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Abstract: We aimed to investigate the effect of a patient’s body mass index (BMI) on radiation dose
and image quality in prospectively ECG-triggered coronary CT angiography (CCTA) performed on a
256-slice multi-detector CT scanner. In total, 87 consecutive patients receiving CCTA examinations
acquired with tube current modulation (TCM) and iterative reconstruction (IR) were enrolled in this
study. The dose report recorded from the CT scanner console was used to derive the effective dose
for patients. Subjective image quality scoring and objective noise measurements were conducted to
quantify the impact of BMI on the image quality of CCTA. Because of the TCM technique, we expected
tube current and radiation dose to increase as BMI increased. However, using TCM did not always
guarantee sufficient radiation exposure to achieve consistent image quality for overweight or obese
patients since the maximum X-ray tube output in milliamperes and kilovoltage peak was reached.
The impact of photon starvation noise on image quality was not significant until BMI ≥ 27 kg/m2;
this result could be due to IR’s noise reduction capability. Our results also suggest that using TCM
with a noise index of 25 HU can reduce radiation dose without compromising image quality compared
to images obtained based on the manufacturer’s default settings.

Keywords: CCTA; BMI; radiation dose; image quality

1. Introduction

Obesity is a global epidemic, and its prevalence continues to increase in many countries.
According to the World Health Organization (WHO) criteria [1], a body mass index (BMI) of
18.5–24.9 kg/m2 is considered normal weight, while a BMI of 25–29.9 kg/m2 is considered
overweight or pre-obese. A BMI ≥ 30 kg/m2 is defined as obese, and the obese category
can be sub-divided into obese class I (30–34.9 kg/m2), obese class II (35–39.9 kg/m2),
and obese class III (≥40 kg/m2). Obesity is a significant risk factor for several subtypes
of cardiovascular diseases, such as coronary heart disease, stroke, and heart failure [2–4].
Coronary CT angiography (CCTA) is widely recognized as an important imaging tool in
the diagnosis of coronary artery disease. However, high photon attenuation and scatter
both affect the image quality of CCTA scans of obese patients. The tube current modulation
(TCM) system automatically adapts X-ray output according to a patient’s shape, size,
and attenuation to achieve a specified image quality with the goal of providing adequate
image quality at the lowest possible radiation dose [5–7]. In addition to TCM, iterative
reconstruction (IR) also has the ability to reduce photon starvation noise resulting from
patient attenuation. IR methods are developed to reduce image noise by performing a
recursive search for the best estimate to provide an image quality at higher noise levels
similar to images acquired by conventional filtered back projection (FBP) [8–11]. Equivalent
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quality between images with a dose reduction of 44–54% and FBP images has been reported
with the application of IR in CCTA [12–14]. Because TCM and IR methods have good dose
efficiency to achieve desired image quality, they may prove beneficial to improving the
diagnostic accuracy of CCTA by reducing the photon starvation noise that is due to patient
attenuation. The aim of this study was to investigate the image quality and radiation dose
of prospectively ECG-triggered CCTA acquired with TCM and IR performed on a 256-slice
multi-detector CT (MDCT) scanner for patients with BMIs < 25 and ≥25 kg/m2.

2. Materials and Methods
2.1. Study Population

A total of 87 consecutive CCTA examinations for adult patients (26 women and
61 men; age range: 31–82 years; heart rate (HR) range: 45–106 bpm; and BMI range:
18.21–38.19 kg/m2) undergoing prospectively ECG-triggered axial scans were investigated
in this study. Exclusion criteria for CCTA included known iodine allergy, impaired renal
function, and pregnancy. Patients were referred because of chest pain (16%), dyspnea (7%),
positive stress test (10%), elevated cardiovascular risk (3%), coronary stent (3%), physical
exam (50%), and follow-up (11%). Approval was gained from the Institutional Human
Research Ethics Committee to obtain access to patient data.

2.2. CCTA Acquisition

Patients with an HR > 70 bpm were given 10–30 mg of oral propranolol (Propranolol
Tab, Standard Chem & Pharm Co., Ltd., Tainan, Taiwan) one hour before examination.
All patients received 0.6 mg of sublingual nitroglycerin (Nitrostat, Pfizer Pharma, Vega
Baja, Puerto Rico) 2 min prior to the scan unless contraindicated. CCTA acquisition was
performed using prospectively ECG-triggered axial scanning on a 256-row detector CT
scanner (Revolution CT, GE Healthcare, Milwaukee, WI, USA). Non-ionic contrast agent
(Optiray 350, loversol injection 74%, Liebel-Flarsheim Canada Inc., Pointe-Claire, QC,
Canada) was administered intravenously in a dose of 0.8 mL/kg body weight at a flow
rate of 3.5–6.0 mL/s, followed by a 30 mL saline chaser at 3.0–5.0 mL/s. CCTA scans
were triggered automatically by a delay of 5.9 s when contrast enhancement within the
descending aorta reached a threshold level of 80 Hounsfield units (HU). The scan field
of view (SFOV) and z-axis coverage were chosen according to the heart size. The ECG
pulsing window was set at 70–85% of the R-R interval for patients with an HR ≤ 65 bpm.
For patients with 65 bpm < HR ≤ 85 bpm, full tube current was applied at 40–55% and
70–85% of the R-R interval. For patients with an HR > 85 bpm, the ECG pulsing window
was set at 20–90% of the R-R interval. The tube voltage was adjusted manually based
on patient attenuation, while the tube current was determined automatically by a TCM
system (SmartmA, GE Healthcare, Milwaukee, WI, USA) to achieve a noise index (NI) of
22 HU. After scanning, images were reconstructed with 50% FBP and ASiR-V blending,
a slice thickness of 0.625 mm, and a 512 × 512 matrix size. Axial images, volume rendering
images, and curved planar reformation images were comprehensively evaluated. A cardiac
motion correction algorithm (SnapShot Freeze, GE Healthcare, Milwaukee, WI, USA) was
used during reconstruction to reduce coronary motion blurring.

2.3. Image Quality Evaluation

The image quality of CCTA scans was evaluated by conducting subjective and objective
image quality assessments [15,16].

Subjective image quality was rated using a 4-point grading scale for quantifying the
impact of photon starvation noise on every coronary artery segment with a diameter of
at least 1.0 mm: 1 = excellent (excellent attenuation of the vessel lumen and clear de-
lineation of the vessel walls with limited perceived image noise); 2 = good (impact of
image noise, limitations of low contrast resolution, and minimal vessel margin definition);
3 = adequate (reduced image quality with poor vessel wall definition or excessive image
noise, and limitations of low-contrast resolution remained evident); 4 = poor (impaired
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image quality limited by excessive noise or poor vessel wall definition). Coronary arter-
ies were classified according to the American Heart Association 15-segment model [17].
The right coronary artery (RCA), the left main and left anterior descending artery (LAD),
and the left circumflex artery (LCX) were defined to include segments 1–4, 5–10, and 11–15,
respectively. Two experienced cardiovascular radiologists rated images by consensus to
quantify the degradation of image quality based on photon starvation noise. The subjective
image quality scores rated on a per-segment basis were averaged to give an overall score
for each vessel. Examples of CCTA images rated at 1 (excellent), 2 (good), and 3 (adequate)
are shown in Figure 1. Because no image was rated at 4 (poor) in this study, an example
image is not shown. Please refer to [16] for a CCTA image with poor quality.
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Figure 1. Curved multiplanar reformations of the left circumflex artery (LCX) subjectively rated at 1,
2, and 3 (left to right). (a) Heart rate (HR) = 61 bpm, body mass index (BMI) = 21.8 kg/m2, and noise
index (NI) = 24 HU; (b) HR = 74 bpm, BMI = 27.7 kg/m2, and NI = 27.7 HU; (c) HR = 73 bpm,
BMI = 31.1 kg/m2, and NI = 30.4 HU.

Objective noise measurements expressed as image noise, contrast-to-noise ratio (CNR),
and signal-to-noise ratio (SNR) were obtained by evaluation of the region of interest (ROI)
in each image. Image noise was obtained by calculating the standard deviation (SD) of
the CT numbers within a contrast-filled left ventricle (circular region: 0.2 cm2). CNR was
calculated as the difference between the mean signal intensity of the contrast-filled left
ventricle and the mean signal intensity of the left ventricular posterolateral wall, divided
by the image noise defined previously (circular region: 0.2 cm2). SNR was calculated as the
mean signal intensity of the contrast-enhanced coronary lumen divided by its SD in the
proximal segments of the left and right coronary arteries (circular region: 0.02 cm2).

2.4. Radiation Dose

The volume CT dose index (CTDIvol) and the dose-length product (DLP) displayed on the
scanner console were recorded after CCTA scans. The effective dose was calculated as the prod-
uct of DLP times a conversion coefficient for the chest (k = 0.014 mSv × [mGy × cm]−1) [18].

2.5. Statistical Analysis

Student’s t-test was used to compare numerical data, including age, BMI, HR, HR
variability, tube voltage, tube current, exposure time, SFOV, z-axis coverage, CTDIvol, DLP,
effective dose, contrast dose, image noise, CNR, and SNR. For the subjective image quality
scores, which are ordinal data, comparisons were performed using the Mann–Whitney
U test. A statistically significant difference was defined as a two-sided p-value < 0.05.
The inter-observer agreement for subjective image quality scores was analyzed with the
kappa test (κ < 0.40: poor agreement; 0.40 ≤ κ < 0.75: good agreement; and κ ≥ 0.75:
excellent agreement). Statistical analysis was performed using SPSS version 18 (IBM,
Armonk, New York, NY, USA).
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3. Results

A total of 87 patients were enrolled in this study, including 45 patients with BMIs < 25 kg/m2

and 42 patients with BMIs ≥ 25 kg/m2. Detailed patient characteristics, scan parameters,
and radiation doses are summarized in Table 1. When comparing these two BMI groups,
significant differences were found in age, BMI, tube voltage, tube current, CTDIvol, DLP,
and effective dose.

Table 1. Comparison of patient characteristics, scan parameters, and radiation doses between two
BMI groups.

BMI < 25 BMI ≥ 25 p-Value

Number of patients 45 42 -
Age 60.80 ± 8.75 56.64 ± 10.67 0.049 *

BMI (kg/m2) 22.74 ± 1.33 27.93 ± 2.47 <0.001 *

SFOV
small 0 0

0.583medium 39 38
large 6 4

Z-axis coverage
12 cm 0 2

0.29314 cm 18 18
16 cm 27 22

HR (bpm) 65.16 ± 9.55 62.71 ± 8.61 0.215
HR variability (bpm) 5.71 ± 4.72 5.57 ± 3.28 0.874
Tube voltage (kVp) 112.44 ± 9.81 120.95 ± 6.17 <0.001 *
Tube current (mA) 637.38 ± 92.17 701.67 ± 39.94 <0.001 *
Exposure time (s) 0.74 ± 0.09 0.71 ± 0.11 0.259

CTDIvol (mGy) 20.03 ± 6.22 24.83 ± 5.78 <0.001 *
DLP (mGy × cm) 303.49 ± 96.21 372.89 ± 90.84 0.001 *

Effective dose (mSv) 4.25 ± 1.35 5.22 ± 1.27 0.001*
* Statistically significant difference was found between the 2 BMI groups. Note: BMI = body mass index,
SFOV = scan field of view, HR = heart rate, CTDIvol = volume CT dose index, DLP: dose-length product.

Figure 2 shows the optimal reconstruction phase for the RCA, LAD, and LCX. There
were 1098 coronary artery segments in 87 patients, which included 338 RCA segments,
491 LAD segments, and 269 LCX segments. Systolic and diastolic reconstruction were used
in 20.41% and 79.59% of the RCA segments, respectively (BMI < 25 kg/m2: 38 segments
vs. 140 segments; BMI ≥ 25 kg/m2: 31 segments vs. 129 segments). The corresponding
results were 7.74% and 92.26% for LAD segments (BMI < 25 kg/m2: 24 segments vs.
233 segments; BMI ≥ 25 kg/m2: 14 segments vs. 220 segments) and 7.06% and 92.94%
for LCX segments (BMI < 25 kg/m2: 13 segments vs. 124 segments; BMI ≥ 25 kg/m2:
6 segments vs. 126 segments).

Table 2 summarizes the contrast agent doses, scan parameters, and radiation doses
in different BMI groups. These baseline characteristics significantly increased for BMIs of
25–26, 27–28, and >28 kg/m2 compared to a BMI < 23 kg/m2. Figure 3 demonstrates the
distribution of tube voltage, tube current, and CTDIvol as the functions of BMI.

Table 3 summarizes the NI, subjective image quality scores, and objective noise mea-
surements in different BMI groups. The inter-observer agreement for subjective scores
was excellent (kappa = 0.92; 95% confidence interval: 0.86–0.98). Through evaluating
these image quality indicators, we found that image noise increased as BMI increased.
In comparison with a BMI < 23 kg/m2, NI was significantly higher in BMIs of 25–26,
27–28, and > 28 kg/m2, while subjective scores significantly degraded in BMIs of 27–28
and > 28 kg/m2. For objective noise measurements, statistically significant differences were
found in CNR (BMI > 28 kg/m2) and SNR of the left and right coronary arteries (SNRL:
BMI > 28 kg/m2; SNRR: BMIs of 25–26, > 28 kg/m2) when compared to a BMI < 23 kg/m2,
but not for image noise. Figure 4 demonstrates the subjective scores for the RCA, LAD,
and LCX as the functions of BMI. Figure 5 demonstrates the CNR, SNRL, and SNRR as
functions of BMI. Case examples with a subjective score of two are shown in Figure 6.
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Figure 2. Optimal reconstruction phase for the (a) right coronary artery (RCA), (b) left anterior
descending artery (LAD), and (c) left circumflex artery (LCX) as functions of heart rate (HR) on a
per-segment basis. BMI = body mass index.

Table 2. Comparison of contrast agent doses, scan parameters, and radiation doses in different
BMI groups.

BMI (kg/m2)
Number of

Patients
Contrast

Agent (mL)
Tube Voltage

(kVp)
Tube Current

(mA)
CTDIvol
(mGy)

Effective
Dose (mSv)

BMI < 25
<23 25 55.28 111.20 627.56 19.42 4.13

23–24 20
60.45

(p = 0.180)
114.00

(p = 0.347)
649.65

(p = 0.431)
20.80

(p = 0.467)
4.40

(p = 0.506)

BMI ≥ 25

25–26 17
68.47 *

(p < 0.001)
118.82 *

(p = 0.002)
707.82 *

(p = 0.001)
24.32 *

(p = 0.022)
5.09 *

(p = 0.040)

27–28 14
73.14 *

(p < 0.001)
121.43 *

(p < 0.001)
705.71 *

(p = 0.001)
25.10 *

(p = 0.012)
5.20 *

(p = 0.031)

>28 11
82.36 *

(p < 0.001)
123.64 *

(p = 0.001)
687.00 *

(p = 0.02)
25.27 *

(p = 0.026)
5.44 *

(p = 0.021)

* Statistically significant difference was found when compared to BMI < 23 kg/m2. Note: BMI = body mass index,
CTDIvol = volume CT dose index.
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Table 3. Comparison of NI, subjective image quality score, and objective noise measurements in
different BMI groups.

BMI
(kg/m2)

Number
of Patients

NI
(HU)

Noise Score Image Noise
(HU) CNR SNRL SNRR

RCA LAD LCX

BMI < 25
<23 25 22.82 1.73 1.66 1.67 26.40 16.57 25.15 25.44

23–24 20
23.56

(p = 0.237)
1.75

(p = 0.689)
1.57

(p = 0.808)
1.58

(p = 0.735)
27.57

(p = 0.636)
15.19

(p = 0.346)
24.00

(p = 0.779)
25.49

(p = 0.990)

BMI ≥ 25

25–26 17
25.68 *

(p < 0.001)
1.76

(p = 0.460)
1.65

(p = 0.739)
1.63

(p = 0.755)
29.45

(p = 0.272)
14.24

(p = 0.148)
19.92

(p = 0.080)
18.16 *

(p = 0.018)

27–28 14
28.11 *

(p < 0.001)
2.18 *

(p = 0.002)
2.05 *

(p = 0.006)
2.07 *

(p = 0.005)
27.88

(p = 0.628)
15.59

(p = 0.582)
28.77

(p = 0.348)
27.82

(p = 0.564)

>28 11
30.64 *

(p = 0.002)
2.18 *

(p = 0.011)
2.09 *

(p = 0.008)
2.171 *

(p = 0.014)
30.93

(p = 0.133)
12.79 *

(p = 0.033)
16.29 *

(p = 0.004)
18.46 *

(p = 0.028)

*: Statistically significant difference was found compared to BMI < 23 kg/m2. Note: BMI = body mass index,
NI = noise index, RCA = right coronary artery, LAD = left anterior descending artery, LCX = left circumflex artery,
CNR = contrast-to-noise ratio, SNRL = signal-to-noise ratio of left coronary artery, SNRR = signal-to-noise ratio of
right coronary artery.
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Figure 6. Curved multiplanar reformations of the left anterior descending artery (LAD) subjec-
tively rated at 2. (a) Heart rate (HR) = 69 bpm, body mass index (BMI) = 21.6 kg/m2, and noise
index (NI) = 22.7 HU; (b) HR = 74 bpm, BMI = 27.4 kg/m2, and NI = 27.7 HU; (c) HR = 65 bpm,
BMI = 38.2 kg/m2, and NI = 38.8 HU.

4. Discussion

With increasing patient thickness, photon attenuation increases exponentially [19].
The resultant artifacts are worse with the use of a low-power generator system, low peak
tube voltage, and fast rotation time. To provide consistent image quality for all patients,
the TCM technique was used to compensate for the photon starvation noise that is due to
patient attenuation. In the TCM system we operated, the NI, or the predefined image quality
index, was set at 22 HU, according to the manufacturer’s recommendation. However,
an NI > 22 HU indicated that the photon starvation noise was not fully compensated for at
this setting. Therefore, we selected a proper tube voltage setting before data acquisition to
achieve the desired noise level according to the NI displayed on the console. In this study,
CCTA scans were acquired at 100 or 120 kVp for BMI < 25 kg/m2, while a tube voltage
of 120 or 140 kVp was used for BMI ≥ 25 kg/m2 (Figure 3a). Based on our experience,
the difference between 120 and 140 kVp CCTA scans when imaging obese patients is
small in terms of radiation dose and image noise (Figures 3–5). This phenomenon occurs
because the maximum tube current is lower at 140 kVp than at 120 kVp. For the CT scanner
investigated in this study, the maximum tube current was 740 mA at 100 and 120 kVp,
while the maximum tube current was 635 mA at 140 kVp. Additionally, prior studies
have shown that the iodine contrast attenuation is lower in CCTA images acquired with
a higher kilovoltage peak [20–22], so the 140 kVp scan is usually not used in our clinical
routine practice.

TCM adjusts the tube current based on the patient attenuation in the scout image to
achieve the desired image quality at the lowest dose setting, so there should be a positive
correlation between tube current and patient attenuation. However, the positive correlation
between tube current and patient attenuation reached a plateau beyond the maximum X-ray
output in milliamperes and kilovoltage peak, and the efficacy of TCM on compensating
photon starvation noise was limited in the plateau region. As shown in Table 1, we found
that kilovoltage peak, milliamperes, CTDIvol, DLP, and effective dose are significantly
higher for BMI ≥ 25 kg/m2. A more detailed comparison shown in Table 2 reveals that
these baseline characteristics increased as BMI increased, except the tube current for a
BMI of 27–28 k and >28 kg/m2. As seen in Figure 3b, there was a positive correlation
between tube current and BMI for CCTA scans with an NI ≤ 22 HU (blue stars). However,
an increase in BMI did not lead to obvious variation in the tube current of CCTA scans with
an NI > 22 HU (red circles). There were 40.0% and 88.1% CCTA scans with an NI > 22 HU
for BMI < 25 and ≥25 kg/m2, respectively. Because of the small size and rapid motion
of the coronary arteries, CCTA requires high spatial resolution (small voxel size) and
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high temporal resolution (short rotation time) to achieve reliable diagnostic image quality.
Consequently, the TCM-adjusted tube current is usually higher for CCTA than in other CT
studies, which makes it easier to reach the maximum X-ray output when imaging obese
patients. In addition to the TCM modulation range, the photon starvation noise cannot be
fully eliminated, and the noise level increases with increasing BMI. Therefore, the CCTA
scans acquired using the maximum X-ray output have an NI value larger than 22 HU.

Since the tube voltage, tube current, and radiation doses increased as BMI increased
(Table 2 and Figure 3), it is natural to expect that these CCTA scans would provide consistent
image quality for all patients. However, we found that the subjective image quality
scores and objective noise measurements only slightly increased with increasing BMI
(Table 3, Figure 4). This phenomenon could be due to the CCTA scans with an NI > 22 HU.
The resulting impact was more serious for patients with BMI ≥ 25 kg/m2. Although
our results demonstrated a positive correlation between image quality degradation and
BMI, the overall subjective score of each vessel was less than three, indicating the image
quality was sufficient for clinical diagnosis. As seen in Table 3, the difference between
BMI < 23 and BMI 25–26 kg/m2 was statistically significant in NI, but not in subjective
scoring or objective noise measurements. These results indicated that NI is more sensitive
to the variation in BMI than other image quality indicators. By definition, NI is the noise
in the central region of a CT image reconstructed with FBP for a 20 cm uniform water
phantom [23]. The subjective scoring and objective noise measurements were performed
on IR-reconstructed images. IR yields lower image noise and higher spatial resolution than
FBP, which could explain why the subjective scoring and objective noise measurements
were less sensitive to the increased image noise that is due to patient attenuation compared
to NI. Moreover, the subjective scoring and objective noise measurements were defined for
contrast-filled vessels and chambers, while NI was defined on a phantom-simulating soft
tissue. It was reported that image noise has a larger detrimental effect on the detection of a
low-contrast target than it does on detection of a high-contrast target [24]. Therefore, the
definition of image quality metrics might be another potential explanation of the differing
sensitivity to image noise.

In this study, the CTDIvol for BMI < 25 and ≥25 kg/m2 were 20.03 and 24.83 mGy,
respectively, which are consistent with previous reports [25,26]. Over the past decades,
various dose reduction strategies have been proposed for CCTA scans [27,28]. Some are
general techniques (such as prospective ECG triggering, low kilovoltage peak, and TCM)
and others are technology-specific techniques (such as hybrid/statistical IR, model-based
IR, and deep learning IR). Although minimizing the radiation dose is always an important
goal in the CT imaging community, it is also important to ensure sufficient image quality
for clinical diagnosis at the same time, i.e., the as low as reasonably achievable (ALARA)
principle. Since there was no significant difference in the subjective image quality scores
and objective noise measurements between BMI < 23 and 25–26 kg/m2, we expected that
using an NI of 25 HU could reduce the radiation dose without compromising the image
quality for patients receiving CCTA performed on the 256-slice MDCT investigated in
this study. Several limitations to this study need to be acknowledged. First, we relied on
data that already existed in our department. To avoid selection bias, data were enrolled
consecutively during a specific time period, and image analysis was performed without
information about BMI. Second, since we focused on the effect of BMI on the radiation
dose and image noise of CCTA, the diagnostic performance of CCTA was not compared to
invasive catheter angiography. Further studies are necessary to evaluate the impact of BMI
on the diagnostic assessment of the coronary arteries with CT. Third, all data were acquired
using TCM and IR developed by a single manufacturer. It was difficult to compare our
results with other types of TCM and IR techniques from different manufacturers.

5. Conclusions

In this study, we investigated the effect of a patient’s BMI on the radiation dose and
image quality in prospectively ECG-triggered CCTA performed on a 256-slice MDCT.
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Because of the TCM technique, we expected that the tube current and radiation dose
would increase as BMI increased. However, using TCM could not always guarantee
sufficient radiation exposure to achieve consistent image quality for overweight or obese
patients since the maximum X-ray tube output in milliamperes and kilovoltage peak was
reached. The impact of photon starvation noise on image quality was not significant until
BMI ≥ 27 kg/m2, which could have been due to IR’s noise reduction capability. Our results
also suggest that using TCM with an NI of 25 HU could reduce the radiation dose without
compromising image quality compared to images obtained based on the manufacturer’s
default settings.

Author Contributions: Conceptualization, W.-Y.L. and C.-C.Y.; methodology, W.-Y.L., G.-L.H. and
C.-C.Y.; software, G.-L.H. and C.-C.Y.; validation, W.-Y.L. and C.-C.Y.; formal analysis, G.-L.H. and
C.-C.Y.; investigation, G.-L.H. and C.-C.Y.; resources, W.-Y.L. and C.-C.Y.; data curation, W.-Y.L. and
C.-C.Y.; writing—original draft preparation, C.-C.Y.; writing—review and editing, C.-C.Y.; visualiza-
tion, W.-Y.L., G.-L.H. and C.-C.Y.; supervision, C.-C.Y.; project administration, C.-C.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by a grant from the Ministry of Science and Technology
in Taiwan (MOST110-2314-B-037-076).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Kaohsiung Medical
University Chung-Ho Memorial Hospital (protocol code KMUHIRB-E(II)-20210003; approved on
19 January 2021).

Informed Consent Statement: Patient consent was waived by the Institutional Review Board,
because this retrospective study represents no more than minimal risk to subjects and did not
adversely affect their rights and welfare.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; Technical

Report Series 894; World Health Organization: Geneva, Switzerland, 2000; 253p.
2. Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; De Ferranti, S.D.; Floyd, J.; Fornage, M.;

Gillespie, C.; et al. Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association. Circulation
2017, 135, e146–e603. [CrossRef]

3. Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.;
Cohen, A.; et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational,
and metabolic risks or clusters of risks in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study
2013. Lancet 2015, 386, 2287–2323. [CrossRef]

4. Roth, G.A.; Huffman, M.D.; Moran, A.E.; Feigin, V.; Mensah, G.A.; Naghavi, M.; Murray, C.J. Global and regional patterns in
cardiovascular mortality from 1990 to 2013. Circulation 2015, 132, 1667–1678. [CrossRef]

5. MacDougall, R.D.; Kleinman, P.L.; Callahan, M.J. Size-based protocol optimization using automatic tube current modulation and
automatic kV selection in computed tomography. J. Appl. Clin. Med. Phys. 2016, 17, 328–341. [CrossRef]

6. Soderberg, M.; Gunnarsson, M. Automatic exposure control in computed tomography–an evaluation of systems from different
manufacturers. Acta Radiol. 2010, 51, 625–634. [CrossRef]

7. Schindera, S.T.; Nelson, R.C.; Yoshizumi, T.; Toncheva, G.; Nguyen, G.; DeLong, D.M.; Szucs-Farkas, Z. Effect of automatic tube
current modulation on radiation dose and image quality for low tube voltage multidetector row CT angiography: Phantom study.
Acad. Radiol. 2009, 16, 997–1002. [CrossRef]

8. Den Harder, A.M.; Willemink, M.J.; De Ruiter, Q.M.; De Jong, P.A.; Schilham, A.M.; Krestin, G.P.; Leiner, T.; Budde, R.P. Dose
reduction with iterative reconstruction for coronary CT angiography: A systematic review and meta-analysis. Br. J. Radiol.
2016, 89, 20150068. [CrossRef]

9. Aschoff, A.J.; Catalano, C.; Kirchin, M.A.; Krix, M.; Albrecht, T. Low radiation dose in computed tomography: The role of iodine.
Br. J. Radiol. 2017, 90, 20170079. [CrossRef]

http://doi.org/10.1161/CIR.0000000000000485
http://doi.org/10.1016/S0140-6736(15)00128-2
http://doi.org/10.1161/CIRCULATIONAHA.114.008720
http://doi.org/10.1120/jacmp.v17i1.5756
http://doi.org/10.3109/02841851003698206
http://doi.org/10.1016/j.acra.2009.02.021
http://doi.org/10.1259/bjr.20150068
http://doi.org/10.1259/bjr.20170079


Diagnostics 2022, 12, 319 11 of 11

10. Wang, R.; Schoepf, U.J.; Wu, R.; Nance, J.W., Jr.; Lv, B.; Yang, H.; Li, F.; Lu, D.; Zhang, Z. Diagnostic accuracy of coronary CT
angiography: Comparison of filtered back projection and iterative reconstruction with different strengths. J. Comput. Assist.
Tomogr. 2014, 38, 179–184. [CrossRef]

11. Buls, N.; Van Gompel, G.; Van Cauteren, T.; Nieboer, K.; Willekens, I.; Verfaillie, G.; Evans, P.; Macholl, S.; Newton, B.; De Mey, J.
Contrast agent and radiation dose reduction in abdominal CT by a combination of low tube voltage and advanced image
reconstruction algorithms. Eur. Radiol. 2015, 25, 1023–1031. [CrossRef]

12. Klink, T.; Obmann, V.; Heverhagen, J.; Stork, A.; Adam, G.; Begemann, P. Reducing CT radiation dose with iterative reconstruction
algorithms: The influence of scan and reconstruction parameters on image quality and CTDIvol. Eur. J. Radiol. 2014, 83, 1645–1654.
[CrossRef] [PubMed]

13. Padole, A.; Ali Khawaja, R.D.; Kalra, M.K.; Singh, S. CT radiation dose and iterative reconstruction techniques. AJR Am. J.
Roentgenol. 2015, 204, W384–W392. [CrossRef] [PubMed]

14. Geyer, L.L.; Schoepf, U.J.; Meinel, F.G.; Nance, J.W., Jr.; Bastarrika, G.; Leipsic, J.A.; Paul, N.S.; Rengo, M.; Laghi, A.; De Cecco, C.N.
State of the Art: Iterative CT Reconstruction Techniques. Radiology 2015, 276, 339–357. [CrossRef] [PubMed]

15. Mangold, S.; Wichmann, J.L.; Schoepf, U.J.; Litwin, S.E.; Canstein, C.; Varga-Szemes, A.; Muscogiuri, G.; Fuller, S.R.;
Stubenrauch, A.C.; Nikolaou, K.; et al. Coronary CT angiography in obese patients using 3(rd) generation dual-source CT: Effect
of body mass index on image quality. Eur. Radiol. 2016, 26, 2937–2946. [CrossRef]

16. Wong, D.T.; Soh, S.Y.; Ko, B.S.; Cameron, J.D.; Crossett, M.; Nasis, A.; Troupis, J.; Meredith, I.T.; Seneviratne, S.K. Superior CT
coronary angiography image quality at lower radiation exposure with second generation 320-detector row CT in patients with
elevated heart rate: A comparison with first generation 320-detector row CT. Cardiovasc. Diagn. Ther. 2014, 4, 299–306. [CrossRef]

17. Austen, W.G.; Edwards, J.E.; Frye, R.L.; Gensini, G.G.; Gott, V.L.; Griffith, L.S.; McGoon, D.C.; Murphy, M.L.; Roe, B.B. A reporting
system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery
Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975, 51, 5–40. [CrossRef]

18. Deak, P.D.; Smal, Y.; Kalender, W.A. Multisection CT protocols: Sex- and age-specific conversion factors used to determine
effective dose from dose-length product. Radiology 2010, 257, 158–166. [CrossRef]

19. Modica, M.J.; Kanal, K.M.; Gunn, M.L. The obese emergency patient: Imaging challenges and solutions. Radiographics 2011, 31, 811–823.
[CrossRef]

20. Van Hamersvelt, R.W.; Eijsvoogel, N.G.; Mihl, C.; De Jong, P.A.; Schilham, A.M.R.; Buls, N.; Das, M.; Leiner, T.; Willemink, M.J.
Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: A phantom
study. Int. J. Cardiovasc. Imaging 2018, 34, 1265–1275. [CrossRef]

21. Scholtz, J.E.; Ghoshhajra, B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc. Diagn. Ther. 2017, 7, 439–451.
[CrossRef]

22. Wang, Y.; Bolen, M.; Sydow, G.; Kottha, A.; Soufan, K.; Bullen, J.; Kemper, C.; Kalafut, J.; Halliburton, S.S. Adaptation of contrast
injection protocol to tube potential for cardiovascular CT. AJR Am. J. Roentgenol. 2014, 203, 1181–1191. [CrossRef] [PubMed]

23. Gudjonsdottir, J.; Ween, B.; Olsen, D.R. Optimal use of AEC in CT: A literature review. Radiol. Technol. 2010, 81, 309–317.
24. Goenka, A.H.; Herts, B.R.; Obuchowski, N.A.; Primak, A.N.; Dong, F.; Karim, W.; Baker, M.E. Effect of reduced radiation exposure

and iterative reconstruction on detection of low-contrast low-attenuation lesions in an anthropomorphic liver phantom: An
18-reader study. Radiology 2014, 272, 154–163. [CrossRef]

25. Stocker, T.J.; Deseive, S.; Leipsic, J.; Hadamitzky, M.; Chen, M.Y.; Rubinshtein, R.; Heckner, M.; Bax, J.J.; Fang, X.-M.;
Grove, E.L.; et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: Results from the PROspec-
tive multicenter registry on radiaTion dose Estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI).
Eur. Heart J. 2018, 39, 3715–3723. [CrossRef]

26. Hamilton-Craig, C.R.; Tandon, K.; Kwan, B.; DeBoni, K.; Burley, C.; Wesley, A.J.; O’Rourke, R.; Neill, J.; Branch, K.R. Coronary
CT radiation dose reduction strategies at an Australian Tertiary Care Center—Improvements in radiation exposure through an
evidence-based approach. J. Med. Radiat. Sci. 2020, 67, 25–33. [CrossRef]

27. Hedgire, S.S.; Baliyan, V.; Ghoshhajra, B.B.; Kalra, M.K. Recent advances in cardiac computed tomography dose reduction
strategies: A review of scientific evidence and technical developments. J. Med. Imaging 2017, 4, 031211. [CrossRef]

28. Litmanovich, D.E.; Tack, D.M.; Shahrzad, M.; Bankier, A.A. Dose reduction in cardiothoracic CT: Review of currently available
methods. Radiographics 2014, 34, 1469–1489. [CrossRef]

http://doi.org/10.1097/RCT.0000000000000005
http://doi.org/10.1007/s00330-014-3510-5
http://doi.org/10.1016/j.ejrad.2014.05.033
http://www.ncbi.nlm.nih.gov/pubmed/25037931
http://doi.org/10.2214/AJR.14.13241
http://www.ncbi.nlm.nih.gov/pubmed/25794087
http://doi.org/10.1148/radiol.2015132766
http://www.ncbi.nlm.nih.gov/pubmed/26203706
http://doi.org/10.1007/s00330-015-4161-x
http://doi.org/10.3978/j.issn.2223-3652.2014.08.05
http://doi.org/10.1161/01.CIR.51.4.5
http://doi.org/10.1148/radiol.10100047
http://doi.org/10.1148/rg.313105138
http://doi.org/10.1007/s10554-018-1329-x
http://doi.org/10.21037/cdt.2017.06.07
http://doi.org/10.2214/AJR.13.12013
http://www.ncbi.nlm.nih.gov/pubmed/25415695
http://doi.org/10.1148/radiol.14131928
http://doi.org/10.1093/eurheartj/ehy546
http://doi.org/10.1002/jmrs.358
http://doi.org/10.1117/1.JMI.4.3.031211
http://doi.org/10.1148/rg.346140084

	Introduction 
	Materials and Methods 
	Study Population 
	CCTA Acquisition 
	Image Quality Evaluation 
	Radiation Dose 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References

