erroneously active combinations as well as for troubleshooting failed screens. The R source 
code of mQC is available at http://matrix.ncats.nih.gov/mQC.

The development of high throughput screening platforms has necessitated the development of quality control 
(QC) measures to determine assay performance at various levels. A key motivation for a QC measure is to ensure 
that data generated from a screen is reliable. In the absence of QC metrics, the downstream analysis of screening 
data can be misleading when applied to poor quality screening data. Furthermore, in long running screens, the 
use of QC metrics is crucial to capturing technical issues as they arise and subsequently, address them appropri-
ately. Finally QC measures allow one to compare historical assay performance with that of current assays, and 
thus provide a metric against which assay and screening platform developments can be benchmarked.

Some QC measures are generally applicable to high throughput screening including the Z-factor (Z’), coef-
ficient of variation (CV) and the signal to background (S/B). There has been much discussion on the utility of 
individual QC metrics focusing on what they can and cannot characterize1,2. For example, the S/B metric captures 
the extent of difference between sample wells and negative control, but does not quantify the variability1. As a 
result it is common to report multiple QC metrics for a given screening experiment.

QC measures can be classified into two groups. The first, and most common plate level controls characterize 
various aspects of the plate-level data. Examples include the Z’3 or SSMD (strictly standardized mean difference)1, 
both of which characterize the performance of the controls on an individual plate. Since controls are usually 
used for normalization of the sample area on the plate, poor control performance will lead to erroneous nor-
malization and subsequently low quality assay readouts. This problem affects both single point screens as well as 
dose-response screens, though the latter can, sometimes, be more robust in the face of poor control performance. 
QC measures such as Z’ or SSMD operate on the well level and thus are not cognizant of signal artifacts that may 
be present over a region of the plate. Examples include edge effects3,4 (due to evaporation from wells on the edge 
of a plate) and dispense errors. Both these types of errors can manifest themselves in a signal that varies in a 
systematic fashion across rows or columns (or both) on a plate. These errors can be characterized by plotting the 
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well signal from rows and columns separately or can be condensed into a single measure such as the coefficient of 
variation (CV)5. Finally, for large high throughput screens where samples are randomly laid out on a plate, it can 
be assumed that the signal should be close to random uniform and any outliers should be randomly distributed 
within the sample area. The presence of spatial artifacts can be characterized using a variety of spatial autocorre-
lation metrics including Geary’s C6 and Moran’s I7. Of course, this does not apply to screens with intra-plate titra-
tions or screens where samples from different, focused libraries are insufficiently randomized. The use of spatial 
autocorrelation metrics also assumes that the majority of samples are inactive (or rather, have similar activity). 
For focused libraries, and depending on the assay system, this condition may not be satisfied.

The second class of QC parameters applies to sample level controls and report variability on biological 
responses in the assay throughout a screen. These controls are typically not independent of plate level controls 
since the sample data is usually obtained after normalization (and possibly correction) of the plate level data. For 
small molecule high throughput screens, the Minimum Significant Ratio (MSR)8 is probably the most widely 
used and characterizes the assay variability in terms of the variability of sample (or control compound) potencies.

Recently, Mathews-Griner et al.9 described the development of a high-throughput platform to perform 
pair-wise drug combination screening, cHTS. The initial version of the platform was used to screen a few hun-
dred drug combinations. However, the platform has expanded to thousands and even tens of thousands of com-
binations10. Since the platform is based on traditional plate-reader technology, traditional plate-level QC metrics, 
especially those based on control performance, can be computed to provide an overall determination of the assay 
performance.

However, unlike single point small molecule screens or siRNA screens, where the normalized well readout is 
used for downstream analysis, a drug combination screen is followed by an analysis of the combination response 
matrix, which is deconvoluted from the plate layout, to characterize synergy, antagonism or additivity. Since the 
current platform lays out individual combinations as explicit N ×​ N matrices on the plate, screening errors can 
result in noisy or non-random combination response matrices. Even if the response matrices are randomized 
across one or more plates, screening errors can result in artifacts in an individual combination response matrix, 
when it is deconvoluted. If not otherwise flagged, these response matrices can result in erroneous estimates of 
synergy. There are many ways of scoring pharmacological synergism11,12, but all of them are sensitive to noise. As 
an example, the Combination Index (CI)13 depends on accurate evaluation of the IC50 (half maximum inhibitory 
concentration) of the single agents in a combination response matrix. Thus, response matrices with poor quality 
or non-existent single agent dose responses should be characterized as being of lower quality and flagged as such.

This work presents a data driven method to numerically characterize the quality of an individual response 
matrix in a high throughput combination screening experiment. The measure is termed the matrix QC (mQC) 
and allows one to rank response matrices from high quality to low quality. While derived from large screens, it can 
be applied to small-scale combination screens as well. The current method is a more rigorous extension of the QC 
metric described in Mott et al.10. In particular we based the development of the QC metric on a crowd-sourced 
assessment of response matrix quality. The use of crowd-sourced assessments of “quality” and other abstract 
descriptors has precedents14–17. For example, Lajiness et al.18 analyzed the consistency of the opinions of medic-
inal chemists when reviewing compound sets. Similarly, Oprea et al.19 examined the quality of chemical probes 
from the NIH Molecular Libraries Initiative, by aggregating expert assessments.

First we describe the need for a matrix-level QC and the data used to derive the model underlying the mQC. 
An important component of this step was constructing a set of response matrices whose quality was manually 
assessed by a panel of 9 experts. We describe the construction of this training set and discuss aspects of this 
crowd-sourced approach to quality assessment. Next we propose the prospective use and describe the retro-
spective application of mQC based on an analysis of a set of 612 combination screening campaigns comprising 
of a total of 127,119 response matrices. In particular, we compare mQC with Z’ using a subset (119,287 response 
matrices) with available plate-level data and propose QC guidelines for cHTS. Finally we discuss the limitations 
of the mQC metric and various factors that influence its reliability and relevance.

Results
Z’ fails to correlate with expert opinions of matrix-level quality.  To justify the development of a 
novel QC metric for combination screening, we compared the plate-level QC, Z’, and the expert opinions of 
matrix-level quality polled from 9 experienced scientists at NCATS (Fig. 1A, Supplementary Dataset S1 and 
Supplementary Fig. S6). As expected, Z’ is insufficient to distinguish the expert opinions of matrix-level qualities 
using one-way ANOVA (analysis of variance), p-value =​ 0.26. If we remove the extremely poor-quality plates 
(e.g., Z’ <​ 0), the ANOVA p-value drops to 2.75 ×​ 10−7 (Fig. 1B). However, Z’ fails to conclusively differenti-
ate between good and medium classes (p-value =​ 1.0), and there are still 50% good (n =​ 10) and 61% medium 
response matrices (n =​ 11) that overlap in Z’ with the bad ones, although pairwise t-tests show significant differ-
ence between good and bad (p =​ 3.3 ×​ 10−6), or medium and bad (p =​ 2.8 ×​ 10−4). This highlights the need for a 
more sensitive and robust assessment of the quality of a combination screen.

The mQC metric accurately models the crowdsourced opinions.  The mQC is an Adaboost ensem-
ble decision tree model, trained using a crowdsourcing effort consisting 9 experts in which each expert individ-
ually labeled a set of 133 response matrices as ‘Good’, ‘Medium’ or ‘Low’ quality (Fig. 2A). Figure 3A illustrates 
how these 133 blocks were selected to construct the training set. mQC model was trained based on a subset of 
126 response matrices that reached the consensus opinion between the raters. Given a response matrix, mQC 
evaluates 7 response matrix-derived features characterizing the concordance to plate control, and the variance, 
smoothness, monotonicity of the activity landscape (see Table 1 and Methods for details), and predicts a QC 
label (i.e., good, medium or bad) and an associated confidence score. To assess the predictive power of mQC, 
we performed training-testing validation protocols as described in the Methods. Figure 2B revealed that the 
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multiclass-MCC (Matthews Correlation Coefficient), which is a balanced measure of classification accuracy 
regardless of the class composition, is consistently high (~0.75) using 5–50% of 126 response matrices as the 
test set. The multiclass-MCC remained greater than 0.5 using 55–80% of 126 response matrices as the test set. 
This indicates that mQC does not overfit the crowdsourced responses and can be generalized to unseen matrix 
responses. In comparison, Y-randomization significantly compromised the multiclass-MCC at all test set propor-
tions, indicating that the mQC model was not obtained due to chance correlations (Fig. 2B).

Figure 2C,D summarizes the recall and precision performance for the different quality classes. mQC exhib-
ited excellent accuracy in identifying “Bad” and “Good” quality matrices, as the recall and precision were both 
greater than 0.75 for these two classes using 5–70% as the test set. Mediocre performance (~0.62) was observed 
for “Medium” quality matrices. This is not surprising because by definition the boundary between “Good” and 
“Medium” or “Bad” and “Medium” is somewhat ambiguous, and individuals disagreed significantly for “Medium” 
quality matrices (Fig. 2A). Furthermore, we observed that a majority of the prediction error was attributable to 
the matrices in which polled results had significant disagreements, even when we took the majority votes for the 
classifier (Fig. 2A). To take the predictive accuracy into account, we fit a probabilistic confidence score using the 
standard deviation of the Adaboost-predicted class probabilities, as shown in Fig. 2E. As expected, the higher 
the variation in the class probability, the lower the prediction error. The classification error, on average, remains 
below 25% when mQC makes a decisive good/medium/bad prediction (e.g., Stdev (probgood, probmedium, probbad)  
>​ 0.25). This confidence score will be useful when performing large-scale statistical analysis.

Figure 3B depicts examples of response matrices with different mQC features. mQC is built upon an ensemble 
tree using these features, and Table 1 summarizes the feature importance for the mQC model. It highlights that 
dmso.v, smoothness.p, moran.p are the most critical features for matrix-level quality. This prediction is consistent 
with the intuition that the presence of anomalous control values, lack of smoothness, and random/negative spatial 
autocorrelation within the combination response submatrix suggests major technical issues than low activity var-
iance and non-monotonic dose responses. It is also reasonable not to overestimate the importance of sa.min, sa.
max, sa.matrix and mono.v, because either low activity variance or non-monotonic dose response can be a result 
of real biology other than technical failure. As demonstrated in Fig. 3B, mQC did not flag the non-prototypical 
biological responses (e.g., bell-shaped dose response, non-monotonic activity landscape due to synergy/antago-
nism) or inactive combination responses, as long as the activity landscape is smooth and absence of drift.

Using mQC prospectively: mQC suggests the reliability of response matrices.  In this section we 
further explored whether mQC, which is trained using subjective crowdsourced opinions, prospectively corre-
lated with the reliability of a matrix screen and enriched for real signals of synergism/additivity/antagonism sig-
nals. Assume we have a population of response matrices from CellTiter-Glo assays, where the last row/column is 
the single agent dose response, and 100% exposure represents no cell killing and 0% represents full cell killing. 
The synergism/additivity/antagonism associated with a response matrix ×xN N  can be computed based on the 
Bliss independence model20. Using a deviation from the Bliss model (equation 8), we find that the normalized 
delta-Bliss (DBNorm) keeps the normal distribution when the systematic error σ( )systematic

2  is small (Fig. 4A). 

Figure 1.  Comparison of expert opinions of matrix-level quality and plate-level QC (Z’). (A) A comparison 
from all 133 response matrices in the survey. (B) A comparison by removing bad-quality plates with Z’ <​ 0.



www.nature.com/scientificreports/

4Scientific Reports | 6:37741 | DOI: 10.1038/srep37741

However, the distribution will be skewed to positive if σsystematic
2  becomes large (Fig. 4A). If unpredictable random 

error is introduced, the DBNorm distribution will be centered at 0.25 regardless of the original DBNorm distri-
bution (Fig. 4B). Hence, our simulation has showed that the positive skewness of the DBNorm distribution cor-
relates with the level of random error and systematic error: the more systematic or random error introduced in 
the screening, the synergy distribution will be skewed more to the antagonistic area.

Then we analyzed 127,119 response matrices collected from NCATS database, and based on the mQC model 
we observed that DBNorm for the “Good” matrices displayed a slightly left-skewed distribution while “Medium” 
and “Bad” matrices displayed more positive-skewed distributions (Fig. 4C). The negative-skewed distribution 
of “Good” matrices is primarily due to the bias toward synergistic combinations during assay planning and vali-
dation. The “Bad” distribution, however, exhibited a second peak around DBNorm =​ 0.12, indicating a subpop-
ulation of response matrices consisting of large systematic error or random error. In comparison, the DBNorm 
distributions using Z’ or another matrix-level QC (Mott et al.10) overlap significantly and show no skewness for 
bad matrices (e.g., Z’ <​ 0.3 or QC >​ 10) (Fig. 4D,E). A similar trend was also found for another synergy metric, γ​,  
which is based on Gaddums non-interaction model21 (Fig. 4F–H). Taken together these data implied that mQC, 
rather than Z’ or QC (Mott et al.), models better the noise level in the response matrix and as a consequence, it is 
a more reliable indicator of the confidence of synergy or antagonism discovery.

This large-scale analysis was in line with our initial hypothesis that Z’ alone is insufficient to indicate the 
overall quality of a response matrix. In addition, from comparing Z’ and mQC using a subset which has track-
able plate-level data (totally 119,287 blocks available in Supplementary Dataset S3), we observed weak corre-
lation between Z’ and mQC using Spearman correlation (ρ​good =​ 0.23, ρ​medium =​ −​0.008, ρ​bad =​ −​0.38 when Z’ 
is aggregated by screen, Fig. 5A). Z’ and SSMD also have poor correlation with mQC if we analyze the QC 
breakdown by plate (Supplementary Fig. S2). Noticing the fact that Z’ or SSMD may not hold if the controls are 

Figure 2.  Performance of mQC. (A) Heatmap of survey results and average error rate for each response 
matrix. (B) The multiclass MCC at different test set proportion using the original dataset (red) and 
Y-randomized dataset (blue). (C,D) The recall and precision of each matrix-level QC label at different test set 
proportion. (E) The confidence of mQC prediction as a function of the standard deviation of the predicted 
probabilities across mQC labels.
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placed on one side in the presence of dramatic plate effect, we also calculated Z’ (sample) and SSMD (sample) 
using the block DMSO controls and original positive controls. However, we are still unable to find a reasonable 
correlation between plate-level QC metrics (Z’ (sample) or SSMD (sample)) and mQC (Supplementary Fig. S3), 
although Z’ (sample) and SSMD (sample) only achieves a mediocre correlation with Z’ (plate) or SSMD (plate) 
(Supplementary Fig. S4). Therefore, it is reasonable to define a combined criterion as the basis of a QC guideline 
for cHTS. The conventional criterion for a good HTS is Z’ >​ 0.5, and here we found that ~85% screenings met 
this QC requirement. Based on this 85th quantile that defines an excellent HTS assay based on plate-level quality, 
the corresponding matrix-level mQC criterion should be “screen with >​60% Good response matrices and >​90% 
Good or Medium response matrices” (the horizontal dashed lines in Fig. 5A). Herein we suggest that the quality 
of a cHTS campaign be judged by both plate-level and matrix-level QC metrics: (1) Z’ >​ 0.5 and (2) >​60% “Good” 
response matrices and (3) >​90% “Good” or “Medium” response matrices (Fig. 5B). If only plate-level QC is satis-
fied, it suggests that major matrix-level issues are involved, such as low cell viability, wrong time points, unstable 
readout, problems in chemical selection/handling/concentration, etc. Otherwise, it suggests a failed control or 
biased layout as a majority of response matrices satisfy the matrix-level QC criteria.

Using mQC retrospectively: mQC identifies source of variability.  In this section, we specifically 
examine the potential use of mQC to identify sources of variability that are specific to combination screening in 

Figure 3.  (A) Schematic workflow summarizing the steps involved in selecting the 133 combinations for the 
training set used to construct the mQC model. (B) Examples of response matrices and their mQC. Here we 
show 11 activity landscape in 3D and their corresponding “Bad”, “Medium” or “Good” classification predicted 
by mQC. Each activity landscape is transformed from the response matrix (see Methods for details) and 
annotated with respective surface features. We expect zero response on DMSO treatment (negative control), 
and a maximum 100% response (adjusted by the positive control) in CellTiter-Glo screens or −​100% response 
(adjusted by the positive control) in Caspase-Glo screens.

Feature name Importance Comments

dmso.v 20.71 Normalized response of the 
negative control

smoothness.p 18.88 p-value for smoothness

moran.p 18.82 p-value for spatial autocorrelation 
(tested by Moran’s I)

mono.v 12.62 Likelihood of monotonic dose 
responses

sa.min 12.84
The smaller relative standard 

deviation of the single-agent dose 
response

sa.matrix 8.78 The relative standard deviation of 
the dose combination sub-matrix

sa.max 7.36
The larger relative standard 

deviation of the single-agent dose 
response

Table 1.   Feature importance.
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Figure 4.  QC metric and synergy distribution. (A) Distribution of normalized delta-Bliss (DBNorm) with 
different levels of systematic error σ( )systematics . (B) Distribution of DBNorm with different fractions of random 
error (p.random) introduced in the model. (C–E) Distribution of DBNorm based on mQC, Z’ or QC Mott et al. 
(F–H) Distribution of gamma based on mQC, Z’ or QC Mott et al.

Figure 5.  Proposed QC guideline for drug combination screening. (A) Each combination screening is 
represented by two independent points: a red point (Z’ as X-axis value and percentage of “Good” matrices as 
Y-axis), and a green point (Z’ as X-axis and percentage of “Good” plus “Medium” quality matrices as Y-axis). 
The distribution associated with Z’, Good%, Good +​ Medium% are beside the scatter plot. The dashed lines 
indicate the best practice cutoff for Z’ and mQC levels given a screening. (B) The best practice workflow for 
quality control of a cHTS campaign.
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matrix format or may not be identified by the conventional plate-level QC metrics. We will elaborate on 11 cases 
to show how mQC further enhance the quality assessment of cHTS (case summary can be found in Table 2 and 
Supplementary Fig. S5).

Readout.  Very often Z’ is determined based on the effect of a positive control on the assay. However, in some 
cases, the positive control is not available or cannot produce the maximum change in signal that the assay can 
measure. For example, Promega Caspase-Glo 3/7 (CG) used in many of our combination screens measures the 
induction of apoptosis as an increase in luminescence signal. Bortezomib is a proteasome inhibitor which is a 
potent cytotoxic compound for most of the cells tested and it is used as a positive control in the cell prolifera-
tion assay. However, Bortezomib does not produce cytotoxic effects by induction of apoptosis in all cells, and 
therefore, for its use as a positive control for Caspase-Glo assay readout is not appropriate for some cell lines. For 
example, we are able to confirm several synergistic combinations against L1236 cell line in a CG screen (assay 
ID 3785 in Table 2)22, although Bortezomib failed to induce significant Caspase activity compare with DMSO 
(Supplementary Fig. S5A). Besides, mQC offers an alternative QC metric to compare different assay readouts 
independent of the availability of the positive control. When comparing Promega CellTiter-Glo (CTG) and CG, 
we observed that the quality of CTG is significantly better than CG from 3,084 paired comparisons of response 
matrices, in which mQC of CTG was found better in 949 cases, worse in 191 cases and equal in 1944 cases 
(p-value =​ 1.18 ×​ 10−63). Compared with CTG, CG has a significantly higher occurrence of rugged activity pat-
tern (smoothness.p >​ 10−4), random spatial autocorrelation (moran.p <​ 10−7) and non-monotonic dose response 
(mono.v <​ 0.7) (Fig. 6A). This result indicates that the assay readouts which measure conditional enzymatic activ-
ity (e.g., apoptosis via caspase activity) can be more challenging to optimize and less stable than simple readouts 
that measure the baseline metabolites (e.g., cell viability via ATP amount) for cHTS.

Size of matrix.  Ideally, the dimension of a matrix in a combination screening experiment (i.e., the number of 
doses of the single agents) should not affect the matrix-level QC. That is, a cHTS using the same cell line, chemical 
library and readout should have similar mQC, irrespective of matrix size. However, we still observed that 10 ×​ 10 
response matrices had statistically better mQC than 6 ×​ 6 screenings from 1937 comparisons (p =​ 2.9 ×​ 10−7), in 
which mQC of 10 ×​ 10 format was better in 309 cases, worse in 129 cases and equal in 1499 cases. Compared with 
matrices in 10 ×​ 10 format, 6 ×​ 6 format has a higher occurrence of rugged activity pattern (smoothness.p >​ 10−4) 
(Fig. 6B). However, we note that the screening workflow employed at NCATS tends to select 6 ×​ 6 combina-
tions that exhibit high quality and robust response matrices for follow-up in a 10 ×​ 10 format, which biases the 
observed results.

Cell quality.  Cell quality is another major source of variation in HTS. Z’ alone may be unable to flag the poor 
cell quality for reasons such as low cell viability or contamination in a cHTS because these factors might not 
have a large effect on the assay window determined using plate wells with negative and positive controls, but 
may impact the combination responses because of effects in the sample field. For example, mQC, but not Z’, 
successfully identified the only two documented cHTS campaigns where the cell lines were found contaminated 
(assay ID 5021 and 6028 in Table 2). In comparison, the screenings using cell in good condition usually yield 
a majority of “Good” response matrices. For example, we observed 96.8% “Good” and 100% “Good” response 
matrices from two public datasets (assay ID 142 and 447 in Table 2)9. In addition, mQC flagged a cHTS using 
Hodgkin’s lymphoma cell line U-H01 (Z’ =​ 0.70 ±​ 0.03) (assay ID 2852 in Table 2), whose response matrices 
obtained significantly worse mQC assessments than those from a parallel screen using HDLM-2 (assay ID 2850 
in Table 2). This is due to the fact that on the day of plating, the viability of U-H01 was 60%, whereas HDLM-2 
was 100% according to the lab notes. According to usual practice, however, these screens are treated as excellent 
screens with respect to their high Z’. Further analysis of feature distribution showed that cell contamination or 

ID Readout Z’ SSMD mQC (Good%) Comments Link

3785 CaspaseGlo −​0.54 ±​ 0.5 2.65 ±​ 1.62 91.7 Failed positive control, 
reasonable synergy https://tripod.nih.gov/matrix-client/rest/matrix/blocks/3785/table

447 CellTiterGlo 0.65 ±​ 0.09 8.49 ±​ 1.29 100 Excellent screen https://tripod.nih.gov/matrix-client/rest/matrix/blocks/447/table

241 CellTiterGlo 0.67 ±​ 0.07 9.97 ±​ 2.63 96.8 Excellent screen https://tripod.nih.gov/matrix-client/rest/matrix/blocks/241/table

5021 CellTiterGlo 0.53 ±​ 0.19 9.56 ±​ 3.5 4.6 Cell contamination, 
good Z’ and SSMD https://tripod.nih.gov/matrix-client/rest/matrix/blocks/5021/table

6028 CellTiterGlo 0.59 ±​ 0.19 8.97 ±​ 0.83 63.8 Cell contamination, 
good Z’ and SSMD https://tripod.nih.gov/matrix-client/rest/matrix/blocks/6028/table

2850 CellTiterGlo 0.75 ±​ 0.02 13.1 ±​ 2.89 95.8 Excellent screen https://tripod.nih.gov/matrix-client/rest/matrix/blocks/2850/table

2852 CellTiterGlo 0.70 ±​ 0.03 8.84 ±​ 1.7 54.2 Cell viability issue, good 
Z’ and SSMD https://tripod.nih.gov/matrix-client/rest/matrix/blocks/2852/table

702 CellTiterGlo 0.76 ±​ 0.03 12.39 ±​ 1.9 21.2 Good Z’ and SSMD, drift Internal data (link not available)

703 CellTiterGlo 0.76 ±​ 0.03 13.23 ±​ 2.1 22.5 Good Z’ and SSMD, drift Internal data (link not available)

704 CellTiterGlo 0.76 ±​ 0.02 11.4 ±​ 1.6 31.5 Good Z’ and SSMD, drift Internal data (link not available)

705 CellTiterGlo 0.78 ±​ 0.03 14 ±​ 1.6 29.2 Good Z’ and SSMD, drift Internal data (link not available)

Table 2.   Example drug combination screens and QC.

https://tripod.nih.gov/matrix-client/rest/matrix/blocks/3785/table
https://tripod.nih.gov/matrix-client/rest/matrix/blocks/447/table
https://tripod.nih.gov/matrix-client/rest/matrix/blocks/241/table
https://tripod.nih.gov/matrix-client/rest/matrix/blocks/5021/table
https://tripod.nih.gov/matrix-client/rest/matrix/blocks/6028/table
https://tripod.nih.gov/matrix-client/rest/matrix/blocks/2850/table
https://tripod.nih.gov/matrix-client/rest/matrix/blocks/2852/table
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low viability resulted in significant increase of abnormal control signal, rugged and autocorrelated matrices and 
non-monotonic dose response (Fig. 6C). mQC once again demonstrated the ability to pinpoint the unreliable 
screenings due to cell contamination, poor viability, etc., which cannot be reliably identified by the conventional 
Z’ metric.

Drift.  Drift is one of the systematic sources of variability that cannot be easily identified by Z’. HTS guideline 
suggests scatterplots to diagnose layout-dependent responses, but this can be infeasible for large scale cHTS due 
to different layout of dose combinations. Figure 7 and Table 2 showed four screens (assay ID 702, 703, 704, 705) 
from which we have observed significant left-to-right drift effects. In these cases, Z’ failed to identify such drift 
effect because the negative and positive controls were placed at the left four columns (see Supplementary Dataset 
S2 for plate layout and Supplementary Fig. S5H–K for QC summary). mQC which assesses the negative control 
and variation of does responses in the response matrices, on the other hand, have successfully flagged these 
four screens for violation of “screenings containing >​60% Good response matrices and >​90% Good or Medium 
response matrices” criteria. We found that the proportion of the “Good” response matrices correlated with the 
drift trend across the columns (lower plots in Fig. 7).

Discussion
In this article we have introduced a predictive, interpretable, matrix-level screening QC metric, mQC, based on 
heuristic features. mQC has the potential to serve as a QC filter for prioritizing drug combinations and a tool for 
troubleshooting failed combination screens. Our analysis also suggests that the combination of plate-level QC 
and matrix-level QC will provide a more accurate assessment of the quality of a drug combination screen.

mQC focused on identifying unreliable response matrices that lead to erroneous or misleading character-
ization of synergy, as we showed in the “Z’ fails to correlate with expert opinions of matrix-level quality” and 
“prospective use of mQC” sections. However, mQC is still a conservative model that tolerates sporadic random 
error and non-monotonic dose responses in the activity landscape that can ultimately result in counterintuitive 
synergy pattern. We allow this flexibility in mQC because (1) we are trying to avoid overfitting the crowdsourced 
evaluations of response matrix quality; (2) for some assay readouts, such as apoptosis assays using Caspase-Glo, 
bell-shaped dose responses can be observed (Caspase activity is high when cells are dying, but low when cells 
are dead); and (3) there are special cases where synergy and antagonism coexist in a concentration-dependent 
fashion23. In addition, screening performed using a smaller matrix is more likely to miss the signal or bias the 
error at some concentration(s). This is another reason that 10 ×​ 10 response matrices obtained smoother activity 
landscape than 6 ×​ 6 (see retrospective use of mQC section), and this also highlights the importance of accurate 
single agent dose response experiments run before the a combination screening program.

Figure 6.  Comparison of readout, size of matrix and cell with respect to 7 feature distributions.  
(A) Readout (Caspase-Glo(CG) vs. CellTiter-Glo(CTG)). (B) Size of matrix (6 ×​ 6 vs. 10 ×​ 10). (C) Cell. 
* =​ contaminated cell line. The arrows indicate the major difference between groups which significantly affects 
the mQC assessment.
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Our retrospective analysis has confirmed that Z’ alone is insufficient to evaluate the overall quality of a 
response matrix or a cHTS campaign. Because of the focused nature of the collection and high number of actives, 
a Z-factor based on the sample field activity is not meaningful. Due to this reason, we developed an orthogonal 
metric, mQC, to suggest overall reliability of cHTS based on the assumption that the probability of a failed cHTS 
having a majority number of non-random response matrices is extremely low. Another motivation to implement 
matrix-level QC metric is that the large combinatorial space remarkably limits the number of control wells in 
combination screening. A cost-efficient plate layout shown in Supplementary Dataset S2 has 128 control wells, 
which accounts for only 8.3% in a 1536-well plate and therefore may not indicate the plate effect or other technical 
issue (such as spotting error) occurred in the rest of 91.7% plate. We experience a significant amount of screenings 
where Z’ <​ 0.3 but reliable response matrices dominate, and cases where only controls work due to various techni-
cal issues such as cell contamination, which led to a misleading Z’ >​ 0.5. Hence we have proposed a best practice 
guideline to evaluate the quality of a cHTS campaign using both plate-level and matrix-level QC metrics (Fig. 5B).

Figure 7.  Drift effect identified by mQC. Each plot represents an independent screen consisting of 14 plates. 
The point in the upper part of plot represents the median response of matrix-level negative control (DMSO) on 
ith column. The point in the upper part of plot represents the proportion of “Good” response matrices on ith 
column, according to mQC assessment.
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A limitation of this QC measure is that it is still unable to characterize the consistency of dose responses and 
synergy across the matrices. We observed some cases in a malaria screen10 where the replicate response matrices 
varied significantly even when mQC classifies them all as “Good” quality. Implementing a consistent QC metric 
at matrix-level remains challenging because (1) Combination screening data is still limited in terms of large 
scale availability; (2) While many synergy metrics have been defined, the question of which metric can serve 
as a well-defined endpoint, analogous to IC50, EC50 or AUC for single agent dose response, that can be used 
to compare between independent replicates is still open24. A candidate replacement is the minimum significant 
ratio (MSR)25 to indicate the consistency for “all versus all” combination screenings. However, MSR is restricted 
to the single agent part of the matrix, and consistency in single agent responses may not necessarily indicate the 
consistency in the combination sub-matrix. A robust statistical model is needed to translate the MSR concept 
to 2D response data. A second limitation is that mQC is restricted to pair-wise drug combination screening in 
a surface format. As this format is not well suited for the assessment of combinatory effect of two or more com-
pounds, a more robust model needs to be designed for more complex combination screening platform. Finally, 
in “prospective use of mQC” section we have justified mQC for its use in quality control of cHTS based on Bliss 
independence model. Knowing that mQC is trained based on subjective human assessments, we use DBNorm as 
a more objective reference and confirmed that mQC suggests the experimental noise. Further validation using 
other additivity model (e.g., Loewe model) or experimental data may be required, as Bliss independence may not 
necessarily represent the mechanisms of action of drug combination24,26.

Quality is a result of both biological (e.g., robust assay window) and technical (e.g., accuracy and reproduci-
bility in reagent/compound addition) effects. We have discussed some cases where mQC successfully identified 
technical issues in cell lines, assay readouts and compound batches. On the other hand, it can be hard to pinpoint 
the biological/non-biological cause unless documented. In addition, our analysis is based on a naïve model in 
which the factors (cell, compound, readout, size of matrix) are non-interacting. Instead, there are many more 
factors to consider, such as concentration, time point, layout, and interactions between these factors. For instance, 
one of the major reasons for the poor quality of Caspase-Glo readout is that apoptosis usually occurs within a 
time window, and this window can vary by cell line, compound mechanism of action and concentration. This 
makes Caspase-Glo assay extremely challenging for cHTS as the time point is always fixed in a screening (which 
can be addressed by running the experiment at multiple time points, which is obviously resource intensive).

Another source of poor quality combination response data is low cell viability on the day of assay plating or 
overall grows slowly in culture. In most cases, assay optimization prior to screening is limited which results in 
the majority of screens being tested at 500 cells per well and 48 hour time point. These parameters work for most 
medium sized, adherent and fast growing cancer cell lines; however, there are slow growing, large and/or sus-
pension cell lines that may need more than 500 cells per well and/or a longer time point. Another technical issue 
unique to cHTS compared to conventional single-agent HTS is that compounds are usually preplated to reduce 
the time-dependent variation and therefore cells are added directly to the plates containing compound. There are 
cases where cell line cannot handle this transition very well, so we need to switch the plating order to let such cell 
adapt to the stress of dissociation and plating (4 hours or 24 hours) before adding compounds.

Methods
Crowdsourcing survey.  To ensure the diversity of the checkerboard pattern, we first separated 127,119 
response matrices from NCATS database into 32 groups using the 5 heuristic criteria described by Mott et al.10 
(see below). Then we performed K-means clustering analysis for each group and finally selected 133 matrices 
which are closest to respective cluster center. Figure 3A illustrates the paradigm of how 133 blocks were selected 
in this study. In order to mitigate the bias, we randomized the order of blocks, and give an overview of all 133 
blocks at the start of the survey to ensure that the participants define their criteria before polling and remain 
consistent during the survey. The participants labeled each response matrix as “Good”, “Medium” or “Bad”. Here 
we can justify that nine participants are enough to achieve robust consensus because the inter-rater agreements 
(measured by Fleiss’ κ​27) converge to 0.35 as the number of raters increases (Supplementary Fig. S1). The final 
label for each response matrix was computed using the majority vote rule and these final labels were used to as 
the training set. The class breakdown showed 78 “Bad”, 24 “Medium” and 24 “Good” matrices. The remaining 7 
received ambiguous votes (equal votes were received for two or more labels), hence excluded from the training 
set. The response matrices and survey results are available in Supplementary Dataset S1.

Matrix-level QC metric, mQC.  The combination response matrices (blocks) were performed in N ×​ N 
matrix format, in which each axis corresponds to the treatment of a respective compound at a certain concentra-
tion. Here we denote di j,

1  and di j,
2  as the respective concentration of first and second compound and xi j,  as the 

corresponding effect at i j, . Specifically, we place DMSO control at the bottom right corner = =d d( 0)N N N N,
1

,
2 . The 

single-agent treatments are placed on the bottom row (N, *) and right column (*, N) (* =​ any coordinate except N). 
The dose combinations are placed in the (N −​ 1) ×​ (N −​ 1) top left submatrix in which the individual drug concen-
tration is in descending order, namely < <⁎ ⁎d d i m(if )i m,

1
,

1 , < >⁎ ⁎d d j n(if )j n,
2

,
2 . See Supplementary Dataset S2 

for a block design example.
We consider a robust matrix-level QC metric to be:

1.	 An orthogonal metric to the plate-level QC (e.g., Z’ or Z-factor);
2.	 A generalized metric that makes robust quality prediction for responses with any matrix dimension (that is, 

6 ×​ 6, 10 ×​ 10 and so on), normalization scheme (normalized by activator/inhibitor/neutral control), assay 
readout (CellTiter-Glo, Caspase-Glo, etc), and compound concentrations;

3.	 An interpretable metric that represents the basic quality and usability of a combination screening block and 
is consistent with human intuition;
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4.	 A metric to be used as a QC filter for prioritizing drug combinations and a tool for debugging failed screens 
based on simple statistics.

An initial attempt at defining the mQC metric was described by Mott et al.10. This metric assesses the 
matrix-level quality using a weighted-sum of five heuristic criteria (assuming plate data were normalized to the 
100% (DMSO) and 0% (full cell kill)):

1.	 DMSO response  ∈[80, 100];
2.	 Valid IC50 for both single agent dose responses;
3.	 Relative standard deviations for both single agent dose responses >​ 20;
4.	 Relative standard deviation for dose combination sub-matrix >​ 25;
5.	 Spatial autocorrelation p-value (tested by Moran’s I) <​ 0.05.

In the current implementation, we extend this QC using the following feature set:

1.	 (dmso.v) Normalized response of the negative control. For CellTiter-Glo, ROS-Glo, SYBR green readouts in 
which the positive control lowers the signal, the expected signal of negative control (DMSO) is 100. To make 
it consistent, we use (100-negative control) for those readouts where positive control enhances the signal, 
such as Caspase-Glo and other reporter assay.

2.	 (sa.min) The smaller relative standard deviation of the single-agent dose response.
3.	 (sa.max) The larger relative standard deviation of the single-agent dose response.
4.	 (sa.matrix) The relative standard deviation of the dose combination sub-matrix.
5.	 (moran.p) p-value for spatial autocorrelation (tested by Moran’s I).
6.	 (smoothness.p) p-value for smoothness: We perform hypothesis testing based on the following hypotheses: 

H0 =​ the activity landscape is rugged and Ha =​ the activity landscape is smooth. The matrix responses are fit-
ted to a generalized additive model (GAM) using R mgcv package. The smoothness of the activity landscape 
is measured by the RMSD between fitted and the measured values such that a smooth landscape should be 
fitted perfectly using GAM model (RMSD =​ 0), while a rugged landscape has a non-zero RMSD, with larger 
values corresponding to increasing ruggedness. To generalize the model, we bootstrap the matrix 10,000 
times and calculate the empirical cumulative distribution function (ecdf). The p-value is calculated as the 
probability of being a random (usually rugged) landscape having an RMSD smaller than the observed one.

7.	 (mono.v) Likelihood of monotonic dose responses. The monotonic dose response is based on the common 
observation that the higher the dose, the greater the effect. Although non-monotonic dose response exists in 
nature28, we assume, for simplicity, that the combination dose response is monotonic. For CellTiter-Glo assay, 
we expect a monotonically decreasing CellTiter-Glo signals in the dose combination submatrix and denote 
the likelihood of monotonic dose responses as
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For Caspase-Glo, we expect a monotonically increasing Caspase activity in the dose combination submatrix, 
therefore we exchange Θ+i j m n, , ,  and Θ−i j m n, , ,  in the equation (1). This feature is designed so that the mono.v for 
monotonic dose response that is consistent with common sense is 1, monotonic dose response that completely 
violates the common sense is 0, and 0.5 for a random response matrix. This metric by definition will tolerate the 
local violation of monotonicity, which tends to be the usual case of non-monotonic dose responses28.

The mQC Adaboost classifier29 was trained based on the aforementioned 7 features and the 126 crowdsourc-
ing responses. To validate the predictive ability, we performed 200 random splits for each of 16 test set proportion 
ranging 16 proportion of test set ranging from 5% to 80%. We used multiclass Matthews Correlation Coefficient 
(MCC) to evaluate the classification accuracy, as described in ref. 30. Briefly, we denote the confusion matrix 
Μ ×N N  in which Μij is the number of cases that belongs to true class i and the classifier assigned as class j. Then the 
multiclass MCC is

=
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The recall and precision of class i are defined as
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The standard deviation of three-class probability (good, medium or bad) was fitted with respect to the error 
rate for each case using local polynomial regression (loess function in R). The source code in R is available at 
http://matrix.ncats.nih.gov/mQC.

Plate-level QC, Z’ (Z-factor) and SSMD.  Z’ is defined as

σ σ

µ µ
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where σ p, σn are the standard deviations of positive and negative controls, and µ p, µn are the mean of the positive 
and negative controls31. In case of outlier, we calculate the robust SSMD as
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where ∼X p, ∼X N , ̃s p, ̃sN  are the median and median absolute deviation (MAD) of the positive and negative control1. 
Noticing the fact that Z’ or SSMD may not hold if the controls are placed on one side in the presence of dramatic 
plate effect, we have also calculated Z’ (sample) and SSMD (sample) using the block DMSO controls and original 
positive controls. We consider Z’ (sample) and SSMD (sample) meaningful only if the plate holds ≥​12 blocks.

It worth noting that some plate layout information was not available for some plates due to being old screens, 
which prevents the computation of Z’ and SSMD. This leads to a total of 119,287 blocks (instead of 127,119 blocks) 
with available Z’ and SSMD values amenable for a fair Z’-mQC comparison. All plate-level and matrix-level QC 
metrics plate breakdown are available in Supplementary Dataset S3.

Synergy metrics.  Bliss synergy (excess over Bliss or delta Bliss) is based on the Bliss independent model20. 
Assuming pairs of compounds that have no mechanistic interaction, the expected response of a drug combination 
(C) is a multiplication of fractional inhibition upon treatment with drug A and B individually, C =​ A +​ B −​ A ×​ B. 
Given a response matrix ×xN N  where the last row/column is the single agent dose response from drug A and B, 
and 100% exposure represents no cell killing and 0% represents full cell killing. The normalized delta-Bliss is 
defined as
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DBNorm ranges from −​1 to 1 where 0, positive values and negative values represent additivity, synergism and 
antagonism, respectively.

To simulate the effect of systematic error and random error, we rewrite the DBNorm as
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We denote ξ the systematic error attributable to each measurement and δ the variation of delta Bliss across the 
database. It is reasonable to assume normal distributions for these two sources of variation: ξ σ= Ν(0, )systematic

2  
and δ σ= Ν ∆(0, )bliss

2  where Ν is the random deviates generator using normal distribution given the mean and 
variance, and σsystematic

2  and σ∆bliss
2  are the variance of systematic error and delta Bliss. Apart from systematic error, 

random error (e.g., dispense error, spotting error, poor cell health, etc.) can also present. The DBNorm distribu-
tion for random matrix responses can be written as:
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where the tilde denotes a random value ranging from 0 to 1.
γ​ is the parameter that minimizes the difference (d) between the observed combination effect and Gaddums 

non-interaction model21,

http://matrix.ncats.nih.gov/mQC
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Values less than 1, greater than 1 and equal to 1 indicate synergy, antagonism and non-interaction, respectively.

Database analysis.  Here we removed ~4.8% of response matrices with mQC confidence lower than 0.6 
during this analysis. We denote = ...B B B B{ , , }1 2 127119  as the remaining 127,119 blocks from our in-house data-
base, and we consider the quality of each response matrix Bi as a function of 4 independent variables: Bi ~ read-
out +​ matrix size +​ cell line +​ compound1 +​ compound 2. To reduce the bias caused by experimental design (e.g., 
some compounds were tested more frequently in combination than others), we compared different readouts or 
matrix size using a pairwise paired test. For example, to compare between CellTiter-Glo (CTG) and Caspase-Glo 
(CG) readouts, we performed the following hypothesis test:

H0: CellTiter-Glo performs equivalent to or worse than Caspase-Glo.
Ha: CellTiter-Glo performs better than Caspase-Glo.

In order to calculate the p-value, we exhaustively searched B  for a set of block pairs, 
= =B B{ : : }readout CTG readout CG

m
, where other experimental settings (in this case, cell, matrix size and compound 

pairs) are identical. We denote N+, N0, N− as the number of paired blocks where mQC of CTG is better, equal to, 
or worse than CG, respectively. The p-value is calculated as the probability of the mQC assessments of =Breadout CTG 
being significantly better than those of =Breadout CG:
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where m is the number of block pairs. The posterior probabilities (p+, p0, p−) for this multinomial distribution 
are 1/3. The p-values were adjusted by Benjamini-Hochberg procedure to control the false discovery rate32. We 
consider the adjusted p-value <​ 0.05 as a significant comparison. The same procedure was applied for matrix size 
comparison.
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