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Mechanistically detailed systems biology modeling of the
HGF/Met pathway in hepatocellular carcinoma
Mohammad Jafarnejad 1, Richard J. Sové1, Ludmila Danilova 2, Adam C. Mirando 1, Yu Zhang 1, Mark Yarchoan3, Phuoc T. Tran4,5,
Niranjan B. Pandey1, Elana J. Fertig1,2,6 and Aleksander S. Popel1,3

Hepatocyte growth factor (HGF) signaling through its receptor Met has been implicated in hepatocellular carcinoma tumorigenesis
and progression. Met interaction with integrins is shown to modulate the downstream signaling to Akt and ERK (extracellular-
regulated kinase). In this study, we developed a mechanistically detailed systems biology model of HGF/Met signaling pathway that
incorporated specific interactions with integrins to investigate the efficacy of integrin-binding peptide, AXT050, as monotherapy
and in combination with other therapeutics targeting this pathway. Here we report that the modeled dynamics of the response to
AXT050 revealed that receptor trafficking is sufficient to explain the effect of Met–integrin interactions on HGF signaling.
Furthermore, the model predicted patient-specific synergy and antagonism of efficacy and potency for combination of AXT050 with
sorafenib, cabozantinib, and rilotumumab. Overall, the model provides a valuable framework for studying the efficacy of drugs
targeting receptor tyrosine kinase interaction with integrins, and identification of synergistic drug combinations for the patients.
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INTRODUCTION
Hepatocyte growth factor (HGF) is an essential growth factor for
liver regeneration,1 embryogenesis,2 and wound healing.3 HGF
signaling through its receptor, Met (also known as c-Met), plays an
important role in tumor invasion, metastasis, and angiogenesis,4

and is also identified as one of the resistance mechanisms to
targeted therapies against both tumor growth and angiogenesis.5

HGF was discovered as a potent factor to induce cell migration,
hence was called “scatter factor.”6 In embryogenesis, HGF/Met
signaling results in epithelial-to-mesenchymal transition (EMT) in
myogenic progenitor cells and migration of those cells over long
distances.2 After partial hepatectomy, HGF activates Met on
hepatocytes, resulting in cell cycle progression, cell migration, and
regeneration.7 Met-ablated keratinocytes in the skin failed to
contribute to wound repair in mice, emphasizing the critical role
of Met-induced migration and proliferation in wound healing.8

The HGF/Met axis pathway represents an attractive therapeutic
target for many cancers including hepatocellular carcinoma (HCC)
because of its putative role in tumorigenesis and invasion. HCC is
the most common primary liver cancer, accounting for 90% of all
primary liver cancers.9 It is the second leading cause of cancer
death around the world, and in the United States, death from HCC
is rising faster than the rate of death from any other cancer. While
early stages of HCC can often be treated with curative therapies or
locoregional therapies, more than half of all patients with HCC
develop advanced stage HCC and are eligible for systemic
therapy.9 Approval of sorafenib (multi-kinase inhibitor of vascular
endothelial growth factor (VEGF), platelet-derived growth factor

(PDGF), and Raf kinases) was the first systemic therapy to
conclusively demonstrate an improvement in overall survival in
patients with advanced HCC.10 More recently, several other agents
have demonstrated clinical activity in HCC and have been
incorporated into and adopted by major HCC guidelines, including
lenvatinib11 (multi-kinase inhibitor of VEGF, fibroblast growth
factor, and PDGF pathways) in frontline and cabozantinib12 (multi-
kinase inhibitor of Met and VEGF pathways), regorafenib13 (multi-
kinase inhibitor of VEGF and angiopoietin receptor pathways), and
ramucirumab14 (anti-VEGF receptor 2 antibody) in the second-line
setting. In contrast to the success of cabozantinib, rilotumumab
(an anti-HGF monoclonal antibody) has not shown efficacy and its
development was halted due to increased mortality.15 Addition-
ally, immunotherapeutic antibodies against programmed cell
death protein 1 (PD-1) (nivolumab and pembrolizumab) were
recently granted accelerated approval in HCC on the basis of
encouraging activity in earlier stage clinical trials.16 Although the
recent wave of drug approvals for HCC is encouraging, patient
outcomes have improved only modestly.17 There still remains a
need for novel treatment strategies in terms of drug combination
and biomarker development to ensure optimal utilization of the
drugs for treatment of HCC.
Based on the crystal structure, HGF forms dimers,18 and binds to

Met to promote dimerization and in turn autophosphorylation of
the receptor at Tyr1234 and Tyr1235 that activates the intrinsic
kinase activity, and phosphorylation at Tyr 1349 and Tyr 1356 that
activates a docking site for adapter proteins.19 Phosphorylated
Met (pMet) directly recruits adapter proteins such as Gab1, Grb2,
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and Src, which transmit the signal to two major downstream
pathways of Akt and ERK (extracellular-regulated kinase).19 Gab1
recruits and activates phosphoinositide 3-kinase (PI3K) that
converts PIP2 (phosphatidylinositol-4, 5-bisphosphate) to PIP3
(phosphatidylinositol-3, 4, 5-triphosphate), which goes on to
phosphorylate Akt.6 Activation of ERK by the Met receptor
proceeds through a cascade of kinases that begins with the
phosphorylation of Grb2 and continues in order through SOS, Ras,
Raf, and MEK (mitogen-activated protein kinase kinase), which
ultimately activates ERK. While there is a chain of positive signals
from Met activation to Akt and ERK phosphorylation, numerous
feedback loops and crosstalk between the Akt and ERK arms of
the pathway have caused drug development against these targets
to be particularly challenging.20

The association of receptor tyrosine kinases (RTKs) with
integrins has been shown to modulate the extent and magnitude
of the RTK signaling.21 Met is shown to associate with various
integrins such as α5β1,22–26 α6β4,27 and α3β1.28 The most studied
of these interactions is the involvement of Met with the β1-
subunit of α5β1 integrin. Bogorad et al.29 demonstrated that
knockdown of αv and β1 integrins, using nanoparticle delivery of
small interfering RNA (siRNA), resulted in reduced HCC progres-
sion and Met phosphorylation in vivo. Knockdown of β1 is shown
to diminish liver regeneration through inhibition of Met and
epidermal growth factor receptor (EGFR) signaling.23 In another
study, Ju and Zhou26 indicated that inhibiting β1 integrin in
combination with Met inhibition is necessary to overcome
gefitinib (EGFR inhibitor) resistance in non-small-cell lung
cancer.26 Association of fibronectin-bound α5β1 with Met is
shown to lead to HGF-independent activation of Met.22 In a
comprehensive study, Jahangiri et al.24 showed a physical
interaction between β1 integrin and Met in vitro in breast cancer
cell lines, and demonstrated that higher numbers of these
complexes are found during invasive resistance in vivo in a
glioblastoma model. β1 Integrin is also shown to co-internalize

with Met and promote sustained ERK signaling using in vitro
models of breast and lung cancer.25 All these studies point to the
crucial role of α5β1 integrin in the regulation of HGF/Met signaling
in cancer progression. Our previous work has shown that the
disruption of integrin signaling using a novel extracellular matrix
(ECM)-derived mimetic peptide drug, AXT050,30 inhibits HGF
signaling through Met.31 AXT050 is also shown to be an
antiangiogenic agent by reducing phosphorylation of VEGR2,
IGFR, and PDGFR,30 to stabilize vessels by disrupting
α5β1 signaling and relocating Tie2 receptors to the junction.32

In this study, we develop a mechanistically detailed systems
biology model of the HGF/Met signaling pathway with detailed
representation of the interactions of α5β1 integrin with Met on
the cell surface that allowed us to explore the mechanism of
action for AXT050 as monotherapy and in combination with other
drugs targeting the HGF pathway (i.e., sorafenib, cabozantinib, and
rilotumumab). We then adapted the calibrated model for
individual patients based on the HCC data in The Cancer Genome
Atlas (TCGA) and studied the efficacy of therapeutic strategies
across the patients.

RESULTS
Validated computational model captures main features of the
HGF/Met pathway and interactions with α5β1 integrin
We constructed a computational model of HGF-mediated activa-
tion of the Met pathway as it refers to the important intracellular
signals of Akt and ERK (Fig. 1). Additional interactions of Met
receptor with surface α5β1 integrin were included to be able to
capture the effect of the ECM-derived mimetic peptide, AXT050,
on the regulation of this pathway (Fig. 1). Because the model was
developed to investigate the effect of the HGF pathway on HCC
cells, the literature was mined rigorously to be able to calibrate the
model by only using datasets from hepatocytes33 or HCC cell
lines.30,34 Additionally, the hepatocyte data from a study that
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Fig. 1 Diagram of the main molecular interactions implemented in the model. The diagram illustrates surface molecules and their interactions
(on the left), as well as the intracellular downstream signaling to ERK (extracellular-regulated kinase) and Akt (on the right). Surface Met can
bind hepatocyte growth factor (HGF) and get activated in the absence of α5β1 integrin that leads to rapid internalization and degradation,
whereas integrin-bound Met has lower internalization/degradation and higher recycling rates. In addition to integrin-binding peptide
(AXT050) that dissociates the Met/α5β1 complex, effect of anti-Met (cabozantinib), anti-HGF (rilotumumab), and Raf inhibitor (sorafenib) drugs
were explored in this study
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quantified the abundance of proteins from an extensive and
calibrated mass spectrometry dataset in isolated mouse primary
liver cells35 (hepatocyte, hepatic stellate cell, hepatic sinusoidal
endothelial cell, Kupffer cell, and cholangiocyte) were used in this
study. The abundance of each protein was constrained from mass
spectrometry data and a normalized time course of phosphoryla-
tion data was used as the input for pattern search algorithm (a
global optimization technique) to fit the model to the totality of
the gathered hepatocyte or HCC-specific data.
The calibrated model was able to capture the dynamics

observed in the experimental data (Fig. 2). HGF treatment resulted
in a rapid increase in pMet followed by its gradual decay (Fig. 2b).
A similar pattern was observed for pAkt. In addition to HGF
stimulation alone, data on pAkt, pMEK, pERK, and single and
double phosphorylated RSK (pRSK and ppRSK, respectively)
were available for HGF treatment along with MEK inhibitor,

3-phosphoinositide-dependent protein kinase-1 (PDK1) inhibitor,
or both (Fig. 2a).33 This resulted in a rich dataset to assist in
resolving the strength of feedback and crosstalk signals
in the pathway. Inhibition of PDK1 resulted in a larger reduction
in the pAkt compared to MEK inhibition in agreement with the
experimental data (Fig. 2a). MEK inhibition resulted in an increase
in the pMEK signal due to multiple and opposing feedback loops
from ERK and RSK; this result was interesting and not obvious.
Inhibition of MEK resulted in lower levels of pERK, pRSK, and
ppRSK (Fig. 2a) that are directly downstream of the pMEK (Fig. 1).
The globally fitted model correctly captured the more substantial
contribution of the RSK to SOS negative feedback strength
compared to the positive feedback from ERK to Raf, which
resulted in the upregulation of pMEK after inhibition of MEK
(Fig. 2). PDK1 inhibition had a minor effect on pMEK. The pMEK
dynamics clearly demonstrated the need for extensive time-
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Fig. 2 Calibration of the model by the available data in the literature. Global optimization using a pattern search algorithm was used to
optimize all the model parameters using a consistent set of published data plotted here. a Primary data used for parameterization were
obtained from the work of D’Alessandro et al.,33 who measured phosphorylation of Met, Akt, MEK (mitogen-activated protein kinase kinase),
ERK (extracellular-regulated kinase) and RSK in vitro in primary mouse hepatocytes at multiple timepoints under treatment with hepatocyte
growth factor (HGF) alone or in combination with various inhibitors (experimental data shown as mean ± SD, n= 3). Monte Carlo resampling
technique was used to resample the experimental data and recalibrate the model to generate the confidence intervals of the model
(modeling data is shown as baseline case and 95% range of the fitted simulations). b Phosphorylated Met (pMet) was also fitted to the
experimental data from D’Alessandro et al.33 (experimental data are shown as mean ± SD, n= 3). c Additionally, phosphorylation of Met, Akt,
and ERK were measured in our laboratory30 in HepG2 (human hepatocellular carcinoma cell line) after treatment with various doses of AXT050
peptide (experimental data are shown as mean ± SD, n= 3)
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course data under a variety of treatments to reliably resolve the
strength of competing feedback mechanisms. Monte Carlo
resampling was used to quantify uncertainty in the model
predictions (Fig. 2, confidence intervals) and calibrated parameters
(Supplementary Fig. 1a). Moreover, local parameter sensitivities
were used to distinguish practical identifiability of model
parameters (Supplementary Fig. 1b). Considering multiple outputs
of the model, all the model parameters appeared practically
identifiable except the baseline production and degradation level
of Met.
Dynamic interactions between Met and α5β1 integrin is a novel

mechanism included in the model, and in addition to the data
discussed so far, the AXT050 treatment data assisted in fitting the
integrin interaction-related parameters. The model accurately
captured the experimental data by Barbhuiya et al.30 based on
treatment of HepG2 cells with HGF and increasing levels of
AXT050 that resulted in progressive inhibition of pMet, pAkt, and
pERK (Fig. 2c). The strength of sorafenib, a Raf inhibitor, was fitted
to a dataset by Melas et al.34 from HCC cell lines, which showed
reductions in pMEK and pERK directly downstream of the Raf, but
not much changes in pAkt after 30min. Largely, the model was
able the capture the complex dynamics of Akt and ERK signaling
pathways downstream of the HGF/Met on hepatocytes.
Our model was validated by comparing the simulation results to

experimental data obtained by this work (Fig. 3) and independent
experimental data from the literature (Supplementary Fig. 2). As a
first step, we performed experiments on HepG2 cells, in which
pAkt and pERK were measured after 120min under mono-
treatment with AXT050, sorafenib, and cabozantinib, as well as
combination treatment using AXT050 with either sorafenib or
cabozantinib (Fig. 3). The model predictions captured the trend of
pAkt inhibition by both monotherapies and combination treat-
ments (Fig. 3a). In contrast, the model predicted stronger
inhibition of pERK by sorafenib compared to cabozantinib (Fig.
3b). This is most likely caused by the lack of dose–response data;
this would allow us to more accurately fit the effect of the drug-
induced inhibition of pERK. The model was calibrated with only
one dose of sorafenib (1000 nM) versus no treatment (Supple-
mentary Fig. 2a) and for cabozantinib we used the reported
binding dynamics without having access to the dose–response
data. Additionally, the effects of combination of inhibitors were
used to test the model validation. The effects of treatment with
individual inhibitors of Met, PDK1, MEK, and PI3K on pAKt and
pERK and with combinations of Met+ PDK1 and MEK+ PI3K
inhibitors were measured in a previous study.33 All the calibrated
model parameters were fixed and then only the strength of the
inhibitors was fitted to the pAKt and pERK data from individual
treatments with inhibitors of Met, PDK1, MEK, and PI3K,33 and
using these inhibition strength values and the fitted model we
predicted the results of combination therapy (Supplementary Fig.
2a). The model captured the effect of treating cells with a
combination of inhibitors of Met and PDK1 showing reduced pAkt
in early and late timepoints. The effect of this combination on
pERK levels was more limited, in agreement with the experimental
data. For the combination of inhibitors of MEK and PI3K, the
model predicted lower pERK consistent with experiments, but the
lowered pAkt predicted by the model was lower than the data
from experiments. A second set of data was used to compare the
effect of ERK inhibition on pMEK and pERK (Fig. 3b). We simulated
different levels of ERK output blockade, and the model could
predict an increase in pMEK and reduction in pERK. Overall, these
comparisons were used to validate the model qualitatively or
semi-quantitatively.

Identification of the important parameters in HGF signaling
Parameter sensitivity analysis was performed to identify the
important parameters affecting the model outputs (Fig. 4). Both

reaction rates and protein abundances (inputs) were varied using
Latin hypercube sampling (LHS), and partial rank correlation
coefficients (PRCCs)36 were calculated and significant PRCCs
reported for pAkt and pERK (outputs) at 120min that represents
steady state (Fig. 4a). The top candidates positively affecting
steady-state levels of pAkt were abundance of Akt, abundance of
PI3K, and abundance of GAB1, while PI3K inactivation, pAkt
deactivation, and Gab1 pMet dissociation were the top para-
meters negatively affecting the steady-state levels of pAkt
(Fig. 4a). Among notable feedback and crosstalk parameters are
PI3K activation by pERK and pERK dephosphorylation that
positively and negatively modulate pAkt, respectively (Fig. 4a).
For steady-state levels of pERK, the top ranked positive regulators
were abundance of ERK, MEK, and the phosphorylation of MEK by
PDK1, whereas the most important negative regulators were ERK
dephosphorylation, MEK dephosphorylation, and Ras deactivation
(Fig. 4a). Based on pERK sensitivity analysis data, activation of Akt
pathway strongly and negatively modulates pERK. This analysis
can be performed for any other output of interest within the
scope of the model. Effects of parameter variation on early
(15 min) and late (120 min) pAkt, pERK, internalized pMet (pMeti),
surface pMet (pMet), and root mean square error of the fit were
explored and reported using heatmaps (Fig. 4b). The outputs of
pMet and pMeti were only affected by parameters directly
modulating Met or α5β1 integrin, evident by the cluster of
parameters in the bottom middle section of the heatmap (Fig. 4b).
The interrelated top section of the heatmap demonstrates the
crosstalk between the Akt and ERK sides of the pathway with the
parameters on one side affecting the outputs on the other side
and vice versa (Fig. 4b).

Targeting α5β1 integrin with ECM-derived mimetic peptide
AXT050 is a rational strategy
The model predicts that HGF stimulation primarily signals through
internalized receptors. The contribution of the pMeti was 73% of
total pMet in a cell that resulted in about a quarter of the signal
through surface pMet (Fig. 5a, first versus second row—blue lines).
To investigate the role of α5β1 integrin, in Met signaling, we
compared the baseline case that included α5β1 (Fig. 5a—blue
lines) with a scenario in which the same number of Met receptors
are present without any α5β1 interaction (Fig. 5a—red lines). It is
important to note that the activation rate of Met upon binding to
HGF is assumed to be independent of the α5β1 binding, but the
rates of internalization, degradation, and recycling of the receptor
were assumed to be dependent on α5β1 binding. The model
predicts that regulation of Met trafficking through α5β1 binding is
an important regulator of downstream Akt and ERK signaling (Fig.
5a, b). In particular, Akt phosphorylation, compared to ERK
phosphorylation, appeared to be more sensitive to the phosphor-
ylation of Met, which is evident by the dramatic reduction in pAkt
in the case without α5β1 (Fig. 5b). As expected, stimulation with
higher concentrations of HGF increased both the surface pMet
and the internalized pMet, as well as pAkt and pERK (Fig. 5c).
Furthermore, the model reproduces the experimental data that
peptide binding to α5β1 integrin resulted in reduced phosphor-
ylation of Met, Akt, and ERK (Figs. 2c and 5d). These findings
suggest that the ECM-derived mimetic peptide, AXT050, is a
logical strategy for targeted therapy.

The model predicts synergistic efficacy for combination of AXT050
with sorafenib, cabozantinib, and rilotumumab but not synergistic
potency
We next used the calibrated and validated model to investigate
the effect of the combination of AXT050 with other therapeutics
targeting HGF/Met signaling pathway to predict synergy. The
primary outputs of pAkt and pERK were calculated at early
(15 min) and late (120 min) timepoints. The later timepoint is a
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representative measure of the model output at steady state.
Combinations of the novel therapeutic peptide, AXT050, with
three drugs: sorafenib—a Raf inhibitor (Fig. 6a), cabozantinib—a
Met inhibitor (Fig. 6b), and rilotumumab—an HGF inhibitor (Fig.
6c) were considered. Dose–response curves illustrated how
sorafenib treatment alone reduced pERK in both early and late
timepoints with almost complete blockade of pERK at steady state
(Fig. 6a), which follows the trends in the calibration dataset used
at 30min. Sorafenib inhibited pAkt at the early timepoint, the
steady-state pAkt only showed very slight decrease. Quantification
of the synergy using multidimensional synergy of combinations
(MuSyC)37 technique for AXT050 and sorafenib at steady state
suggest an inconsequential synergistic efficacy (βobs= 0.001 and
0.035 for pAkt and pERK, respectively), as well as a negligible
antagonistic potency (log(α2)=−0.02 and −0.05 for pAkt and
pERK, respectively). Cabozantinib monotherapy inhibited both
pAkt and pERK at the early and late timepoints with a more
efficient inhibition of pAkt. MuSyC suggests an unimportant
synergistic efficacy (βobs= 0.005 and 0.001 for pAkt and pERK,
respectively), but antagonistic potency (log(α2)=−0.68 and −0.35

for pAkt and pERK, respectively) for AXT050 and cabozantinib at
steady state. The effect of rilotumumab was implemented by
reducing the HGF concentration based on depletion of HGF
through binding to rilotumumab based on the binding character-
istics of this antibody. Similar to the previous cases, quantification
of the synergy by MuSyC for AXT050 and rilotumumab at steady
state revealed an inconsequential synergistic efficacy (βobs= 0.013
and 0.007 for pAkt and pERK, respectively) and antagonistic
potency (log(α2)=−0.31 and −0.10 for pAkt and pERK, respec-
tively). Monotherapy with rilotumumab had similar effect to that
of cabozantinib with a smaller effect on the levels of pERK at the
early timepoint. The combination of AXT050 and rilotumumab
showed a synergy at the early timepoint for pAkt and displayed
additive behavior for the rest of the outputs.

A patient-specific model identifies patients who could benefit
from monotherapy and synergistic drug combinations
We then employed the model to investigate the utility of
monotherapy and combination treatments for individual patients
based on the TCGA data. Messenger RNA (mRNA) level data on the
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Fig. 3 Experimental data and comparison with model. Phosphorylation of Akt (a) and ERK (extracellular-regulated kinase) (b) and were
measured for hepatocyte growth factor (HGF) treatment along with AXT050, sorafenib and cabozantinib or AXT050+ sorafenib and AXT05+
cabozantinib. Cropped images of the western blots and the experimental data (blue) were normalized to HGF control for each gel and is
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0.05. Bottom row compares the significant changes between model and experiments
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proteins in the HGF/Met pathway were extracted from the
database and for the tumor and healthy tissue samples for each
patient (Fig. 7a). Because the majority of the calibration datasets
were from healthy hepatocytes, we assume that the model
represents the healthy liver cells of the patient. Hence, individual
simulated patients were created by keeping the reaction rates
constant while scaling the abundance of proteins based on the
fold change in the mRNA of each protein in the tumor compared
to the same patient’s healthy tissue. Simulations of monotherapy

showed that all the drugs studied here except sorafenib were able
to completely reduce the levels of pAkt at steady state (Fig. 7b). In
some cases, the model showed that sorafenib increases the pAkt
at steady state, a result that is also observed experimentally.38,39

Sorafenib and cabozantinib almost completely depleted the pERK
signal, while AXT050 and rilotumumab showed inhibition in a
range of 8–82% and 18–84%, respectively, across the patients.
We then investigated the effect of combination therapy on the

levels of pAkt and pERK response in individual patients simulated
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parameters that affect the Met receptor dynamics and also crosstalk between the Akt and ERK arms of the pathway. Magnitude of partial rank
correlation coefficients (PRCCs) are shown for output parameters and specified at two time points of 15n and 120min (b). All PRCCs are based
on the number of molecules per cell as output and only the significant (p < 0.01) PRCCs have non-zero values in the heatmap (b). Itg in the list
of species and parameter names refers to α5β1 integrin
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(Fig. 8). Synergy in efficacy (βobs > 0) as well as potency (log(α2) >
0) were quantified using MuSyC technique that was introduced by
Meyer et al.37 and is described in the Methods. For pAkt as output,
combinations of AXT050 with each of the other three drugs
(sorafenib, cabozantinib, and rilotumumab) showed negligible
synergistic efficacy, but antagonistic potency. In particular,
combination of AXT050 with cabozantinib and rilotumumab were
highly antagonistic most likely due to the fact that they all target
the activity at the receptor level. Similarly, for pERK as the output,
all three combinations showed modest synergistic efficacy (<10%
additional efficacy). Combination of AXT050 and sorafenib showed
a minor synergistic potency in ~20% of the patients, whereas its
combination with cabozantionib and rilutumumab was mostly
antagonistic for the TCGA patients studied here. To compare the
similarity of HCC cell lines to the TCGA patients, we correlated
mRNA levels of 373 TCGA HCC samples and three liver cancer cell

lines from Broad Institute Cancer Cell Line Encyclopedia (HuH7,
Hep3B217, and HepG2) and created a heatmap of Spearman’s
correlation coefficients (Supplementary Fig. 5). The cell lines
showed a similar expression profile to that of primary tumors,
although a comprehensive study is necessary to compare the
similarity of these cell lines to HCC patients versus other tumor
types.

DISCUSSION
The HGF/Met pathway is often proposed as a mechanism of
resistance to other kinase inhibitors such as inhibitors of VEGF and
EGF pathways. We developed a model of HGF/Met signaling
pathways connected to important intracellular signals of growth
and survival (i.e., Akt and ERK), which included many identified
feedback loops and crosstalk between these two critical cellular
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Fig. 5 Integrin is important in hepatocyte growth factor (HGF)/Met signaling and AXT050 efficiently blocks the Met/α5β1 interaction (a). The
model predicts that the response without α5β1 contribution meaning the condition that HGF (40 ng/ml) only signaled through Met and not
Met-α5β1 (red) is considerably lower than when Met is allowed to interact with α5β1 (blue). The quantitation of the total number of
phosphorylated proteins in a cell showed phosphorylated AKT (pAkt) levels to be more dependent on Met/α5β1 interaction than pERK and
pMet levels (b). Most of the pMet signal (73%) was from pMeti signaling form endosomes compared to surface pMet (second row compared to
first row). Increase in HGF concentration boosted steady-state pAkt and pERK response, but the transient phosphorylation peaks at earlier
timepoints were higher in magnitude (c). AXT050 treatment efficiently blocked pAkt with pERK being less affected by the treatment (d)
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Fig. 6 Combination of AXT050 peptide with other drugs targeting the hepatocyte growth factor (HGF) pathway. Combination of AXT050
peptide with sorafenib (a), cabozantinib (b), and rilotumumab (c) along with their respective isobolograms are illustrated here. In the first
column, arrows show the direction of increase in the inhibitor concentration, which was varied in the range of 1–1000 nM for sorafenib,
1–1000 nM for cabozantinib, and 0.01–10 nM for rilotumumab. Phosphorylation of Akt (blue) and ERK (extracellular-regulated kinase) (green)
are shown for simulations of different levels of each inhibitor (first column). Dose-dependent changes in Akt and ERK phosphorylation at early
timepoint of 15 min (second column) and late timepoint of 120min (third column) illustrates the inhibition potential of each simulation drug
as monotherapy. The combination of AXT050 peptide with each of the drugs was simulated over the therapeutic range, half-maximal
inhibitory concentrations (IC50s) were calculated, and isobolograms were produced for 15min (fourth column) and 120min (fifth column) for
phosphorylated Akt and ERK, to be able to visually explore synergistic combinations. All simulations are under 40 ng/ml HGF treatment
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regulators. The model included a detailed representation of the
Met interaction with α5β1 integrin to be able to investigate the
effect of the integrin-targeting peptide, AXT050. This model was
then calibrated using data from multiple sources previously
published in the literature for hepatocytes and HCC cell
lines30,33,34 and was validated for use in HCC. We identified the
important model parameters affecting the phosphorylation of Akt
and ERK using parameter sensitivity analysis, and showed the
dynamics of AXT050 inhibition of HGF/Met signaling. Furthermore,
effect of monotherapy as well as combination therapy was
investigated using the calibrated model. The model was then
extended to simulate individual patients based on the data
gathered from TCGA to investigate the efficacy of monotherapy
and combination therapy of a number of drugs explored in
this study.
Association of Met and α5β1 integrin has been shown to be

important in regulation of growth and survival pathways.21–26,30

This model of the HGF/Met signaling pathway was able to capture
the contribution of the Met-α5β1 association, and allowed us to
investigate the effect of the α5β1-binding peptide, AXT050, on
pAkt and pERK. Our previous work has shown that in vitro
treatment of HepG2 cells with AXT050 resulted in inhibition of
pMet, pAkt, and pERK,30 as well as other RTKs such as VEGR2, IGFR,
and PDGFR.30 The simulations in this study confirmed the
experimental results and showed that efficient inhibition of the
pAkt an pERK at steady state was primarily due to dissociation of

Met from α5β1, which in turn resulted in a shift in response to
inefficient phosphorylation of Met alone without integrin associa-
tion. The model predicted that regulation of receptor trafficking
(internalization, degradation, and recycling) rates through α5β1
association is sufficient to explain the experimentally observed
data. Furthermore, the prediction of the model on dominant HGF/
Met signaling through internalized receptors is similar to the
experimental data acquired for other receptors such as VEGFR2.40

AXT050 has also been shown to inhibit tumor growth in vivo in a
Myc-induced syngeneic mouse model of HCC and also in a mouse
HepG2 tumor xenograft model.30 Although AXT050 could reduce
the growth of the HCC cells in the tumor, the primary effect of this
drug is thought to be its antiangiogenic capabilities that mitigate
tumor growth.30 In the future studies, recalibration of this model
for endothelial cells and integration with previously developed
models of the VEGF pathway31,41–43 would allow us to better
dissect the contribution of the antiangiogenic effect versus the
direct effect of AXT050 on HCC cells in HCC tumors.
Sorafenib has been the standard of care for unresectable HCC

since its approval in 2007.10 In recent years, approvals of the new
TKIs (lenvatinib as the first line and regorafenib and cabozantinib
as the second line) and immune checkpoint blocking antibodies
(nivolumab and pembrolizumab, both blocking PD-1) have
energized the field to seek novel targets and drug combinations
for HCC treatment. Our model showed that AXT050 was
synergistic in combination with cabozantinib and rilotumumab,

Fig. 7 Patient-specific response to monotherapy treatment (a). Variations in model proteins were extracted from a cohort of hepatocellular
carcinoma (HCC) patients available through The Cancer Genome Atlas (TCGA) (top panel: log2 of fold change in RNA level, n= 50) (b). Percent
inhibition of the levels of phosphorylated Akt (pAkt) and pERK was quantified for every patient under each of the four treatments studied
here. Each column shows the data for a patient from TCGA, and they are sorted based on the effect of AXT050 on pERK and are aligned for
both a and b
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both of which target interaction of HGF and Met. However, we
should also note a possible limitation of the model in that the sole
representation of HGF/Met signaling pathway in the HCC cells may
not be sufficient to capture the multimodal effect of these drugs
in vivo. For example, both AXT050 and cabozantinib exhibit an
antiangiogenic effects in addition to Met inhibition, which is not
considered in this version of the model. One of the limitations of
this study was the lack of dose–response data on pMet for
calibration of the effect of rilotumumab. The binding affinity of the
antibody was used to represent this anti-HGF antibody. Rilotumu-
mab antibody studied here was a sample antibody and is currently
less significant clinically, as further development of this antibody
was halted due to increased mortality.15 However, other
antibodies targeting HGF are in development, such as YYB101.44

In addition to antibodies directly targeting HGF, there are multiple
antibodies targeting Met activation, notably MM-131 from
Merrimack, which is a bispecific anti-Met/EpCAM that inhibits
Met activation through HGF-dependent and -independent
paths.45

The HGF/Met signaling pathway is often thought of as one of
the primary mechanisms of resistance to EGFR inhibitors and
antiangiogenic therapies.46 EGFR is one of the most active growth
factors that maintains tumor growth and survival in carcinomas.
Blockade of EGFR often leads to secondary activating mutations in
EGF-family receptors or overexpression of Met.47 High levels of
HGF are correlated with poor response to EGFR inhibitors in colon
cancer as well as in non-small-cell lung cancer.48 This effect is
more pronounced in HCC, as the healthy liver utilizes HGF/Met
signaling for regeneration, thus having a higher basal

concentration of HGF in the liver and the tumor microenviron-
ment in HCC.6 Inhibition of Met in combination with cetuximab
(monoclonal antibody that inhibits EGFR) has been shown to
overcome the EGFR resistance, although many of these patients
exhibit resistance from other sources.49 Expansion of this model to
include other RTK signaling pathways such as EGFR, VEGFR, and
fibroblast growth factor receptor would allow us to investigate
mechanisms of resistance to monotherapy as well as assist us in
identifying efficacious combinations based on individual HCC
patient data.50 A model of EGFR-Met crosstalk was implemented
by Shin et al.50 to investigate the synergy in anti-EGFR and anti-
Met therapies. Furthermore, Hass et al.51 developed a multi-
pathway model of tyrosine kinase signaling of EGFR, HER2, ErbB3,
Met, and IGF1R down to ERK and Akt and characterized the
variability of ligand-induced response based on the RNA expres-
sion levels of the ligands across TCGA patients. Several models of
HGF/Met pathway have been published before.33,52–54 Meyer
et al.52 developed a model of HGF-mediated Akt activation and
demonstrated that heterogeneity of the response between cells
could only be explained by variability in concentration of various
proteins. From another direction, Boolean models of HGF pathway
along other tyrosine kinase pathways and tumor growth factor-β
(TGFβ) have been used to investigate the EMT in HCC.53 Other
continuum models of HGF and TGFβ have been developed to
study the crosstalk between cancer cells and cancer-associated
fibroblasts in tumor microenvironment.54 This study builds upon
the previous models by developing a dynamic model of HGF/Met
signaling to Akt and ERK in HCC cells and patient-specific tumors
and explores the synergy of a novel α5β1 integrin-binding

Fig. 8 Patient-specific response to combination treatment. Assuming phosphorylation of Akt or ERK (extracellular-regulated kinase) as
outputs, the synergistic potency (log(α2) > 0) and synergistic efficacy (βobs > 0) were calculated to measure the synergy between the peptide
(AXT050) and three drugs against the HGF pathway (sorafenib, cabozantinib, and rilotumumab). Log(α2) > 0 shows synergistic potency and
βobs > 0 shows synergistic efficacy. Each column shows the data for a patient from TCGA ordered the same as patients in Fig. 7
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therapeutic (AXT050) with other drugs targeting this important
pathway.
To implement the effect of particular drugs on the outputs of

the pathway, we used the reported binding rates for interaction of
the drug with its target. Our model predicted half-maximal
inhibitory concentration (IC50) of the drugs with respect to pAkt
and pERK. The model predicted sorafenib IC50 to be ~200 nM for
pERK, which was lower than the previously published in vitro data
showing sorafenib IC50 to be 3.2–10 μM for pERK in a variety of
cancer cell lines.55 The higher in vitro IC50s are associated with the
serum content in the experimental protocols.55 The increase in
steady-state pAkt with sorafenib treatment was unexpected at
first, but a complete literature search revealed that similar
responses had been measured experimentally before.39 In the
clinic, HCC patients receive a 400 mg dose of sorafenib every 12 h,
leading to an average plasma concentration of 6.2 μg/ml,56 which
is well above the concentration of 40 ng/ml often used in
experiments and in this study.
To build confidence in our model, we followed the standard

practices of system pharmacology modeling57,58 and the model
credibility framework suggested by the Committee on Credible
Practice of Modeling and Simulation in Healthcare59 in Inter-
agency Modeling and Analysis Groupestablished by National
Institutes of Health (NIH) and other federal agencies. The context
of the model was defined as HGF/Met signaling in advanced HCC,
and we elected to only use the relevant data from hepatocytes or
HCC cell lines. Although the goal was to represent human HCC, we
had no choice but to use the time-course immunoblots33 and
proteomic data35 from mouse primary hepatocytes. Indeed, a
recent proteomic study showed that 92% of proteins in adipose-
derived mesenchymal stem cells of mouse and human are
consistent.60 We also added minimal details to the interactions
of Met and α5β1 to be able to study the effect of AXT050 that
targets and breaks the interaction of α5β1 with Met. HGF-
independent activation of Met from binding of α5β1 to
fibronectin22 was neglected in this model due to lack of sufficient
experimental data, but could be implemented in the future.
Another limitation of the model was the use of mRNA to scale the
calibrated model for individual patients, which was due to lack of
data on the protein levels for the proteins of interest in TCGA. A
similar assumption was made by Shin et al.50 to model RTK
signaling in breast cancer patients. Acceptable and statistically
significant correlations have been shown between mRNA and
protein levels for some of the proteins of the pathway that had
both measurements available on TCGA by this study (Supple-
mentary Fig. 4) and previous works.50 A simplifying assumption
made was that the baseline model represents healthy tissue (due
to the fact that most of the calibration data came from healthy
hepatocytes) for all the healthy patients, with the understanding
that there are interindividual variations that are not captured by
the model. In the future, addition of dose–response curves for the
effect of drugs on the outputs of interest could further improve
prediction capabilities of the model. Implementation of the
likelihood methods could be beneficial in the future iterations of
the model to improve efficiency of the confidence interval
calculations.61,62 Additionally, we assumed that the tumor is
homogenous, which is often not the case for tumors, especially for
HCC tumors in advanced stages.63 Agent-based models could be
combined with this model to investigate the effect of spatial
distribution of cells and growth factors on the tumor response.64–66

We used a Git server on the local network for version control and
local sharing. The final working model in Systems Biology Markup
Language (SBML) format is provided in the supplemental materials
to facilitate reusability of the model.
In summary, we developed a model of HGF/Met signaling

pathway to Akt and ERK with details of interactions with α5β1
integrin, which was calibrated and validated with a consistent set
of experimental data from hepatocytes and human HCC cell lines

that allowed us to better understand the mechanism of action of
AXT050 and other HGF pathway-targeting therapeutics. The
simulations provided us with insight on the mechanism of action
of AXT050 and allowed us to study the differences in efficacy of
monotherapy and combination therapy for individual patients
based on TCGA data. With the expected increase in the availability
of patient-specific genomic data in the future, an expanded
version of this model that includes multiple parallel pathways in
cancer cells and tumor stromal cells could benefit individual
patients through identification of combination therapies that have
higher probability of exhibiting efficacy for the individual patient.

METHODS
Computational model structure
Our model included interactions of HGF with surface receptor Met and
α5β1 integrin, as well as the downstream intracellular signaling pathways
that lead to phosphorylation of Akt and ERK, the two major signals crucial
for survival and proliferation (Fig. 1). Synthesis, internalization, and
degradation were incorporated for the surface molecules (Met and α5β1
integrin). The integrin-binding therapeutic peptide (AXT050) was assumed
to bind α5β1 integrin and dissociate it from Met, thereby depleting α5β1
integrin heterodimer. The intracellular molecules are assumed to have
constant total protein numbers and to switch between the active form
(often phosphorylation modification) and the inactive form. The details of
the intracellular pathway are based on a previous model of HGF signaling
in hepatocytes by D’Alessandro et al.,33 which utilized logic approaches to
ensure optimal inclusion of feedback loops among all identified biological
mechanisms. In contrast to the previous model that treated all the species
concentrations or copy numbers normalized between 0 and 1, we
completely re-parameterized the model to include the total copy number
of each protein measured through an extensive proteomic study in mouse
primary hepatocytes.35 Sorafenib inhibition strength was fitted directly to
experimental data. Cabozantinib was assumed to bind Met based on its
relevant binding affinity and using first-order reaction kinetics. Rilotumu-
mab was modeled by reducing the extracellular HGF concentration based
on the assumption of having the drug in excess. The rest of the inhibitors
used in the model calibration were modeled based on previous work by
reducing the signal going out of the node based on an inhibition
parameter.33 The model was developed using the SimBiology platform in
MATLAB R2018b (MathWorks) and all the simulations and sensitivity
analyses were done in MATLAB. This model included 52 species and 69
parameters including all the inhibitors modeled here (Supplementary
Tables 1–4). The model used for this study is provided in the
Supplementary material using SBML format (Supplementary File 1).

Model calibration and validation
The pattern search algorithm in MATLAB’s global optimization toolbox was
used to simultaneously fit all the model parameters.31,41–43 An extensive
time-course immunoblot data provided in ref. 33 were used as the primary
data for calibration (Fig. 2a). Phosphorylation of Met, Akt, MEK, ERK, and
RSK were measured in primary mouse hepatocytes treated with HGF alone
or in combination with MEK inhibitor, PDK1 inhibitor, or both. PDK1 is a
master kinase that primarily regulates Akt activation67 and contributes to
MEK activation.68 These two inhibitors were chosen in the original
experiments to allow dissection of the relative importance of different
feedback loops and crosstalk in the HGF/Met pathway. Furthermore, we
used a second set of previously published data from our laboratory that
measured the effect of treatment with various concentrations of AXT050
on phosphorylation of Met, Akt, and ERK in HepG2 (human HCC cell line)
(Fig. 2b).30 Additionally, we utilized the data from Melas et al.,34 who
reported the level of phosphorylation of Akt, MEK, and ERK as average
response from three HCC cell lines (Huh7, Hep3b, and HepG2) at 30min
after treatment compared to pre-treatment, to fit the strength of inhibition
of Raf by sorafenib (Supplementary Fig. 2a). The internalized proportion of
Met was also fitted to another set of data that measured 50%
internalization at 15min69 (Supplementary Fig. 2b). A qualitative validation
was performed based on the additional data from this study and also
combination treatments reported in ref. 33 Phosphorylation of Akt and ERK
after mono-treatment with inhibitors of Met, PDK1, MEK, and PI3K as well
as the combination of Met+ PDK1 and MEK+ PI3K inhibitors have been
reported. While fixing the model parameters that were calibrated with the

M. Jafarnejad et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2019)    29 



time-course data (Fig. 2), pAkt and pERK data from mono-treatment with
individual inhibitors were used to fit the strength of these inhibitors, and
the combination simulations were compared to the combination data
(Supplementary Fig. 3a). Moreover, phosphorylation of MEK and ERK was
compared to the data on ERK inhibition from the same study
(Supplementary Fig. 3b).

Uncertainty quantification and identifiability
To quantify the uncertainty in our parameter estimation, we performed a
Monte Carlo resampling from a log-normal distribution similar to the
methods used by others.70,71 Briefly, we used parametric resampling
assuming a log-normal distribution about the mean of each time point to
obtain 201 resampled datasets; we assumed a 10% measurement error to
obtain an estimate of the population standard deviation as in previous
studies.61 Each dataset was used to re-estimate the model parameters to
determine the distribution of the parameter estimates. Model fitting was
done using the pattern search from global optimization toolbox in
MATLAB with the parameters estimated from the original dataset as the
initial fit; the original fit plus-or-minus one order of magnitude was used as
bounds for the optimization. This procedure was also used to determine
the effect of the parameter uncertainty on the model results by obtaining a
distribution of simulations. The model contains 56 free parameters that
were globally fitted. For visualization, the 95% confidence interval of the
distribution of solutions obtained by Monte Carlo resampling was
calculated and shown in the figures as a shaded region surrounding the
solution obtained with the original parameterization. Finally, local
parameter sensitivities to important model outputs (pMet, pAkt, pMEK,
pERK, pRSK, and ppRSK) were calculated for each of the new fits to obtain a
distribution of sensitivities. In this study, we defined a parameter to be
practically identifiable if 95% of its distribution of sensitivities to at least
one of the outputs maintains a consistent sign as done in previous
studies.70–73

Parameter sensitivity analysis
To better understand the effect of model parameters on the outputs of the
model and identification of the impactful parameters, a standard
parameter sensitivity analysis was performed. LHS was used to simulta-
neously vary all model parameters uniformly within ±50% range to
investigate the effect of model inputs on phosphorylation of Akt and ERK.
Five thousand cases were simulated and PRCCs as well as the p values for
each correlation were calculated based on the previously published
method.36 In the bar graphs, only parameters with significant (p < 0.01)
PRCCs are shown (Fig. 4a), and in the heatmaps the insignificant (p ≥ 0.01)
PRCCs are replaced with zero (Fig. 4b).

Data extraction from TCGA database
RNA sequencing level 3 RSEM normalized data for HCC74 from TCGA were
accessed from the Broad Institute TCGA GDAC Firehose (https://ezid.cdlib.
org/id/doi:10.7908/C11G0KM9) and log 2 transformed. We used 50 match
tumor-normal pair to calculate pairwise fold change in expression.

Quantification of synergy
Synergy of combination therapy was assessed using MuSyC technique for
the baseline case and individual patients.37 Briefly, a surface was fitted to
the two-dimensional dose space of the two drugs of interest and two
parameters representing synergistic potency (log(α2) > 0) and synergistic
efficacy (βobs > 0) were quantified for each case (Fig. 8). βobs works similar
to Emax and α2 is analogous to half-maximal effective concentration (EC50)
in traditional single drug pharmacology. Values of βobs shows fold change
in efficacy due to the added combination, while log(α2) that is on base
10 shows order-of-magnitude change in potency. In this study, we have
presented the data as combination of other three drugs with AXT050.

Cell culture and peptide handling
The HCC line HepG2 (American Type Culture Collection (ATCC) Manassas,
VA, USA) was maintained in Dulbecco’s modified Eagle’s media (DMEM)
with 4.5 g/l glucose (Corning, Corning, NY), 10% fetal bovine serum
(Corning), and 100 U/ml penicillin and streptomycin (Gibco). These cells
were authenticated using the GenePrint 10 kit (Promega) to obtain a short
tandem repeat (STR) profile, which was then compared to the ATCC STR
database. Mycoplasma contamination was not tested. AXT050 was

produced by solid-phase synthesis and purchased from New England
Peptide. High-performance liquid chromatography and mass spectrometry
analysis indicated a purity >90%. For working solutions, the lyophilized
peptide was dissolved in 100% DMSO to a concentration of 40mM and
stored at −20 °C until used. For cell-based experiments, aliquots were
diluted to 2mM working stocks in water. Excess dimethyl sulfoxide (DMSO)
was added to each culture to normalize the final DMSO concentration to
0.06% in all samples.

Western blots
HepG2 cells were seeded into 6-well plates coated with 10 μg/ml
fibronectin (Sigma) and cultured for 48 h in full serum DMEM media at
37 °C and 5% CO2. The cells were then serum starved overnight in serum-
free DMEM media. The next day, cultures were treated with 25 μM AXT050
or DMSO vehicle for 90min, followed by treatment with either 200 nM
sorafenib tosylate (ChemScene, Monmouth Junction, NJ) or 100 nM
cabozantinib malate (APExBIO, Houston, TX) or DMSO vehicle. Cells were
then immediately stimulated with 50 ng/ml HGF for 120min. Cells were
then transferred to ice, washed twice with cold Dulbecco’s phosphate-
buffered saline, and lysed in 180 μl SDS Loading Dye (Cell Signaling
Technologies, Danvers, MA). Lysates were then sonicated, boiled, and
stored at −20 °C until needed. Lysates were resolved by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis using 4–12% gradient NuPAGE
gel in MOPS buffer (Life Technologies) and transferred to nitrocellulose
membranes for Western blotting. Membranes were blocked in 5% bovine
serum albumin (BSA) (Sigma-Aldrich, St. Louis, MO) and 5% milk
(LabScientific Inc., Highlands, NJ) and incubated overnight with the
following primary antibodies in TBST (Tris-buffered saline, 0.1% Tween-20)
containing 5% BSA and 0.03% sodium azide: Cell Signaling—pAkt (S473)
(Cat#: 4058), pERK1/2 (T202/Y204)) (Cat#: 4370), glyceraldehyde 3-
phosphate dehydrogenase (Cat#: 91766); Abcam—α-tubulin (Cat#:
ab4074). Bands were detected by chemiluminescence using horse radish
peroxidase-conjugated secondary goat anti-rabbit and sheep anti-mouse
antibodies (Cell Signaling) diluted in 5% milk in TBST with either the
ChemiDoc (Bio-Rad) and the associated Image Lab software or KwikQuant
(Kindle Biosciences) imaging systems. Densitometry analysis was per-
formed using ImageJ software (NIH). Western blot experiments were
repeated four times using different cell passages or stocks for each
experiment. One sample in the AXT050 and sorafenib co-treatment group
was excluded owing to an experimental artifact that prevented accurate
quantification. For analysis, replicate blots were each derived from the
same experiment and processed in parallel.

Statistical analysis
All western blot experiments were completed at least four separate times.
The means for the normalized, relative phosphorylation from each
treatment group were compared to each other by analysis of variance
followed by Tukey’s multiple comparisons test using GraphPad Prism®
software v.5.0. Non-parametric Kruskal–Wallis test with Bonferroni multi-
comparison correction was used to compare the groups in modeling
results and the analysis was performed in MATLAB R2018b (MathWorks). A
p value <0.05 was considered significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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