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a  b  s  t  r  a  c  t

Recombinant  antigens  from  the  oncosphere  stage  of  the  parasite  Taenia  solium  were expressed  in
Escherichia  coli.  The  TSOL16,  TSOL45-1A  and  TSOL45-1B  recombinant  antigens,  each  consisting  of
fibronectin  type  III (FnIII)  domain  S,  were  produced  as  fusion  proteins  with  glutathione  S-transferase
(GST)  and  maltose  binding  protein  (MBP).  Groups  of pigs  were  immunized  twice  with  the  GST  fusions
of  the  antigens  and  boosted  a third  time  with  the  MBP  fusions  prior  to  receiving  a  challenge  infection
with  T.  solium  eggs.  The  TSOL16  antigen  was  found  to be capable  of  inducing  high  levels  of  immunity
eywords:
ecombinant
accine
ntigen
arasite
aenia

in  pigs  against  a challenge  infection  with  T. solium.  Immunological  investigations  identified  differences
in  immune  responses  in  the pigs  vaccinated  with  the  various  antigens.  The  results  demonstrate  that  the
TSOL16  antigen  could  be  a valuable  adjunct  to  current  porcine  vaccination  approaches  and  may  allow
the  further  development  of  new  vaccination  strategies  against  T.  solium  cysticercosis.

© 2012 Elsevier Ltd.   Open access under CC BY license.
ysticercosis

. Introduction

Cysticercosis in humans occurs following infection with the ces-
ode parasite Taenia solium and is a major cause of neurological
isease worldwide [1]. It is associated with poor living standards
nd poor sanitation, occurring in developing countries where free-
oaming pigs and the lack of latrines contribute to transmission of
he parasite from pigs to humans. Vaccination of pigs has been pro-
osed as a potential tool to control transmission of T. solium from
igs to humans, in order to reduce the incidence of human neu-
ocysticercosis [2,3]. A recombinant subunit vaccine, the TSOL18
ntigen, has been shown to be highly effective in preventing infec-
ion of pigs in controlled experimental trials [4,5]. The TSOL18
accine is also highly effective as a porcine vaccine against naturally
cquired infection with T. solium [6].

Other recombinant antigens have also been cloned from the lar-
al oncosphere stage of the T. solium parasite. These include a family

f related antigens, designated TSOL45, that have been identified as
rotein isoforms, some of which result from alternatively spliced
RNA transcripts in the oncosphere [7]. Analyses of the TSOL45

Abbreviations: ELISA, enzyme-linked immunosorbent assay; FnIII, fibronectin
ype  III; GST, glutathione S-transferase; MBP, maltose binding protein.
∗ Corresponding author. Tel.: +61 3 9731 2291; fax: +61 3 9731 2366.
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mRNAs have identified a variety of oncosphere proteins encoding
two, one or no fibronectin type III (FnIII) domains. One of these gene
products, TSOL45-1A, that is not alternatively spliced and contains
two FnIII domains, has been shown to protect pigs against experi-
mental infection with T. solium [4,5]. Other antigens encoded by the
TSOL45 gene family have not yet been evaluated for their ability to
protect pigs against infection with the T. solium parasite.

The  TSOL16 antigen is a third T. solium antigen type that has
been cloned from oncospheres and the encoding gene has been
characterized [8]. It was  isolated from T. solium following demon-
stration of the ability of a homologous recombinant antigen, To16,
to confer protection of vaccinated sheep against a related parasite,
Taenia ovis [9]. TSOL16 appears to be specifically expressed in the
oncosphere life cycle stage of T. solium [10] and is associated with
penetration gland cells [11].

Although the development of a porcine vaccine based upon the
TSOL18 antigen is at an advanced stage, nevertheless it remains
important to evaluate the potential for other antigens to protect
pigs against T. solium. For example, widespread application of a
vaccine based on a single immunogen could potentially select for
genetic variants of T. solium having reduced susceptibility to the
vaccine. Application of a vaccine incorporating multiple, antigeni-

cally unrelated immunogens would be expected to reduce the
likelihood of selection of resistant parasites, in a manner analo-
gous to the use of different anthelmintics to reduce selection for
resistance [12]. Currently available evidence [13] does not suggest

dx.doi.org/10.1016/j.vaccine.2012.04.019
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:charlesg@unimelb.edu.au
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http://creativecommons.org/licenses/by/3.0/
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hat genetic variability in the TSOL18 protein would be a problem
uring the initial application of the TSOL18 vaccine, however eval-
ating the ability of other recombinant proteins to complement
SOL18 would add to the potential reliability of vaccination as a
ontrol measure for T. solium.

The  aims of this study were to evaluate whether the TSOL16 pro-
ein could be used to protect pigs against infection with T. solium
nd to determine whether a protein related to the TSOL45-1A anti-
en and encoded by a splice variant lacking one of two  FnIII domains
TSOL45-1B) retains the ability to protect pigs against cysticercosis.

. Materials and methods

.1.  Preparation of recombinant antigens

The TSOL16 cDNA was originally cloned from T. solium onco-
phere mRNA as described in [8]. Two related TSOL16 cDNAs were
rst isolated, designated TSOL16A and TSOL16B, which differed
t two positions in their predicted amino acid sequences [8]. The
SOL16A cDNA was selected for expression in Escherichia coli since
he substituted amino acids were identical in sequence to To16
rom T. ovis, a related antigen that has been previously shown to be
ost protective in sheep [9]. The encoded TSOL16A protein contains
ydrophobic amino acids within a predicted secretory signal at the
-terminus. In order to enable efficient expression of the TSOL16A
rotein in E. coli, PCR amplification was used to produce a cDNA
onstruct encoding a modified form of the antigen that lacked the
6 N-terminal amino acids of the secretory signal. The procedure
hat was followed is similar to that outlined in [14] and utilized
he following PCR primers: 5′CCG GAA TTC GAT GGA TTC GGT GAA
TT GGC G3′; 5′CCG CTC GAG CAT GCA ATG GAA TCC CAG AAG3′.
his truncated TSOL16A cDNA (herein referred to as TSOL16 with
espect to the cDNA and encoded protein) was cloned direction-
lly into the EcoRI and XhoI sites of pGEX-1TEX and transformed
nto E. coli JM109 strain by electroporation. Use of the pGEX plas-

id allowed expression and purification of TSOL16 as a fusion with
lutathione S-transferase (GST) [15].

The truncated TSOL16 cDNA was excised from pGEX-1 by
igestion with EcoRI and XhoI, and cloned into EcoRI/SalI-digested
MAL-C2. The pMAL-C2 plasmid allowed expression and purifica-
ion of TSOL16 as a fusion with maltose binding protein (MBP) [16].
he plasmid construct was transformed into E. coli JM109.

The  TSOL45-1A protein was cloned into the pGEX and pMAL-C2
lasmids, and expressed in E. coli as a fusion protein with GST and
BP as described in [4]. The TSOL45-1A fusion proteins lacked 16
-terminal amino acids that encoded a predicted secretory signal.

The TSOL45-1B cDNA was originally cloned from T. solium onco-
phere mRNA as described in [7]. TSOL45-1B lacked exon II of the
SOL45-1 gene. PCR amplification was used to produce a cDNA con-
truct that encoded a protein also lacking the 16 N-terminal amino
cids of the secretory signal. The following PCR primers were used
o amplify TSOL45-1B for cloning into pGEX and pMAL as described
bove: 5′CCG GAA TTC GGA AAC CAC AAG GCA ACA TC3′; 5′CCG CTC
AG GGA AAT GGG CAT TGA CCG3′.

E. coli cultures expressing TSOL16, TSOL45-1A and TSOL45-1B
ere prepared and recombinant fusion proteins were purified as
etailed in [14].

Freeze-dried aliquots of antigens were prepared by the addi-
ion of Quil A adjuvant (1 mg  per dose) and a sixfold (w/w)  amount
f maltose as a stabilizing agent for transport to Lima, Peru, where

he vaccine trial was conducted. Aliquots of GST and MBP, for use as
egative controls, were also prepared for the vaccine trial. The anti-
ens were reconstituted in sterile de-ionized water immediately
rior to vaccination of pigs.
0 (2012) 3824– 3828 3825

2.2. Pig vaccination

The  purified GST and MBP  fusions of TSOL16, TSOL45-1A and
TSOL45-1B were tested in a pig vaccine trial against challenge infec-
tion with T. solium. The study was  reviewed and approved by the
Animal Ethics Committee of the School of Veterinary Medicine, Uni-
versidad de San Marcos, Lima, Peru. Twenty 8-week old piglets were
obtained from a cysticercosis free farm located in Huaral, Lima. Ani-
mals were divided into four groups of 5 pigs each. All animals were
vaccinated against Classical Swine Fever prior to the start of the
trial. Each pig received 200 �g of antigen and 1 mg Quil A (Brenntag
Biosector, Denmark) per immunization in a 1 ml  dose. Immuniza-
tions were given intramuscularly in the right hind-quarter via a
0.9 mm  × 38 mm needle and 1 ml  syringe (Becton Dickinson, U.K.).
Piglets received their first immunization with recombinant antigen
prepared as a GST fusion. Pigs received a second, identical immu-
nization approximately four weeks after the first immunization.
Two weeks after the second immunization, pigs were given a third
immunization with recombinant proteins prepared as MBP  fusions.
Pigs in the control group received GST in the first two immuniza-
tions and MBP  in the third, all in the presence of 1 mg Quil A.

Blood samples were obtained from the jugular vein of all ani-
mals at weekly intervals from the first immunization until thirteen
weeks later using 10 ml  vacutainers (Becton Dickinson, U.K.) and 18
gauge needles. Serum was  separated by centrifugation and stored
at −20 ◦C.

2.3. Parasites and parasite infections

Pigs were challenged with T. solium eggs within a single gravid
proglottid as described in [5] two  weeks after the third immu-
nization and necropsied approximately 3 months after the last
immunization. Four different worms  were used for supply of the
gravid proglottids. The segments from the four worms were ran-
domly distributed to pigs in the various experimental groups.

Carcass  muscle was  examined for the presence of cysticerci from
the challenge infection by slicing at approximately 3 mm intervals.
In carcasses which were heavily infected with cysticerci, the total
number in muscle were estimated by selecting a muscle sample
(of known weight) from the carcass, determining the number of
cysticerci in that sample and estimating the total number in the
remaining muscle using its weight.

The Mann–Whitney U test was used for comparison of the
number of T. solium cysticerci found in pigs in different groups
immunized with the various antigens. A two-tailed P value <0.01
was considered to be statistically significant.

2.4. Serological analysis

Specific  antibody levels against TSOL16, TSOL45-1A or TSOL45-
1B were determined using an enzyme-linked immunosorbent
assay (ELISA) as described in [17]. The level of antibody to the
specific parasite antigens rather than to the affinity tag (GST) was
measured by coating ELISA plates with parasite antigen fused to
MBP. Binding of porcine antibody to the MBP fusion proteins of the
recombinant antigens was detected using anti porcine IgG-horse
radish peroxidase conjugate (Serotec). Antibody titres were calcu-
lated from the highest serum dilution at which the optical density
at 450 nm equalled 1.0.

Antigenic cross-reactivity was  investigated by direct ELISA and
inhibition ELISA as detailed by Assana et al. [18]. Briefly, direct ELISA
utilized TSOL18-MBP for coating the ELISA wells and application

of anti-TSOL16 serum for investigations into antigenic related-
ness. The ability of the heterologous recombinant proteins (TSOL18,
TSOL45-1A) to inhibit binding of anti-TSOL16 antibodies to homol-
ogous antigen (TSOL16) was  investigated by antibody inhibition
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Table 1
Number of T. solium cysticerci in pigs immunized with recombinant antigens and challenged with T. solium.

Group (antigen) Number of cysts in individual pigs Mean P valuea Protectionb (%)

Control 22, 31, 34, 889, 3831 961 – –
TSOL16 0, 0, 1, 1, 6 2 0.008 99.8
TSOL45-1A 1, 5, 5, 25, 63 20 0.087 97.9
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GST showed no cross-reactivity with TSOL18-MBP in direct ELISA.
Similarly, pig antisera raised against-TSOL18-GST showed no cross-
reactivity with TSOL16-MBP. In inhibition ELISAS, addition of the
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a The Mann–Whitney U test was  used for comparison of the number of cysticerci
b Calculated as the percentage reduction in the mean number of cysticerci in com

LISA. Inhibitory antigens were premixed with antibody prior to
he addition of the mixture to antigen coated wells.

.  Results

.1. Cysticercosis infection

The  number of T. solium cysticerci detected in each pig is shown
n Table 1. Cysticerci were found in each of the 5 control pigs
accinated with GST and MBP, ranging from 22–3831 cysts per ani-
al  (mean = 961). In the group of pigs immunized with TSOL16,

wo animals contained no cysts, two pigs contained one cyst each
nd one pig contained six cysts (mean = 2, range = 0–6). Pigs vacci-
ated with TSOL16 showed a significant reduction in the number
f cysticerci compared with those in the control group immu-
ized with GST/MBP (99.8% protection, P = 0.008). Pigs belonging to
he group immunized with the TSOL45-1A antigen were all found
o be infected and contained between 1–63 cysticerci per animal
mean = 20), representing a 97.9% reduction in the mean number
f parasites found in control animals (961), however statistical
omparison of the group immunized with TSOL45-1A and the con-
rols did not find the groups to be significantly different (P = 0.087,

ann–Whitney U test). The group of pigs vaccinated with TSOL45-
B contained between 18–2912 cysticerci per animal (mean = 780),
howing no statistical difference compared with the control group
P > 0.99).

.2. Immune responses

Serological  analyses of pig sera from samples taken through-
ut the vaccine study indicate that specific immune responses to
he recombinant antigens were produced in the vaccinated ani-

als, with clear rises in total IgG titres observed after the second
nd third immunizations (Fig. 1). Pigs immunized with TSOL16
roduced specific IgG antibodies characterized by increased

mmune responses following primary and secondary immuniza-
ion (Fig. 1A). Detectable antibody titres could be measured one
eek after the first TSOL16 immunization, with peak antibody titres

approximately 17,000–31,000; mean = 26,400) raised in pigs vac-
inated with TSOL16 one week following the third immunization.
o reactivity was seen with any serum samples in ELISA to MBP,

ncluding the sera taken 2 weeks after the immunizations that had
nvolved the use of MBP  fusion proteins (i.e. the third immuniza-
ion).

Pigs vaccinated with TSOL45-1A (Fig. 1B) had measurable
ntibody titres one week after the second immunization, with
eak titres (3000–7700; mean = 5200) occurring 1 week after the
hird immunization. Control pigs not vaccinated with TSOL16 or
SOL45-1 showed no detectable level of antibody to these proteins
hroughout the study. Mean peak antibody titre for pigs immu-
ized with TSOL16 (26,400, Fig. 1A) was higher compared with
eak antibody titres in pigs vaccinated with TSOL45-1A (5200,
ig. 1B). Pigs immunized with TSOL16 were challenged with T.

olium eggs when anti TSOL16 antibody titres were estimated as
eing between 17,000–28,000 (mean = 20,600), while pigs vac-
inated with TSOL45-1A were challenged when anti TSOL45-1A
ntibody titres ranged from 1600–8500 (mean = 5000).
780 >0.99 18.8

cinated pigs compared with controls.
on with controls.

Immunological assessment of pigs vaccinated with TSOL45-
1B (two weeks after the second immunization) showed they all
had detectible immune responses to TSOL45-1B (antibody titres of
450–2000) and that immune responses in these pigs were gener-
ally higher to TSOL45-1B than to TSOL45-1A (50–1700). Immune
responses in pigs vaccinated with TSOL45-1A were higher to
TSOL45-1A (300–2000) than to TSOL45-1B (50–650).

No clear relationship was apparent between the titre of spe-
cific antibody measured to the individual vaccine antigens and the
number of cysticerci detected at necropsy following the challenge
infection with T. solium. Pig antiserum raised against TSOL16-
Fig. 1. Specific antibody titres, measured by ELISA, in individual pigs immunised
with  TSOL16 (A) or TSOL45-1A (B). 1V: First immunisation, 2V: second immunisa-
tion,  3V: third immunisation. Each curve represents the immune response of a single
animal.
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omologous combinations of antigen and antisera (TSOL16 and
nti-TSOL16, TSOL18 and anti-TSOL18) led to total inhibition of
he sera’s reactivity in ELISA, however no inhibition was  evident
hen heterologous combinations of antigen and antisera (TSOL16

nd anti-TSOL18, TSOL18 and anti-TSOL16) were used (data not
hown).

. Discussion

The results of the vaccine trial in which pigs were immunized
ith the TSOL16 recombinant antigen demonstrates that the anti-

en is able to confer high levels of protection against challenge
nfection with T. solium (Table 1). The homologous antigen from
. ovis, To16, was first identified from an oncosphere cDNA library
y immuno-screening with antiserum raised against a 16 kDa onco-
phere antigen [9], following experimental fractionation of protein
xtracts of the oncosphere and testing these extracts in sheep vac-
ine trials. The resulting To16 recombinant antigen was shown to
educe T. ovis infection in vaccinated lambs by 92%. These find-
ngs provided the basis for identifying a homologous antigen in
. solium [8], thereby eliminating the requirement for testing of
ative T. solium antigens in pig vaccine trials and increasing the

ikelihood of isolating a recombinant antigen that is protective
gainst T. solium cysticercosis. A similar strategy was  successful
or developing the TSA9/TSA18 vaccine for T. saginata [19] and the
SOL18 vaccine antigen against porcine cysticercosis [4,20]. The
ost-parasite relationship in cestodes offers a number of advan-
ages in relation to the likelihood of successful development of
accines [21], nevertheless the successes that have been achieved
ith cestode parasites contrasts with broader strategies based

n genomic/transcriptomic/proteomic studies [22–27] where iso-
ation of large numbers of candidate vaccine antigens can be
roblematic for the discovery of protective antigens.

In the experiment described here, TSOL45-1A did not provide
tatistically significant levels of protection against T. solium infec-
ion (Table 1). This contrasts, however, with previous studies which
emonstrated that pigs vaccinated with TSOL45-1A can be pro-
ected against T. solium infection [4,5]. Flisser et al. [4] were able
o demonstrate protection in pigs vaccinated with TSOL45-1A,
ith these animals having a higher mean IgG1 titre (approxi-
ately 13,000) at challenge compared to total IgG antibody titres

o TSOL45-1A in pigs vaccinated with the same antigen in this study
Fig. 1B, mean = 5200).

Variability in the level of infection obtained between individ-
al animals may  have affected the capacity of the vaccine trial
escribed here to achieve statistical significance between some of
he different treatment groups. In the study undertaken by Flisser
t al. [4] pigs were given eggs isolated from gravid T. solium seg-
ents such that individual animals received directly comparable

hallenge infections. In the trial of TSOL45-1A where statistically
ignificant protection was achieved [4] the twelve control animals
arboured between 6 and 127 cysts, representing a range vary-

ng by a factor of 21 from lowest to highest. In Peru where the
rial described here was undertaken, greatest success has been
chieved in experimental infections in pigs by giving whole gravid
roglottids rather than isolated eggs, however a disadvantage of the
ethod is the necessity to use different adult worms to supply the

roglottids and individual animals also receiving different proglot-
ids [28]. In the experiment described here, this led to a variation
n the levels of infection in controls by a factor of 174 between the
owest and highest values (22–3831 cysts). In this case, it is diffi-
ult to interpret whether the TSOL45-1A vaccinated animals that

ad 25 and 63 cysts were either non-protected or >98% protected
epending on whether they received the lower or higher infec-
ive dose delivered to the control animals. Nevertheless TSOL16
ppeared to be a more effective immunogen than TSOL45-1A in
0 (2012) 3824– 3828 3827

this  experiment, with TSOL16-vaccinated animals being both sta-
tistically significantly protected in comparison to controls as well
as having statistically significant fewer cysts than the TSOL45-1A
vaccinates (P < 0.05).

The oncosphere antigens of cestode parasites are typically prob-
lematic to express in E. coli [19,29,30] and GST or MBP  fusion
proteins have been used as immunogens because these have advan-
tages in regard to expression level and solubility compared to
the non-fused or HIS-tagged antigens. Here we used a vaccina-
tion strategy incorporating both GST and MBP fusion proteins
of the same antigen in an attempt to boost immune responses
to the parasite-derived portion of the recombinant antigens. The
first two immunizations given to the pigs each contained the
oncosphere antigens fused to GST. The third immunizations each
contained the antigens fused to MBP, the aim being to boost
immune responses to the parasite-encoded portions of TSOL16,
TSOL45-1A or TSOL45-1B rather than to the GST fusion part-
ner. Previous studies have shown that a substantial portion of
the antibody response in pigs [17] and sheep [31,32] is raised
against the highly immunogenic GST fusion partner. Responses
to both TSOL16 and TSOL45-1A were substantially greater after
the third immunization compared with responses after the second
(Fig. 1). This suggests that the strategy of utilizing different fusion
partners for the immunization may  have enhanced responses to
the parasite-encoded component of the immunogen. However
no animals received three immunizations using GST  only and
hence a clear interpretation cannot be made about the advan-
tage of using different fusion protein partners to enhance vaccine
responses. Comparisons between the immunogenicity of TSOL45-
1A and TSOL45-1B were inconclusive since statistically significant
levels of protection were not achieved with either antigen in this
study. Had protection of pigs with TSOL45-1A (containing two FnIII
domains) been demonstrated, as in the two previous studies [4,5],
comparisons between TSOL45-1B (one FnIII domain) and TSOL45-
1A may  have provided further information about the position of
host protective epitopes within the latter antigen. By compari-
son, the TSOL16 and TSOL18 antigens each consist of a single FnIII
domain and both have now been shown to protect pigs against
T. solium infection. Linear B-cell epitopes within the FnIII domain of
TSOL18 have been identified [17], although current data suggests
that the dominant antibody specificities to TSOL18 from immu-
nized pigs appear to be directed toward conformational epitopes
[18].

TSOL16 appears to be specifically expressed in the larval onco-
sphere stage of the parasite that infects pigs [10] and is associated
with the penetration gland cells within T. solium [11]. Future studies
may focus on more detailed investigations to elucidate the function
of TSOL16 in the oncosphere during infection of pigs and identifi-
cation of the host protective epitopes within the antigen.

The  results achieved in this study indicate that the TSOL16 anti-
gen could be a valuable adjunct to porcine vaccination with TSOL18
and may allow the further development of new vaccination strate-
gies against T. solium cysticercosis.
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