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Introduction

Tuberculosis (TB) remains a worldwide public health problem. In 2010, 75.7 of every 

100,000 people were newly diagnosed in Korea, and among these newly diagnosed 

cases, around 12% were of drug-resistant TB [1]. There has been a global increase in 

multidrug- and drug-resistant TB cases [2]. The only licensed vaccine is the Mycobac-

terium bovis bacillus Calmette-Guérin (BCG) vaccine, a live attenuated strain of M. 

bovis, which has been used since 1921. Although the BCG vaccine gives consistent 

protection against TB infection in children, it is highly variable in protecting against 

adult pulmonary TB disease [3-6]. There is therefore an urgent need to develop a more 

effective vaccine to combat this notorious pathogen. 

  Mycobacterium tuberculosis (Mtb) is a successful human pathogen that can survive 

in the phagosomes and prevent normal phagosomal maturation [7]. Mtb can block the 

accumulation of ATPases and GTPases in the phagosomal vacuolar compartments, 

which interferes with phagosomal acidification [8]. This ability to subvert the host in-
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Tuberculosis (TB) remains a worldwide health problem, causing around 2 million deaths per 
year. Despite the bacillus Calmette Guérin vaccine being available for more than 80 years, it 
has limited effectiveness in preventing TB, with inconsistent results in trials. This highlights 
the urgent need to develop an improved TB vaccine, based on a better understanding of host-
pathogen interactions and immune responses during mycobacterial infection. Recent studies 
have revealed a potential role for autophagy, an intracellular homeostatic process, in vaccine 
development against TB, through enhanced immune activation. This review attempts to un-
derstand the host innate immune responses induced by a variety of protein antigens from My-
cobacterium tuberculosis, and to identify future vaccine candidates against TB. We focus on 
recent advances in vaccine development strategies, through identification of new TB antigens 
using a variety of innovative tools. A new understanding of the host-pathogen relationship, 
and the usefulness of mycobacterial antigens as novel vaccine candidates, will contribute to 
the design of the next generation of vaccines, and to improving the host protective immune 
responses while limiting immunopathology during M. tuberculosis infection. 
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tracellular trafficking is a fundamental obstacle in the design 

and development of a novel vaccine [9]. To date, the main 

strategies for developing new vaccines to replace the BCG 

have focused on increasing the host protective immunity 

against TB. Although T cell-induced adaptive immune re-

sponses are thought to be essential for protective immunity 

to TB [10-12], emerging evidence suggests an important role 

for dendritic cells (DC) in initiating adaptive immunity in the 

development of a T cell-based protective vaccine [13]. Au-

tophagy is a well-known intracellular degradation process of 

cytoplasmic constituents, including cellular organelles and 

protein aggregates [14,15]. It is now apparent that autophagy 

contributes to activation of the innate and adaptive immune 

responses, as well as antimicrobial responses against Mtb, 

through enhancing phagosomal maturation during Mtb in-

fection [15-17]. More importantly, autophagy is essential for 

activation of immune responses via MHC class II presenta-

tion of vaccine candidate antigens [14,18]. Mtb is able to 

modulate the sentinel role of alveolar macrophages in alert-

ing the surrounding cells in response to a pathogenic inva-

sion, leading to a delay in antigen processing and priming of 

effector T cells [19]. This interplay between Mtb and the host 

cells, which is mediated through phagocyte receptor-mediat-

ed Mtb recognition, and the induction of appropriate innate 

immune responses, likely helps to trigger and enhance pro-

tective T cell immunity during mycobacterial infection [20]. 

  Many Mtb immunodominant protein antigens have been 

identified and evaluated as potential candidates for vaccines 

against TB. Since the total nucleotide sequence of the Mtb 

genome was completed in 1998 [21] and re-annotated in 2002 

[22], considerable effort has been devoted to understanding 

mycobacterial pathogenesis and protective immunity, by 

screening protein families that contain immunodominant 

antigens [23]. Recent discoveries of TB latency antigens have 

shed light on the possibility of developing post-exposure boost-

er vaccines [24]. Additionally, new proteome-wide approach-

es in antigen discovery, from peptide libraries and protein 

microarrays, have opened up promising avenues in the search 

for new immunodominant antigens and potential vaccine 

candidates against TB [25]. In this review, we summarize the 

general host immune responses to Mtb and highlight the in-

nate and adaptive protective immune responses, and autoph-

agy activation against TB. We also discuss recent advances in 

the development of TB vaccines, especially in the discovery 

of antigens for protection against latent TB. 

Overview of TB Pathogenesis 

TB infection begins with mycobacterial access to the pulmo-

nary alveoli, where the bacteria are internalized and replicate 

within alveolar macrophages and other phagocytes, includ-

ing DC, that transport the bacteria to local, draining lymph 

nodes, where T cells and initiate adaptive immune responses 

are primed [10,26-28]. Mtb uses a variety of evasion strategies 

to resist attack from the host immune system, by blocking 

phagolysosome fusion and detoxifying reactive oxygen and 

nitrogen radicals [29]. In addition, virulent Mtb has multiple 

strategies to delay the early initial induction of T cell responses 

or to modulate antigen presentation to CD4+ T cells [27,29]. 

Recent studies have shown that the immune cells found in 

granuloma lesions have altered production capabilities of 

Th1 cytokines and bactericidal reactive nitrogen intermedi-

ates, with a high capacity to produce immunosuppressive in-

terleukin (IL)-10 [29,30]. 

  If the host immune system fails to clear Mtb, a unique pat-

tern of immune responses is elicited, including formation of 

a fibrotic compartment granuloma, which is a hallmark of 

Mtb infection [7]. This is known as the Ghon complex [31], in 

which Mtb can persist in a non-metabolically active state 

during latent infection. However, recent studies in non-hu-

man primate models of latent TB have shown that Mtb is 

metabolically active and replicates in host tissues, without 

any clinical signs or symptoms of disease [32]. Indeed, there 

is a possibility that distinct Mtb subsets reside in different 

types of TB lesion, as seen in a monkey model of active TB 

[31]. Recent advances and detailed analysis of Mtb genes 

during latent TB infection have shed light on a potential use 

of dormancy antigens, including proteins encoded by the 

dormancy (dosR) regulon, to develop a vaccine against TB 

[24,33,34]. 

Host Protective Immune Responses during 
TB Infection 

Despite efforts to clarify the host protective factors against 

TB, the complicated immune responses involved in deter-

mining disease outcomes are still poorly understood. Tissue 

destruction and pathogenesis during TB infection is not me-

diated by pathogens alone but is induced by an immuno-

pathological inflammatory response of the host. Thus, the 

immunopathological inflammatory responses and protective 

immunity are a double edged sword in host-pathogen inter-
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actions during TB infection [35,36]. It is therefore plausible 

that the host–pathogen association determines the disease 

outcomes of TB infection, and a better understanding of host 

protective immunity is needed to design and develop new 

and improved vaccines. In this chapter, we discuss the gener-

al aspects of innate and adaptive immune responses in the 

context of protective immunity to TB, and review recent ad-

vances in autophagy pathway activation, in relation to a vac-

cine-development strategy.

Innate immune responses against TB
The mycobacterial cell wall consist of various biomolecular 

components, including hydrophobic mycolic acids, that are 

responsible for the acid-fast properties of Mtb, arabinogalac-

tan, phosphatidyl-myo-inositol mannosides (PIMs), and pep

tidoglycans [37]. The other major components of the cell wall 

include mannose-containing biomolecules, including man-

nose-capped lipoarabinomannan (LAM), lipomannan (LM), 

and mannoglycoproteins [37]. Among the cell wall compo-

nents, LM and LAM are major glycolipids and are thought to 

play an important role in TB pathogenesis through modula-

tion of the host immune functions [38]. Mtb invasion starts 

with host recognition of Mtb outer surface molecules that can 

bind to the host pathogen-associated receptors, including 

toll-like receptor (TLR) and the c-type lectin family [35,39-41]. 

  TLR is the best-characterized innate immune receptors. In 

mycobacterial infection, several TLRs are involved in recog-

nition of Mtb components, and activation of the innate im-

mune responses. For example, mycobacterial DNA exerts an 

immunostimulatory response through activation of TLR9 via 

its 5´-CG-3´ CpG motif [42]. The mycobacterial glycolipids, 

including LM and PIM, are the main factors that activate TLR2 

[43]. Several mycobacterial antigens, including a 19-kDa lipo-

protein, activate innate immune responses through TLR2 

[44]. In addition, several antigens are reported to activate 

TLR4 during a mycobacterial infection [45-47]. A potential 

role of TLR8 was suggested in TB-susceptibility in male TB 

patients, and in macrophage immune responses to BCG in-

fection [48], although the detailed mechanism is not known. 

Previous studies have reported the role of TLRs in mycobac-

terial infection in the context of protective immunity and im-

munopathogenesis. Although this review does not go into a 

detailed discussion of TLR functions during TB, in vivo infec-

tions, and human genetic studies have demonstrated a par-

tially redundant role of the TLRs in the host defense against 

TB infection. Indeed, multiple TLR mutations (TLR2 and TLR9 

double knockout mice) led to greater susceptibility to Mtb in-

fection [35,47,49,50].

  The activation of the innate host defenses triggers intracel-

lular signaling cascades, which results in the production of 

proinflammatory cytokines and chemokines, antimicrobial 

proteins, and antigen presentation [47]. Importantly, macro-

phages activated by Mtb recognition produce mainly proin-

flammatory cytokines, including tumor necrosis factor (TNF)-α, 

IL-1β, IL-18, and IL-12. An in vivo study demonstrated a criti-

cal requirement of TNF-α for protective immunity and sur-

vival after Mtb infection, as well as for granuloma formation 

[12]. Further genetic studies demonstrated an IL-12 receptor 

deficiency in patients with severe mycobacterial infection 

[51,52]. 

  In the development of a vaccine, TLR ligand formulation 

has been suggested as having potential effects on immunos-

timulation as a vaccine adjuvant [53]. Recent studies have re-

vealed the protective effects of glucopyranosyl lipid adjuvant, 

a TLR4 agonist, in combination with ID93, a TB vaccine anti-

gen, to boost Th1 immune responses [54,55]. Furthermore, 

routes of vaccine delivery should also be considered in the 

design and development of vaccines. Thus, the adjuvant ac-

tivity may require diverse TLR stimulation in the context of 

vaccine administration. For example, TLR5 signaling is po-

tentially involved as a mucosal adjuvant in airway structural 

cells. Moreover, a recent study has shown that the adjuvant 

activity of a C-type lectin Mincle ligand, a synthetic analog of 

the mycobacterial glycolipid trehalose-6,6-dimycolate, re-

quires MyD88-dependent mechanisms for induction of Th1 

and Th17 immune responses [56].

Adaptive immune responses against TB
It is believed that the cellular immune response is an essen-

tial part of our protective immunity against TB. Although Th1-

type CD4+ T cells producing interferon (IFN)-γ and TNF-α 

are necessary for protective immunity [10,11], recent studies 

of a cohort of BCG-vaccinated South African infants revealed 

that the protection against TB was not associated with the fre-

quency of T cells producing IFN-γ, TNF-α, and IL-2 [57]. In 

addition, IL-17-producing CD4+ T cells are also protective 

and are required for the production of chemokines; the C-X-

C motif chemokine ligand (CXCL) 9, CXCL10 and CXCL11, 

and for accumulation of IFN-γ-producing CD4+ T cells in the 

lung [58]. IL-17-mediated induction of CXCL13 in the lung is 

also crucial for recruiting CXCR5+ T cells within lymphoid 

structures, suggesting a significant role for the IL-17-CXCL13 
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pathway in improving the effects of a mucosal vaccine against 

TB [59]. Additionally, the cationic liposome adjuvant CAF01 

(CAF01 is cationic adjuvant formulation 01), is beneficial for 

expansion of antigen-specific, long-term Th17 memory cells, 

and primes the Th1 and Th17 responses when challenged 

with an Mtb infection [60]. 

  The BCG vaccination requires activation of the IL-23/IL-17 

pathway for Th1 protective immunity [61]. Current vaccine 

development against TB is focused on induction of Th1 and 

Th17 memory cell proliferation, and immune responses for a 

protective outcome, while inhibiting immunosuppressive IL-

10 responses [62,63]. However, in the absence of IL-10, the 

BCG-induced Th1-cell immune responses occur in an IL-

17-independent manner [61]. The immunotherapeutic ef-

fects of BCG should be determined to prevent excessive in-

flammation caused by Th17 cells, whilst fine-tuning the total 

IFN-γ- and IL-17-mediated immune responses [64]. It is not-

ed that modulation of the appropriate protective immune re-

sponses is mediated through enhanced CD8+ T cell activity, 

producing IFN-γ and an increase in the total γδ T cell popula-

tion, in parallel with a reduction in Th17 cell numbers [64]. 

  Although a Th1/Th2 balance is important and required for 

a vaccination response [65], earlier studies have shown that 

CD4+ Th2 cells are detrimental or do not participate in pro-

tective immunity during TB infection [66,67]. More recently, 

a significant role for B cells in shaping the host defense against 

Mtb infection has been suggested, mediated at least in part 

by decreasing the mycobacterial burden in the tissues, and 

by reducing the resultant inflammatory responses [68,69]. 

Notably, a recent pioneer study of a multiple antigen-pre-

senting system to increase B-cell activation, as well as Th1 

and Th17 responses, indicated its potential in the design of 

subunit vaccines with enhanced protective effects, mediated 

by multiple immune stimulation [70]. The knowledge obtain

ed from studies of host immune responses during TB infec-

tion will contribute to the design of new TB vaccines and drugs. 

Autophagy and its implication in vaccine development
Autophagy is an intracellular process for maintaining homeo-

stasis during starvation or other stress conditions, including 

infectious stress [71]. It is now clear that the autophagy path-

way is an essential component of the immune response against 

Mtb [15,16,72]. Since Mtb modulates phagosome maturation 

via various tactics in its attempts to evade the host immune 

systems, antibacterial autophagy activation through exoge-

nous stimuli, including IFN-γ, vitamin D, rapamycin, as well 

as several TLRs, contribute to enhanced phagosomal acidifi-

cation of Mtb within the host phagocytes [16,72-74]. 

  As autophagy plays an important role in the delivery of in-

tracellular materials to stimulate adaptive immune respons-

es, it has been suggested that autophagy contributes to vac-

cine stimulation of protective immunity through enhancing 

antigen presentation to T cells [75-78]. Recent studies to dis-

cern the mechanisms of the yellow fever vaccine, YF-17D, have 

shown that YF-17D-induced GCN2 expression induces au-

tophagy activation which enhances antigen presentation to T 

cells [76]. Since YF-17D is one of the most successful human 

vaccines [79], these findings are encouraging, and suggest 

that autophagy activation should be considered in the devel-

opment of an improved TB vaccine. Previous studies on au-

tophagy and the improvement of vaccines revealed that au-

tophagy-activation in antigen-presenting cells led to enhance-

ment of Mtb localization with autophagosomes and lysosomes, 

and increased Th1-mediated protection, in a mouse infection 

model [80].

  Recent findings using DNA vaccines co-encapsulated in 

two Mtb plasmids, Ag85B and the kinase-defective mamma-

lian target of rapamycin, suggested that autophagy activation 

during DNA vaccination elicited higher antibody responses 

as well as production of IFN-γ and IL-2 in the spleen [81]. These 

data strongly suggest an important role of autophagy in DNA 

vaccines that induce a protective immune response [81]. Ad-

ditionally, the virulent Mtb strain (H37Rv) impaired autopha-

gosome-lysosome fusion through the ESX-1 system, whereas 

avirulent Mtb (H37Ra) and BCG did not inhibit autophagic 

flux [82]. The inhibitory effect of virulent Mtb on autophagy 

activation was counteracted by treatment with rapamycin, 

which led to enhanced IL-12 production by DC and expan-

sion of Th1 responses during Mtb infection [82]. To date, vac-

cine efficacy studies using autophagy activation have been 

performed in vitro and at the concept level. Future studies 

are urgently needed to clarify the role of autophagy in TB pre-

vention, using multiple animal models and clinical trials. 

Potential Vaccine Antigens for Protection 
against TB

Numerous efforts have focused on identifying new mycobac-

terial antigens for the development of an effective TB vaccine. 

We discuss the principal mycobacterial protein antigens and 

their implications in the development of a TB vaccine (Table 1). 
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Antigen 85 complex 
The antigen 85 (Ag85) complex comprises the mature secre-

tory proteins of Mtb and BCG, and is encoded by three sepa-

rate genes on the mycobacterial genome; it consists of three 

related antigens, Ag85A (32 kDa), Ag85B (30 kDa), and Ag85C 

(32.5 kDa) [83,84]. These proteins exhibit enzymatic mycolyl 

transferase activity and are pivotal constituents for the bio-

synthesis of the mycobacterial cell wall during the pathogen-

esis of TB [85,86]. The Ag85 complex can be detected in the 

blood and sputum of pulmonary TB patients, the cerebrospi-

nal fluid of TB meningitis patients, as well as in mycobacterial 

liquid culture media, and thus is regarded as a prominent 

marker for TB diagnosis [87,88]. Ag85A and Ag85B are the 

major Mtb secretory proteins , and display key immunopro-

tective activities against TB in mouse and guinea pig infec-

tion models [89]. 

  Clinical trials using viral vectors or protein adjuvants, in-

cluding Ag85, have been undertaken to develop a replace-

ment for the BCG vaccine. Modified vaccinia virus Ankara 

(MVA) 85A, is a recombinant strain, expressing Ag85A of Mtb 

that uses MVA as delivery system [90]. BCG-induced protec-

tion was enhanced by boosting with MVA85A in the mouse 

[91], guinea pig [92], and rhesus macaque models [93]. Addi-

tionally, MVA85A has been evaluated in human subjects, in-

cluding healthy/BCG-vaccinated, BCG-naïve, latent Mtb, and 

human immunodeficiency virus-infected patients in phase I 

clinical trials at Oxford University (UK), since 2002 [94-96], 

and further in phase I and IIa clinical trials in the UK, South 

Africa, The Gambia and Senegal [97-100]. More recently, phase 

IIb clinical trials have evaluated the safety and efficacy of MV

A85A in healthy/BCG vaccinated infants (Fig. 1) [101].

  Hybrid 1 is comprised of two fused, secreted antigens; ear-

ly secreted antigenic target-6 (ESAT-6) and Ag85B [102], and 

was administered with an adjuvant, such as dimethyl diocta-

decyl ammonium bromide-monophosphoryl lipid A [102], 

IC31 [103], and mucosal adjuvant LTK63 [104]. Preclinical 

studies demonstrated that hybrid 1 had a protective effect 

against an Mtb challenge in mouse [104,105] and guinea pig 

models [92,106,107]. This fusion protein was further investi-

gated in a recent phase I clinical trial in which hybrid 1 was 

shown to be strongly immunogenic for both antigenic com-

ponents and appeared safe in TB-naïve volunteers [108].

Regions of differences encoded proteins
Regions of differences (RD) encoded proteins, which are pres-

ent in Mtb, M. africanum, and M. bovis genomes but absent 

from all BCG sub-strains and most environmental non-tu-

berculous mycobacteria [107,108], are promising candidate 

antigens for TB diagnosis and potential vaccines [109-111]. 

The 6-kDa ESAT-6 and culture filtrate protein 10, crucial com-

ponents located in RD1 region, perform the dual roles of T 

cell activation and macrophage inhibition [112], and are pres-

ent in the cell wall and culture supernatants of bacilli [113,114]. 

Previous studies have shown that the H56 subunit vaccine, a 

Table 1. Potential candidates for TB vaccine in Mycobacterium tuberculosis protein antigens

Antigen type (localization) Name Biological function

Secretory antigen Ag85 Ag85A, Ag85B and Ag85C 
Mycolyl transferase enzyme 
Required for biosynthsis of the mycobacterial cell wall
Prominent marker for TB diagnosis 

TB10.4 Identified in TB patients  
Highly immunogenic feature.
Fuse with Ag85B and represent a more strong protective activity

ESAT-6 Early secreted antigenic target-6 
Encoded in RD1 region
Vaccine candidate: Ag85B-ESAT-6/CAF01 
Secreted by the ESX1 system

CFP10 Culture filtrate protein 10  
Encoded in RD1 region
Highly immunogenic T cell antigens
Secreted by the ESX1 system

Intracellular antigen HSP70 Heat shock protein
70 kD molecular intracellular chaperone including coupled ATPase 
Appear to function in receptor-mediated antigen internalization 
Bind to antigenic peptides and result in more effective generation of antigen-specific T cell 

TB, tuberculosis; RD1, regions of differences 1.
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fusion-protein incorporating ESAT-6, Ag85B, combined with 

Rv2660c, conferred protective immunity, promoted CD4+ T 

cell responses, and controlled reactivation when administered 

post-exposure in mouse models of latent TB [115].

  Several previous studies have investigated the role of Ag85B-

ESAT-6 (early secreted antigenic target of 6 kDa) as a highly 

efficient vaccine against TB [102-104]. The TB subunit vac-

cine containing Ag85B-ESAT-6/CAF01 induced sustained 

protective vaccine effects by inducing the proliferation of 

memory CD4+ T cells with TNF-α(+)IL-2(+) and IFN-γ(+)

TNF-α(+)IL-2(+) multifunctional profiles [116]. Additionally, 

a novel TB protein, designated TB10.4, has been identified in 

infected TB patients and is considered a potential vaccine 

candidate because it induces considerable protection against 

TB [117]. Although Ag85B-ESAT-6 is an effective vaccine can-

didates, the new vaccine candidates as a substitute for ESAT-6 

is required because ESAT-6 alone is also highly immunogenic. 

Previous study suggested that ESAT-6-related protein TB10.4, 

which was recognized by CD8+ T cells following infection 

with BCG and Mtb [118], is attractive vaccine candidate. Fur-

thermore, a fusion protein elicits a greater response, for ex-

ample, fusing Ag85B to TB10.4 produced induces a more ef-

fective immune response and was more highly protective 

against TB compared with vaccination with BCG or the indi-

vidual antigens [116]. The fusion protein Ag85B-MPT64-Mtb8.4 

had increased immunogenicity; i.e., induced greater cellular 

and humoral immune responses in mice, than Ag85B alone 

[117].

Other antigens for vaccine candidates
A novel approach has focused on the identification of vaccine 

candidates isolated from various body fluids from humans 

and animals infected with TB [119-121]. Reversed-phase high-

performance liquid chromatography and mass spectrometric 

analysis identified several Mtb proteins (MT_1721, MT_1694, 

MT_2462, and MT_3444) from lung lesions and urine sam-

ples of pulmonary TB patients as candidate antigens for a vac-

cine and/or diagnostic assays for active TB [119]. Multiple ef-

forts have focused on improving the immunogenicity of CD8+ 

-and-CD4+ T cell activity by potent vaccine antigens [62]. A 

recent study of the MT1721-containing subunit and a DNA 

vaccine showed that use of MT1721 as the priming and boost-

ing immunogen resulted in induction of both CD4+ Th1 and 

CD8+ T cell responses, which are required for an effective TB 

vaccine [122]. Moreover, urease-deficient BCG expressing 

both the Mtb-derived major membrane protein II and heat 

shock protein 70 efficiently activated human monocyte-de-

rived DC, and induced differentiation of naïve T cells to anti-

gen-specific CD4 and CD8 subsets [123]. 

  Recent studies have revealed the role of several Mtb anti-

gens in enhancing protective immunity through DC matura-

tion and Th1 polarization [124,125]. For example, Mtb RpfB 

was found to be effective in DC activation, induced the pro-

duction of high levels of proinflammatory cytokines by DC, 

and robustly activated adaptive immune responses through 

TLR4 activation [124]. Another DC-activating antigen, Rv0577, 

an Mtb complex-restricted protein involved in the methylgly-

Host Immune 
Response 

Phagosome 

Mtb eradication 
by apoptosis-

mediated cell death 

Mtb eradiation 
by phagolysosome 

Mtb uptake 
by 

alveolar macrophage

90-95% of 
Mtb-infected 
individuals 

Active TB Latency TB

5-10% of 
Mtb-infected 
individuals 

Reactivation 

Macrophage      T cells      Fibroblast    Necrotic cells

Dendritic cells    B cells        Mtb         Apoptotic cells

Mtb eradiation 
by auto-

phagolysosome 

Fig. 1. A schematic diagram of host immune system against infection 
of Mycobacterium tuberculosis (Mtb). Mtb is inhaled by aerosols and 
transmitted to the lungs, where it is phagocytized by alveolar macro-
phages and eliminated via various mechanisms including apoptosis 
and autophagy. If the bacteria growth is arrested, but not eradicated, 
in early stage of infection, then the disease is preserved in latent 
condition without symptoms of tuberculosis (TB) in 90-95% of indi-
viduals. The phase is successfully finished with appropriate induction 
of host innate immune responses. Otherwise, in 5-10% of cases, Mtb 
is replicated into macrophages and disseminated to other tissue and 
organ, where TB develops with typical clinical symptoms including 
weight loss, pain in the chest, frequent coughing, and fibrosis of lung.
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oxal detoxification pathway, induced DC maturation and en-

hanced cytokine generation and polarization of Th1 respons-

es [125].

Current Development of Live or Recombinant 
Mycobacterial Vaccines 

There have been numerous efforts made to develop the live 

or recombinant mycobacterial vaccines to replace BCG vac-

cine though we have mainly described the subunit vaccines 

against TB in this review. Among them, several vaccine can-

didates including VPM 1002 (M. bovis BCG ΔureC::hlyHM[R]) 

have been challenged to examine their immunogenicity and 

safety by clinical trials [126]. VPM 1002 was reported as one 

of the most safe and excellent vaccines to induce IFN-γ-pro

ducing T cells and antibody production activities in BCG-na-

ïve and BCG-immunized healthy volunteers [127]. In addi-

tion, MTBVAC01, an attenuated Mtb vaccine candidate with 

an inactivated phoP gene encoding a key virulence protein 

for intracellular mycobacterial growth [128] is found to induce 

superior protective activity to BCG in preclinical studies [129]. 

  Moreover, a double-blind phase 1 trial study showed that 

rBCG30 (recombinant BCG overexpressing Ag85b) had en-

hanced its ability to increase the number of Ag85b-specific 

CD4+ and CD8+ T cells as well as IFN-γ secretion in healthy 

human volunteers [130]. Previous studies showed that the 

Mtb72F, the stability-improved version of M72 construct can-

didate vaccine, exhibited a good clinical tolerance and a high 

immunogenicity in purified protein derivative-negative adults 

[131]. Recently, the phase I/II observer-blind controlled clini-

cal trial study proposed that AS02 (adjuvant)-combined M72 

vaccine induced strong and persistent cell-mediated and hu-

moral immune responses in Mtb-naïve adults [132]. Further 

studies showed that AERAS-422 (research strain AFRO-1), a 

recombinant BCG strain co-expressing perfringolysin O, 85A, 

85B, and Rv3407, had good safety profile and effects on mouse 

vaccine study by enhanced immune responses and increased 

survival to Mtb infection, compared to those vaccinated with 

the parental BCG strain [133]. Other studies revealed that 

MVA85 has a moral security in BCG-vaccinated adolescents 

and children, and a high immunogenicity with strong CD4+ 

T cell responses in both animals and humans [134]. However, 

recent clinical trials using MVA85A or AERAS-422 indicated 

an absence of efficacy and did not show any encouraging re-

sult [101]. So far, none of these recombinant or live vaccine 

candidates have been found to be more effective to be replaced 

with the BCG vaccine. The current and future efforts upon 

these trials with animal and human subjects will provide clear-

er insights into designing and development of effective vac-

cine formulation against Mtb infection.

Conclusion 

The current BCG vaccine confers inconsistent protection 

against TB. The challenges in the development of new TB 

vaccines will be overcome by a better understanding of host-

pathogen interactions during TB infection. Mtb is a success-

ful pathogen that has developed multiple strategies to evade 

the host immune defenses. The innate immune system is a 

critical initial defense mechanism. Recognition of pathogens 

and induction of inflammatory cytokines and antimicrobial 

proteins contribute to the early clearance of Mtb during in-

fection. Additionally, the appropriate induction of innate im-

mune responses is required for establishment of efficient adap-

tive immune responses. If the immune activation is exacer-

bated, deleterious inflammatory responses may contribute to 

the immunopathogenesis of TB. Indeed, the Mtb-containing 

granuloma is a dynamic structure, which comprises immune 

cells in a localized site of infection, and is a hallmark of TB 

immunopathogenesis. Accumulating evidence has established 

a role for  antibacterial autophagy in the defense against TB 

infection. Given the effects of autophagy in the induction of 

antigen presentation and T cell activation, information on its 

clinical applications will facilitate the development of new 

strategies to overcome the ability of Mtb to inhibit phagosom-

al acidification, and finally, in the design of new vaccines aga

inst TB. 

  To date, numerous approaches have been applied to iden-

tify candidate antigens that induce effective CD4+ and CD8+ 

T cell responses. The mycobacterial protein antigens describ

ed in this review are among the best-known immunodomi-

nant antigens, and are involved mainly in activation of the 

host immune responses in vitro and in vivo. Notably, several 

Mtb virulence factor components; i.e., ESAT-6 and other RD 

proteins, induce strong immune responses, making them ex-

cellent vaccine candidates. Despite the promise of some pro-

tein candidates, it is unlikely that any single protein antigen 

will confer protective effects against TB. Moreover, there is a 

lack of information on the effects of these antigens in preclin-

ical and clinical trials. Although there is no live or recombi-

nant candidate vaccine that is more effective than BCG vac-

cine in clinical trials, cumulative clinical studies will clarify to 
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improve vaccine efficacy based on the safety, tolerance, and 

immunogenicity. To develop an effective TB vaccine that could 

replace the current BCG vaccine, the selection system must 

be able to identify candidates using a variety of in vivo models. 
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