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Abstract: In this paper, the effects of asymmetrically modulated charged surfaces on streaming
potential, velocity field and flow rate are investigated under the axial pressure gradient and vertical
magnetic field. In a parallel-plate microchannel, modulated charged potentials on the walls are
depicted by the cosine function. The flow of incompressible Newtonian fluid is two-dimensional
due to the modulated charged surfaces. Considering the Debye–Hückel approximation, the Poisson–
Boltzmann (PB) equation and the modified Navier-Stokes (N-S) equation are established. The
analytical solutions of the potential and velocities (u and v) are obtained by means of the superposition
principle and stream function. The unknown streaming potential is determined by the condition that
the net ionic current is zero. Finally, the influences of pertinent dimensionless parameters (modulated
potential parameters, Hartmann number and slip length) on the flow field, streaming potential,
velocity field and flow rate are discussed graphically. During the flow process and under the impact
of the charge-modulated potentials, the velocity profiles present an oscillating characteristic, and
vortexes are generated. The results show that the charge-modulated potentials are beneficial for the
enhancement of the streaming potential, velocity and flow rate, which also facilitate the mixing of
fluids. Meanwhile, the flow rate can be controlled through the use of a low-amplitude magnetic field.

Keywords: modulated charged potential; electric double layer (EDL); streaming potential;
microchannel

1. Introduction

In recent years, microfluidics systems have begun to receive more attention from
scholars due to the lab-on-a-chip concept [1–5]. This is a new research direction that
involves biomedicine, chemistry and fluid physics [6–9]. The driving forms of this new
type of technology include the pressure gradient, electric field, magnetic field and surface
tension. Traditionally, single pressure driving is the predominant driving form. In order to
achieve better fluid control in a microchannel, a method that combines the pressure, electric
field, magnetic field and other driving sources as the driving form of microchannel has
become widely used [10–14]. In recent years, many studies have tended to use magnetic
fields to control the flow rate in microchannels [15,16]. In reality, due to the lack of precision
in the actual manufacturing process, it is possible for defects to be present in the walls
of microchannels. Consequently, it is necessary to take the modulated charged surfaces
into consideration.

During the research process, the free ions that are in the solution and the charged
ions that are on the surfaces are redistributed by attraction and repulsion to produce an
electric double layer (EDL). Because there is an ionic equilibrium in the EDL, we can
use the Poisson–Boltzmann (PB) equation to relate the ion concentration to the potential.
However, the idealized state of uniform electric potential is often considered in previous
studies. In actual production and application, we cannot achieve uniform channel walls
for microdevices. However, uniform electric potentials on the walls will ignore the change
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of vertical ion concentration. In this sense, the modulated charged potentials will be
considered in this study. The modulated charged surfaces are used in microchannels to
replace the nonsmooth surfaces that are caused due to the defects that occur during the
manufacturing process. The presence of axially modulated surface charge leads to an
axial velocity gradient, which results in a transverse component of velocity in order to
satisfy continuity equation. Therefore, the vertical ion concentration will change with
different vertical distance. The vertical velocity component is generated because of the
modulated charged potentials, resulting in more complicated phenomena taking place
in the microchannel. The study of Ghosal [17] showed that the applied pressure and the
electric potential both had a linear relationship with volume flux in the microchannel.
This conclusion is used to study the dispersion in the microchannel. Wei [18] theoretically
studied the influence of charge modulated on EO flow by imposing shear flow. They
further explored the more complex flow that was generated by time modulation. The
work of Ghosh and Chakraborty [19] reveals an optimal pattern frequency that can be used
to achieve the most efficient microfluidic mixing within constraints. Bandopadhyay and
Ghosh et al. [20] studied the EO flow of viscoelastic fluid. Studies have shown that the
distribution of the flow field can be changed by changing the charge pattern. Datta and
Choudhary [21] studied the influence of slip boundary conditions on the electroosmotic
(EO) flow under the wall potential changes periodically in the nanochannel. Ghosh and
Chakraborty [22] studied the induced streaming electric field in the presence of patterned
surface wettability and modulated surface charges. Ng and Qi [23] established a model of
power-law fluid in narrow channels. They found that the walls surface after modulation
would cause nonlinear behavior of non-Newtonian fluid flow by changing channel height
and wall potential. Mandal and Ghosh et al. [24] established an asymmetric wall potential
mode. In the presence of axially modulated surface charges, they analyzed the EO flow of
two superimposed fluids and found that the flow lines were deformed to different degrees.
Ghosh and Chakraborty [25] investigated how to enhance microfluidic mixing by exploiting
electrokinetic transport of viscoelastic fluids over charge modulated surfaces. Qi and
Ng [26] studied the influence of non-uniform walls modulation on the flow by considering
the mechanism of a two-fluid EO system. Jimenez and Escandón et al. [27] studied the
electro-osmotic flow considering the viscoelectric and steric effects for mixing applications.

The relative movement of an electrolyte solution produces an electrokinetic phe-
nomenon. Common electrokinetic phenomena are electro-osmosis and streaming potential.
Although there is no applied electric field, pressure is the main force that drives fluid
flow. Due to the existence of EDL, the counterions move towards the downstream and
accumulate at the end of microchannel. Finally, an electrokinetic potential, which is called
the streaming potential, is generated. This is the conversion of pressure into electricity.
This kind of conversion provides a way to obtain electrical energy through mechanical
energy during fluid flow. The energy conversion mechanism is widely used in the study
of microchannel. Chakraborty et al. [28] studied the influence of hydrophobic effects on
streaming potential mediated flow. Bandopadhyay and Mandalb et al. [29] studied the flow
of two immiscible fluids under pressure drive. They analyzed the influence of changing
the net conductivity on the concomitant streaming potential. Zhao and Jian et al. [30]
studied the heat transfer characteristics under the influence of applied pressure gradient
and magnetic field in a parallel-plate microchannel. Chen and Jian [31] discussed the
streaming potential through microparallel channels under low zeta potential approxima-
tion conditions. They summarized the effects of the dimensionless electrokinetic width
and the rotational angular velocity on the streaming potential. Ding and Jian [32] studied
the flow of viscoelastic fluid under an oscillating pressure gradient and concluded the
resonances that are generated for the streaming potential field and for the flow rate. In
many studies, the magnetic field is often applied based on the pressure gradient. Magnetic
field is widely used in microscale flow research because it has many distinct advantages,
such as low manufacturing cost, low heat generation, and high flow rate [33–36].
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Based on the above analysis of the advancements that have been achieved in fluid
mechanics, this paper studies the streaming potential and velocity field through a mi-
crochannel under the condition that the potentials on the walls are modulated, and the
pressure gradient and magnetic field are applied. Firstly, the Poisson-Boltzmann equation
is established, and the analytical solution of electric potential is obtained via the super-
position principle. Secondly, the modified Navier-Stokes (N-S) equation is determined
according to the model conditions, and the analytical solutions for the velocity are obtained.
The unknown streaming potential is involved during velocity expression. The unknown
streaming potential can be calculated under the condition that the net ionic current in the
solution is zero. Finally, the influences of the related parameters on the flow field, streaming
potential, velocity field and flow rate are discussed in the form of graphs.

2. Mathematical Model

In this study, the streaming potential, velocity and flow rate of the Newtonian fluid
under the influence of a magnetic field and a pressure gradient are considered in a parallel-
plate microchannel. The schematic diagram of the physical model is depicted in Figure 1.
The Newtonian fluid is assumed to be incompressible, and the walls of the microchannel
are asymmetrically charge-modulated. We assume that Newtonian fluid passes through the
parallel-plate microchannel with length L, width W, and height H, where L >> 2H, L >> W,
and where the aspect ratio of W/H is very large. The Cartesian coordinate system (x*, y*,
z*) is established in the center of the microchannel with O as the origin. The magnetic field
B acts on the fluid along the y* axis, and the pressure gradient −dP*/dx* acts on the fluid
along the x* axis. During the fluid flow process, there is a chemical interaction with the
walls that generate the EDL. The excess ions that are generated by the flow in the electrolyte
solution will gather at the downstream of the microchannel. Therefore, the streaming
potential E is obtained under the drive of the magnetic field and pressure gradient, where
the direction is in the negative direction of the x* axis. It can be shown that the magnetic
field and the pressure gradient are the basic driving mechanisms of the subsequent fluid
flow. It was assumed that the flow in the microchannel was stable throughout the entire
flow process. The potential based on modulation is asymmetric, and the zeta potential of
the upper and lower parallel plates can be expressed as

ψ∗
∣∣y=H = ξ∗1 [1 + α cos(m∗x∗)] (1a)

ψ∗
∣∣y=−H = ξ∗2 [1 + β cos(n∗x∗)] (1b)

where ψ* is the potential distribution of the walls, ξ1* and ξ2* represent the amplitudes
of the top and bottom surfaces respectively, α and β are constants and m* and n* are the
patterning frequencies. Because the cosine term produces a vertical velocity, the fluid flow
is considered to be two-dimensional. Because there are L, W >> 2H in the rectangular
microchannel, it can be considered that the velocity component in the z* direction is zero.
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Figure 1. Schematic of the physical model. (a) 3D view of microchannel; (b) The cross section of
the microchannel.
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2.1. EDL Potential Distribution

We assume that the parallel-plate microchannel is filled with symmetrical electrolyte
solutions. According to the formation theory of EDL, the potential ψ* distribution can be
described by the following Poisson–Boltzmann (PB) equation:

∂2ψ∗

∂x∗2 +
∂2ψ∗

∂y∗2 = −ρe

ε
(2)

ρe = −2n0zesinh(zeψ∗/kBTa) (3)

where ρe is the local volumetric net charge density, ε is the permittivity of the electrolyte
solution, n0 is the bulk ionic concentration, z is the ion valence, e is the charge of the electron,
kB is the Boltzmann constant, Ta is the absolute temperature.

We suppose the electric potential is much smaller than the thermal potential, the
term zeψ*/kBTa is less than unity. The hyperbolic sine function can be approximated by
Debye-Hückel as follows [37]:

sinh(zeψ∗/kBTa) ≈ zeψ∗/kBTa for zeψ∗/kBTa � 1 (4)

The definition of 1/κ* = (εkBTa/2e2z2n0)1/2 is given by using the above approximations.
Additionally, the Poisson–Boltzmann equation is linearized and becomes

∂2ψ∗

∂x∗2 +
∂2ψ∗

∂y∗2 = κ∗
2
ψ∗ (5)

where the Debye length 1/κ* is a measure of the EDL thickness and is a property of the
electrolyte solution. The boundary conditions are Equation (1a,b).

Introduce the following dimensional variables:

ψ = ψ∗

ψs
, (ξ1, ξ2) =

(ξ∗1 , ξ∗2)
ψs

, (x, y) = (x∗ ,y∗)
H

(m, n) = (m∗, n∗)H, κ = κ∗H, ψs =
kBTa

ze

(6)

Through dimensionless transformation, Equation (5) is

∂2ψ

∂x2 +
∂2ψ

∂y2 = κ2ψ (7)

The dimensionless form of the boundary condition is

ψ
∣∣y=1 = ξ1[1 + α cos(mx)] (8a)

ψ
∣∣y=−1 = ξ2[1 + β cos(nx)] (8b)

According to the superposition principle, the equation and boundary conditions are
divided into three parts, so the solution of the equation can be expressed as follows [38]:

ψ = f1(y) + f2(y) cos(mx) + f3(y) cos(nx) (9)

where f 1, f 2 and f 3 can be obtained according to the corresponding boundary conditions
after splitting:

f1(y) =
ξ1sinh[κ(1 + y)] + ξ2sinh[κ(1− y)]

sinh(2κ)
(10a)

f2(y) =
ξ1αsinh[M(1 + y)]

sinh(2M)
(10b)

f3(y) =
ξ2βsinh[N(1− y)]

sinh(2N)
(10c)
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M2 = m2 + κ2 (10d)

N2 = n2 + κ2 (10e)

2.2. Velocity Distribution

Considering the two-dimensional flow of incompressible fluid in a parallel-plate
microchannel when it is under the influence of magnetic field and pressure field, the
momentum equation and continuity equation of low Reynolds number limit can be ex-
pressed as:

∇·u = 0 (11)

ρ
Du
Dt∗

= −∇P∗ + µ∇2u + F (12)

Here, u is the velocity field, and we only need to consider the velocities in the two
directions x* and y*. ρ is the fluid density, P* is the pressure, µ is the dynamic viscosity of the
fluid. In addition to the pressure gradient, the net body force F also has other external forces
caused by the interaction between the external magnetic field and the induced electric field:

F = ρeE + J× B (13)

where
J = σ(E + u× B) (14)

B = (0, B0, 0), u = (u∗, v∗, 0), E = (E∗s , 0, 0) (15)

Here, J is the local ion current density satisfying Ohm’s law. σ is the electrical con-
ductivity of the medium, E is the induced electric field and B is the applied magnetic field.
Because the magnetic Reynolds number is small, the magnetic field is independent of the
velocity. The N-S equation can be simplified to its two-dimensional component form:

∂τ∗xx
∂x∗

+
∂τ∗yx

∂y∗
+ ρeE∗s − σu∗B2

0 = 0 (16)

∂τ∗xy

∂x∗
+

∂τ∗yy

∂y∗
= 0 (17)

The constitutive equation of Newtonian fluid satisfies:

τ∗ij =

[
τ∗xx τ∗xy
τ∗yx τ∗yy

]
=

 −P∗ + 2µ ∂u∗
∂x∗ µ

(
∂u∗
∂y∗ +

∂v∗
∂x∗

)
µ
(

∂u∗
∂y∗ +

∂v∗
∂x∗

)
−P∗ + 2µ ∂v∗

∂y∗

 (18)

where τij* is the stress tensor, in which τij* is eliminated in combination with
Equations (11), (16)–(18) and then simplified to obtain the final governing equation:

∂u∗

∂x∗
+

∂v∗

∂y∗
= 0 (19)

− ∂P∗

∂x∗
+ µ

(
∂2u∗

∂x∗2 +
∂2u∗

∂y∗2

)
+ ρeE∗s − σu∗B2

0 = 0 (20)

− ∂P∗

∂y∗
+ µ

(
∂2v∗

∂y∗2 +
∂2v∗

∂x∗2

)
= 0 (21)

The boundary conditions that satisfy the influence of slip and no penetration are as
follows [39]:

u∗ + δ∗
∂u∗

∂y∗

∣∣∣∣y∗=H = 0, u∗ − δ∗
∂u∗

∂y∗

∣∣∣∣y∗=−H = 0, v∗
∣∣∣∣y∗=±H = 0 (22)
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where δ* is the slip length, the following dimensional variables are introduced:

(x, y) = (x∗ ,y∗)
H , Ha = B0H

√
σ
µ , δ = δ∗

H

P = P∗
P0

, (u, v) = (u∗ ,v∗)
up

, ue =
εE0ψs

µ

Es =
E∗s
E0

, ur =
ue
up

, up = HP0
µ , κ = κ∗H

(23)

where up is the characteristic velocity of the fluid flow driven by pressure, ur is the charac-
teristic velocity of the electric flow, δ is the nondimensional slip length, P0 is the charac-
teristic pressure, Ha is the Hartmann number, E0 is the characteristic scale of the electric
field. After the dimensionless transformation, Equations (19)–(21) and boundary condition
Equation (22) become

∂u
∂x

+
∂v
∂y

= 0 (24)

− ∂P
∂x

+
∂2u
∂x2 +

∂2u
∂y2 − κ2Esurψ− Ha2u = 0 (25)

− ∂P
∂y

+
∂2v
∂x2 +

∂2v
∂y2 = 0 (26)

u + δ
∂u
∂y

∣∣∣∣y=1 = 0, u− δ
∂u
∂y

∣∣∣∣y=−1 = 0, v
∣∣∣∣y=±1 = 0 (27)

The stream function is defined based on Equation (24) [40]:

u =
∂ϕ

∂y
, v = −∂ϕ

∂x
(28)

Combining Equations (25) and (26) to eliminate the pressure P, an equation that is
related to the stream function is obtained:

2
∂4 ϕ

∂y2∂x2 +
∂4 ϕ

∂y4 +
∂4 ϕ

∂x4 − Ha2 ∂2 ϕ

∂y2 − κ2Esur
∂ψ

∂y
= 0 (29)

The boundary conditions become

∂ϕ
∂y + δ

∂2 ϕ

∂y2

∣∣∣y=1 = 0, ∂ϕ
∂y − δ

∂2 ϕ

∂y2

∣∣∣y=−1 = 0
∂ϕ
∂x

∣∣∣y=1 = 0, ∂ϕ
∂x

∣∣∣y=−1 = 0
(30)

Additionally, using the superposition principle, the solution of Equation (29) satisfies
the following form:

ϕ = g1(y) + g2(y) cos(mx) + g3(y) cos(nx) (31)

Through complex calculations and combined with boundary conditions, three polyno-
mials g1, g2 and g3 which are related to y can be determined as follows:

g1(y) = A11 cosh[κ(1 + y)] + A12 cosh[κ(1− y)] + γ1 exp(Hay) + γ2 exp(−Hay) + γ3 + γ4y (32a)

g2(y) = A2 cosh[M(1 + y)] + γ5 exp(λ21y) + γ6 exp(λ22y) + γ7 exp(λ23y) + γ8 exp(λ24y) (32b)

g3(y) = A3 cosh[N(1− y)] + γ9 exp(λ31y) + γ10 exp(λ32y) + γ11 exp(λ33y) + γ12 exp(λ34y) (32c)
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The coefficients in Equation (32a,b,c) are expressed as follows:

A11 =

[
κ3Esur

(
1− κ2 + Ha2)]ξ1

Ha2sinh(2κ)(κ2 − Ha2)
(33a)

A12 = −
[
κ3Esur

(
1− κ2 + Ha2)]ξ2

Ha2sinh(2κ)(κ2 − Ha2)
(33b)

A2 =
κ2Esurξ1αM

sinh(2M)
(

M2 − λ2
22
)(

M2 − λ2
24
) (33c)

A3 = − κ2Esurξ2βN
sinh(2N)

(
N2 − λ2

32
)(

N2 − λ2
34
) (33d)

where λij (i = 2, 3; j = 1, 2, 3, 4) satisfies the following two equations, and we can conclude
that λ21 = −λ22, λ23 = −λ24, λ31 = −λ32, λ33 = −λ34.

λ4
2j −

(
2m2 + Ha2

)
λ2

2j + m4 = 0 (34a)

λ4
3j −

(
2n2 + Ha2

)
λ2

3j + n4 = 0 (34b)

Because the smallest part of this Equation (29) is the partial derivative of the second
order, we can assume that γ3 = 0 and γ4 = 1. In addition, the rest of γk (k = 1, 2, 5–12) can
represented by the following matrix equation:

Γ̂l γ̂l = X̂l l = 1, 2, 3 (35)

The specific matrix of the equation is shown in Appendix A. Using these coefficients,
we can determine the stream function that is needed before we can solve for the velocity.

2.3. Streaming Potential

Through the previous calculations, we are able to obtain the analytical solution for
the velocity when it is under the joint action of pressure and magnetic field. However, the
expression still contains the unknown streaming potential Es which needs to be determined.
Because there is no applied electric field, the streaming potential can be determined by
considering the condition that the net ion current in the electrolyte solution is zero. When
the fluid reaches a stable state, it satisfies the following equation.

I =
∫ H

−H
ze
(
u+n+ − u−n−

)
dy∗ = 0 (36)

where u± is the velocity of cation and anion in the x* direction, and n± is the concentration
of cation and anion, which satisfy the following relationship respectively.

u± = u∗ ± ezE∗s
f

(37)

n± = n0 exp(∓ezψ∗/kBTa) (38)

where ƒ is the friction coefficient of the ions. Additionally, a new parameter,
R = 2e2z2µ/εkBTaf, is introduced, which is a dimensionless parameter that is equivalent
to the ionic Peclet number [41]. Substituting the above parameters into Equation (36), the
following equation can be obtained:∫ 1

−1
uψdy = REsur (39)
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After calculation, the expression of the dimensionless streaming potential is

Es =
T1

ur(R− T2)
(40)

The coefficients that are involved in the equation are shown in Appendix B. On this
basis, the flow rate per unit width in the z direction is considered through the cross section
at x = 0, and the flow rate Q can be calculated by

∫ 1
−1 udy.

3. Result and Discussion

The analytical solutions of velocity and streaming potential are obtained by calculat-
ing the pressure gradient and the magnetic field in the parallel-plate microchannel. Next,
we consider the ranges of values of the relevant parameters in order to determine the
required dimensionless parameters. Let the half height of the microchannel H is about
200 µm, the density of the fluid ρ is about 10−3 kg/m3, the dynamic viscosity µ is about
10−3 kg/(m·s), the range of conductivity σ is 2.2 × 10−4~102 S/m [42], the strength of the
external magnetic field B0 is 0.01~5 T. According to Ha = B0H(σ/µ)1/2, the range of the
Hartmann number (Ha) can be obtained from 0 to 0.4 with Ha = 1 as the maximum permis-
sible upper limit [43,44] theoretically. Based on the previous theoretical derivation, in order
to satisfy the Debye–Hückel linearization approximation conditions, the dimensionless
zeta potential should satisfy ψ ≤ 1. In the following discussion about the upper and lower
surface mode potentials, the ranges of the amplitudes (ξ1 and ξ2), constants (α and β) and
mode frequencies (m and n) are 0~0.2, 0~6 and 0~6 respectively. When α = β = 0, the zeta
potential are constants. The values of R and ur are assumed to be R~0.3–1 and ur~0.1–1
when in the dimensionless form.

3.1. Flow Field

According to the expression of the zeta potentials (Equation (1a,b)), the influences of
the modulated charged surfaces on the flow field are described in Figures 2 and 3. It can be
seen that periodic cyclic flow is generated due to modulated potentials. The reverse flow
induced in the microchannel changes the positive direction velocity into negative direction,
resulting in an eddy current.
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Figure 2 studies the influence of α (α = 1.5, 5.5) and β (β = 1.8, 5.8) on the flow field
when Ha = 1, κ = 8, δ = 0, ur = 0.6, R = 0.6, m = 5.5, n = 5.8, ξ1 = 0.15, ξ2 = 0.18. Because of
the asymmetry of the wall potentials, it can be seen from the Figure 2 that the streamlines
near the upper and lower walls are also asymmetric. As the values of parameters α and β
increase, the streamlines that can be observed in Figure 2b are denser than the ones seen in
Figure 2a. Additionally, the characteristic of the vortexes that are near the walls in Figure 2b
are significant. This means that constants α and β are the main elements that control the
strength of the vortexes.

Figure 3 shows the flow field distribution at Ha = 1, κ = 8, δ = 0, ur = 0.6, R = 0.6, α = 3,
β = 3, ξ1 = 0.15, ξ2 = 0.18 when the mode frequencies m (m = 1.5, 5.5) and n (n = 1.8, 5.8)
change. It can be observed in the Figure 3a,b that with the increase in mode frequencies, the
density of streamlines become less obvious. However, along the direction of the x-axis, it
can be seen that the periodicity becomes more pronounced as m and n increase. The reason
for this phenomenon is that the cos(mx) and cos(nx) in Equation (1a,b) of the zeta potentials
play important roles. The existence of cosine terms produces vertical velocity in the y-axis
direction, leading to the appearance of vortexes. When m and n are larger, the 2π/m and
2π/n periods are smaller. This means that m and n are the main elements that control the
periodicity of the eddy currents.

3.2. Analysis of the Streaming Potential

Figure 4a,b respectively show the influence of slip length δ (δ = 0.02, 0.08, 0.2, 0.4) and
ur (ur = 0.1, 0.3, 0.5, 1) on the streaming potential when x = π/4, m = 0.5, n = 0.8, ξ1 = 0.02,
ξ2 = 0.02, α = 5, β = 5, R = 1, Ha = 1. In Figure 4a, when κ is small, the slip length does not
affect the streaming potential. When κ > 4, the streaming potential decreases slightly with
the increase of slip length. In Figure 4b, the influence of ur is obvious, and the streaming
potential decreases with the increase of ur. The reason for this phenomenon can be explained
from the perspective of physical significance. According to the equation ur = ue/up, when
ur increases, up will decrease. A diminution in up means that the influence of the pressure
gradient is weakened, resulting in a corresponding abatement in the streaming potential.
This conclusion can also be drawn from Equation (40). On the other hand, with the increase
of κ, the influence of ur decreases gradually.
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Figure 5 describes the variations in the streaming potential Es for different ξi (i = 1, 2)
and κ when m = 0.5, n = 0.8, α = 5, β = 5, R = 1, δ = 0.1, Ha = 1, ur = 1. In Figure 5a, the
relationship between the zeta potential and the streaming potential can be analyzed by
changing the amplitude of the mode potential. As the amplitude of the mode potential
become more enhanced, the wall zeta potential increases, resulting in an increase in the
potential in the electrolyte solution. It can be seen from Figure 5a that the streaming
potential increases as the amplitude heightens. In terms of the generation mechanism
of streaming potential, the increase in potential leads to an increase in the proportion of
positive and negative ions that is present in the solution, while a difference in the number
of positive and negative ions in the electrolyte solution is positively correlated with the
streaming potential. As such, the streaming potential is positively correlated with the
potential on the walls. The plot oscillation along the x-axis is caused by the emergence of
the vertical velocity due to the modulated surface potential. In Figure 5b, the streaming
potential decreases with the increase of the κ (κ = 4, 5, 6). As κ increases, the thickness of
the EDL decreases, leading to a decrease in the number of ions in the EDL, and thus the
induced streaming potential generated by pressure gradient decreases gradually.
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the ratio between the electromagnetic force and the viscous force in physics, and only one 
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Figure 5. The variations of streaming potential Es for different ξi (i = 1, 2) and κ (m = 0.5, n = 0.8, α = 5,
β = 5, R = 1, δ = 0.1, Ha = 1, ur = 1). (a) Es at different ξ1 and ξ2 (κ = 3); (b) Es at different κ (ξ1 = 0.02,
ξ2 = 0.02).
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3.3. Analysis of Dimensionless Velocity

Figure 6 describes the influence of the slip length on the velocity u at the wall surface
(y = −1) and in the entire microchannel. It can be seen from Figure 6a that an increase in
slip length will lead to an increase in the wall velocity u. Figure 6b demonstrates that the
same phenomenon exists in the whole microchannel. The reason for this phenomenon is
that the existence of slip length is equivalent to the application of a nonzero initial velocity
to the fluid, which will also affect the fluid in the whole microchannel.
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Figure 6. The variations of velocity with the nondimensional slip length δ (x = π/2, m = 0.5, n = 0.8,
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(b) Velocity variations in microchannel (κ = 5).

Figure 7 describes the influence of the Hartmann number (Ha = 0.3, 0.5, 0.8, 1) on
the velocities, which are based on x = π/4, m = 0.5, n = 0.8, κ = 7, α = 5, β = 5, ξ1 = 0.02,
ξ2 = 0.02, δ = 0.02, ur = 1, R = 1. It can be seen from Figure 7a that the velocity u decreases
with the increase of Ha. Additionally, the velocity changes rapidly near the walls. Under
the influence of the modulated potentials, the vortexes and oscillations generate in the
velocity profile. The negative values maybe emerge in the velocity profile (when Ha = 0.3
in Figure 7a), which mean the backflow of the fluid. According to the definition of the
Hartman number, which is the ratio between the electromagnetic force and the viscous
force in physics, and only one term in the modified N-S equation contains magnetic field,
which corresponds to −Ha2u in the dimensionless Equation (25), it can be seen that the
Hartman number plays an obstructive role in the fluid movement process. An opposite
trend can be observed in Figure 7b. In Figure 7b, the velocity v increases with the increase
of Ha. The reason for this phenomenon is that the flow rate in the parallel plate is a certain
amount, when the Hartmann number increases, the velocity component u of the x-direction
decreases, resulting in the velocity component v of the y-direction increasing.

Figure 8 shows the plots of the flow rate in the microchannel with different parameters
(α, β, ξ1, ξ2, Ha). Symmetrical (in Figure 8a,c) and asymmetric modulated (in Figure 8b,d)
potentials are set at the upper and lower plates, respectively. In Figure 8a,b, when α = β = 0,
the potential on surfaces are uniform. By increasing the amplitude (ξ1 and ξ2) and constant
(α and β) of the modulated potentials, the corresponding flow rate also tends to increase.
In Figure 8c,d, when Hartmann number is small (Ha = 0.3), the plot of the flow rate varies
rapidly with the parameter κ. It can be found that the flow rate under the modulated
potentials is larger than that under the uniform potentials.
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4. Conclusions

In this study, the streaming potential, velocity field and flow rate of the fluid in the
parallel-plate microchannel are considered under the longitudinal pressure gradient and
the vertical magnetic field. Because modulated surface potentials exist on both the upper
and lower walls, vertical velocity will be generated during the flow process. Therefore, the
flow is two-dimensional. In this case, vortexes will appear in the microchannel, and the
streamlines, streaming potential and velocity field all have the characteristics of oscillation
and periodicity. The intensity and period of the eddy current will become more obvious
when the modulated potentials of the walls increase (changing the value of m, n, ξ1, ξ2,
α and β). Additionally, the streaming potential and flow rate increase as the modulated
potentials increase. In the analysis of the relationship between the modulated potentials
and the flow rate, three types of uniform potentials, symmetric modulated potentials and
asymmetric modulated potentials are considered. When comparing these three cases, it can
be found that the flow rate in the charge-modulated mode is larger than that in the uniform
mode. This proves that modulated charged surfaces are beneficial for fluid transport and
mixing. The influence of some non-dimensional parameters (Hartmann number Ha, slip
length δ, dimensionless parameter ur and κ) are also discussed under the charge-modulated
potentials. The main function of slip length δ is to add an initial velocity to the fluid at the
walls, so the velocity of fluid increases with the increasing of slip length. Although the
velocity is oscillating, the Hartman number Ha always hinders the flow of fluid.
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Appendix A

Γ̂1 =
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Ha + δHa2) exp(Ha) −
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 (A2)

Γ̂3 =
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exp(λ31) exp(λ32) exp(λ33) exp(λ34)
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)

exp(λ34)(
λ31 − δλ2

31
)

exp(−λ31)
(
λ32 − δλ2

32
)

exp(−λ32)
(
λ33 − δλ2

33
)

exp(−λ33)
(
λ34 − δλ2

34
)

exp(−λ34)

 (A3)
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γ̂1 =

(
γ1
γ2

)
, γ̂2 =


γ5
γ6
γ7
γ8

, γ̂3 =


γ9
γ10
γ11
γ12

 (A4)

X̂1 =

(
−A11κsinh(2κ)− δA11κ2 cosh(2κ)− δA12κ2 − 1
A12κsinh(2κ) + δA11κ2 + δA12κ2 cosh(2κ)− 1

)
(A5)

X̂2 =


−A2 cosh(2M)

−A2
−A2

[
Msinh(2M) + δM2 cosh(2M)

]
A2δM2

 (A6)

X̂3 =


−A3

−A3 cosh(2N)
−A3δN2

A3
[
Nsinh(2N) + δN2 cosh(2N)

]
 (A7)

Appendix B

T1 = T11 + T12 + T13 (A8)

T11 =
2(ξ1 + ξ2)sinh2(κ)

sinh(2κ)κ
(A9)

T12 =
2ξ1αsinh2(M)

Msinh(2M)
cos(mx) (A10)

T13 =
2ξ2βsinh2(N)

Nsinh(2N)
cos(nx) (A11)

T2 =
9

∑
i=1

T2i (A12)

T21 =

(
ξ1 A11 − ξ2 A12

)
κ

sinh(2κ)
Bκ +

(
ξ2 A11 − ξ1 A12

)
κ

sinh(2κ)
Cκ +

HaF1·1·2·2
sinh(2κ)

DHa·κ +
HaF2·1·1·2
sinh(2κ)

EHa·κ (A13)

T22 = [ ξ1 A2 M
sinh(2κ)

Gκ·M + ξ2 A2 M
sinh(2κ)

Hκ·M + F2·6·1·5λ22
sinh(2κ)

Eλ22·κ +
F1·6·2·5λ22
sinh(2κ)

Dλ22·κ +
F2·8·1·7λ24
sinh(2κ)

Eλ24·κ

+ F1·8·2·7λ24
sinh(2κ)

Dλ24·κ ] cos(mx)
(A14)

T23 = [− ξ1 A3 N
sinh(2κ)

Hκ·N − ξ2 A3 N
sinh(2κ)

Gκ·N + F2·10·1·9λ32
sinh(2κ)

Eλ32·κ +
F1·10·2·9λ32
sinh(2κ)

Dλ32·κ +
F2·12·1·11λ34

sinh(2κ)
Eλ34·κ

+ F1·12·2·11λ34
sinh(2κ)

Dλ34·κ ] cos(nx)
(A15)

T24 = [
ξ1αA11κ

sinh(2M)
Gκ·M −

ξ1αA12κ

sinh(2M)
Hκ·M +

ξ1αHaγ1
sinh(2M)

DHa·M −
ξ1αHaγ2
sinh(2M)

EHa·M] cos(mx) (A16)

T25 = [ ξ1αA2 M
sinh(2M)

BM +
ξ1αγ5λ21
sinh(2M)

Dλ21·M +
ξ1αγ6λ22
sinh(2M)

Dλ22·M + ξ1αγ7λ23
sinh(2M)

Dλ23·M

+
ξ1αγ8λ24
sinh(2M)

Dλ24·M] cos2(mx)
(A17)

T26 = [− ξ1αA3 N
sinh(2M)

HM·N +
ξ1αγ9λ31
sinh(2M)

Dλ31·M +
ξ1αγ10λ32
sinh(2M)

Dλ32·M + ξ1αγ11λ33
sinh(2M)

Dλ33·M

+ ξ1αγ12λ34
sinh(2M)

Dλ34·M] cos(mx) cos(nx)
(A18)
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T27 = [
ξ2βA11κ

sinh(2N)
Hκ·N −

ξ2βA12κ

sinh(2N)
Gκ·N +

ξ2βHaγ1
sinh(2N)

EHa·N −
ξ2βHaγ2
sinh(2N)

DHa·N ] cos(nx) (A19)

T28 = [ ξ2βA2 M
sinh(2N)

HM·N +
ξ2βγ5λ21
sinh(2N)

Eλ21·N +
ξ2βγ6λ22
sinh(2N)

Eλ22·N + ξ2βγ7λ23
sinh(2N)

Eλ23·N

+
ξ2βγ8λ24
sinh(2N)

Eλ24·N ] cos(nx) cos(mx)
(A20)

T29 = [− ξ2βA3 N
sinh(2N)

BN +
ξ2βγ9λ31
sinh(2N)

Eλ31·N +
ξ2βγ10λ32
sinh(2N)

Eλ32·N + ξ2βγ11λ33
sinh(2N)

Eλ33·N

+ ξ2βγ12λ34
sinh(2N)

Eλ34·N ] cos2(nx)
(A21)

Bi = −1 +
sinh(4i)

4i
(A22)

Ci = cosh(2i)− cosh(i)sinh(i)
i

(A23)

Di·j =
exp(−i)j− exp(i)j cosh(2j) + exp(i)isinh(2j)

i2 − j2
(A24)

Ei·j =
exp(−i)[exp(2i)j− j cosh(2j)− isinh(2j)]

i2 − j2
(A25)

Fi·j·k·l =
(

ξiγj − ξkγl

)
(A26)

Gi·j = −
sinh[2(i− j)]

2(i− j)
+

sinh[2(i + j)]
2(i + j)

(A27)

Hi·j =
jsinh(2i)− isinh(2j)

i2 − j2
(A28)

(
A11, A12, A2, A3

)
=

(A11, A12, A2, A3)

Esur
(A29)

γi =
γi

Esur
, i = 1, 2, 5, 6, 7, 8, 9, 10, 11, 12 (A30)
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