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Leaf microbiomes play crucial roles in plant health, making it important to understand the origins and functional relevance of their
diversity. High strain-level leaf bacterial genetic diversity is known to be relevant for interactions with hosts, but little is known
about its relevance for interactions with the multitude of diverse co-colonizing microorganisms. In leaves, nutrients like amino acids
are major regulators of microbial growth and activity. Using metabolomics of leaf apoplast fluid, we found that different species of
the plant genus Flaveria considerably differ in the concentrations of high-cost amino acids. We investigated how these differences
affect bacterial community diversity and assembly by enriching leaf bacteria in vitro with only sucrose or sucrose + amino acids as
possible carbon sources. Enrichments from F. robusta were dominated by Pantoea sp. and Pseudomonas sp., regardless of carbon
source. The latter was unable to grow on sucrose alone but persisted in the sucrose-only enrichment thanks to exchange of diverse
metabolites from Pantoea sp. Individual Pseudomonas strains in the enrichments had high genetic similarity but still displayed clear
niche partitioning, enabling distinct strains to cross-feed in parallel. Pantoea strains were also closely related, but individuals
enriched from F. trinervia fed Pseudomonas more poorly than those from F. robusta. This can be explained in part by the plant
environment, since some cross-feeding interactions were selected for, when experimentally evolved in a poor (sucrose-only)
environment but selected against in a rich (sucrose + amino acids) one. Together, our work shows that leaf bacterial diversity is
functionally relevant in cross-feeding interactions and strongly suggests that the leaf resource environment can shape these

interactions and thereby indirectly drive bacterial diversity.
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INTRODUCTION

In nature, plants are colonized by diverse communities of
microorganisms. A balanced microbial community can work as a
barrier against biotic and abiotic stress, helping to sustain plant
health. On the other hand, failing to establish a normal microbiota
can have devasting effects [1]. In-depth descriptive studies have
shown that the composition of the plant microbiome depends on
many factors [2-4], but a significant part of these differences can
be attributed to networks of interactions among microorganisms
[5, 6]. Besides shaping the microbiome, these interactions play
critical roles in maintaining their stability, for example to invaders
[6, 71 and could help explain the astounding genetic diversity
found among leaf bacteria, even in single plant populations [8].
Given the importance of these interactions, increasing the
understanding of how they arise and how diversity influences
them, may help develop better strategies to increase plant
resilience.

Microbial taxonomic diversity in plant tissues generally follows a
gradient from high in roots to lower in leaves, with relatively few
taxa that further colonize the leaf apoplastic space as endophytes
[1, 9, 10]. This limitation is due to strong constraints on microbial
life in the apoplast, including the tight regulation of nutrient

resources imposed by plants, presumably in part to limit microbial
growth [11-13]. Bacterial survival requires at least basic nutrients
like carbon and nitrogen. Both sucrose, the primary sugar
produced in leaves and amino acids are found in the apoplast
[14, 15] and can play important roles in bacterial nutrition and
virulence [16-18]. However, their availability is unstable and varies
both between plant species and within plant species, for example
due to diurnal fluctuations [19].

The lack of resources in plant apoplasts is evident when it is
considered that an apparently fundamental trait of bacterial leaf
pathogens is the ability to mobilize resources with the help of
batteries of secreted effector proteins [20, 21]. Non-pathogenic
strains (i.e, commensals), however, have fewer adaptations to
manipulate plant nutrient availability and therefore are probably
more directly reliant on scavenging nutrients [22]. For example,
commensal Burkholderia and Agrobacterium express diverse
transporters for ribose, xylose, arabinose and urea upon injection
into Arabidopsis thaliana leaves [12]. For colonizers like these,
metabolic interactions with co-colonizers are likely to play
important roles helping them gain nutrition. Specifically, resource
limitation increases the likelihood that cooperative or even
mutualistic interactions arise, including metabolic cross-feeding
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[23-25]. Such cooperative interactions can also be beneficial by
making communities more resilient to fluctuating nutrient
availability [26]. Although it is speculated that microbe-microbe
interactions in leaves involves nutrient exchange, it is not yet clear
how widespread this is and whether cooperation may impact the
diversity and establishment of the leaf community [27].

Here, we investigated how the apoplast nutrient environment
may influence the arisal of metabolic interactions among bacteria.
As a model system, we compared plant species in the genus
Flaveria that use different photosynthesis strategies (C3: F. robusta,
C4: F. trinervia). Although they are closely related, the evolution of
C4 photosynthesis has had direct and indirect effects on traits like
leaf metabolism [28, 29] and leaf structure [30]. Thus, we
hypothesized that these differences would be likely to affect the
arisal of metabolic interactions. To address this question, we used
an in vitro community enrichment approach and dissected inter-
bacterial interactions at the strain level using metabolomics,
genomics and molecular tools. Diverse leaf bacteria have the
potential to cross-feed and we found that cross-feeding potential
correlated with a more nutrient-poor apoplast environment where
survival of individuals is limited. Additionally, we found that
metabolic interactions sustain taxonomic diversity across vastly
different nutrient regimes and that partitioning of cross-feeding
niches can sustain strain-level genetic diversity. Thus, our results
suggest that metabolic interactions help bacteria cope with
nutrient limitation in host plants and that leaf traits have the
potential to shape leaf microbiomes.

METHODS

Recovery and metabolomic analysis of leaf apoplast fluid from
lab plants

Flaveria robusta, F. linearis and F. trinervia plants were generated from
cuttings and grown under controlled conditions at an average day/night
temperature of 25°C/22°C and a photoperiod of 16 h. Leaf samples were
collected over the course of two years: F. linearis was sampled in March
2020 and July 2020; F. robusta was sampled in March 2020, June 2020 and
April 2021 and F. trinervia was sampled in March 2020. Each time 2 samples
were taken from 2-4 plants of each species. Apoplast fluid was extracted
from fully developed leaves by infiltrating them with sodium phosphate
(100mM, pH 6.5) under vacuum in a syringe and recovering it by
centrifugation, similar to Gentzel et al. [31]. An infiltration ratio, used later
to correct the metabolite peak areas for the dilution that occurred during
infiltration, was calculated by dividing the mass of buffer that went into the
leaf over the initial leaf weight (W;,s — Wip;) / Wi, After storage at —20°C,
the samples were subjected to metabolomic profiling via untargeted
UHPLC-HRMS. Full details on the apoplast recovery as well as UHPLC-HRMS
parameters and data analysis can be found in the Supplementary Methods.

In vitro enrichment and characterization of leaf microbiomes
under different nutrient regimes

Enrichment of leaf microbiomes from Flaveria trinervia and Flaveria
robusta. Cuttings from F. robusta and F. trinervia were grown in an
outdoor garden for two months (Jena, Germany) to allow natural
colonization by microorganisms. From each species, fully developed leaves
from different plants were collected and pooled together into single
samples. Leaves were weighed and washed three times in sterile water to
remove dirt and insects. Leaf microbial extracts were prepared by
macerating the washed leaves in 1XPBS+0.02% Silwet and adding
20% glycerol before storing at —80 °C. About 1000 CFUs (estimated by
plating) were pre-cultured in M9 broth with trace elements, vitamins,
11 mM sucrose, 0.2% w/v casamino acids (Difco), 200 mM NH,Cl and 200
pg/mL of cycloheximide to limit eukaryotic growth. After washing cells and
standardizing to an ODggonm Of 0.3, the pre-culture was used to inoculate
three replicates of the two enrichment M9 media supplemented with
NH,CI (33 mM) and either no casamino acids (S-CA) or 0.2% m/v casamino
acids (S + CA). For each 48-h passage of the enrichment, the ODggonm Was
recorded and 5 pL of homogenized enrichment were transferred to a new
plate with fresh media. At the last passage, cells were collected for DNA
extraction and to prepare glycerol stocks stored at —80 °C. Details of the
entire procedure can be found in the Supplementary Methods.
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Characterization of bacteria in original leaf extracts and in enrichments. To
isolate and identify bacteria in the communities, 25 isolates were
recovered from the initial leaf extract glycerol stocks and from the glycerol
stocks from the twelfth enrichment passage of each condition (150 total -
the number of strains were chosen based on feasibility to handle and
characterize them). Isolates enriched from F. robusta are named FrLE, Fr-CA
or Fr++CA (from leaf extracts or from enrichments without or with casamino
acids, respectively) and similarly from F. trinervia, FtLE, Ft-CA or Ft+CA. All
isolates were identified by Sanger sequencing of the 16S rRNA gene.
Additionally, bacterial communities in the twelfth enrichment passage
were characterized by 16 S rRNA gene amplicon sequencing of the V3-V4
region similar to the two-step approach outlined in Mayer et al. [32] and
explained in detail in the Supplementary Methods. Raw data was analyzed
in R (version 4.0.4, [33]) using the package dada2 (version 1.18.0: [34] and
ordination analyses and figures were created with phyloseq (version 1.34.0;
[35]) and vegan (version 2.5-7; [36]). Further details are given in the
Supplementary Methods.

Whole genome sequencing was performed on three Pseudomonas sp.
(hereafter Pseudomonas) isolates (Fr-CA_5, Fr+CA_3 and Fr+CA_18) and
four Pantoea sp. (hereafter Pantoea) isolates (Fr-CA_6, Fr+CA_20, Ft-CA_14
and Ft+CA_17). For this, DNA was extracted, purified and sent to Microbial
Genome Sequencing Center (Pittsburgh, USA) for sequencing on the
NextSeq 2000 (lllumina) platform at a depth of 300 MBp (~50x for
Pseudomonas strains and ~60x for Pantoea strains). The genomes were
each assembled using SPADES (3.14.1) and average nucleotide identity
(ANI) between the different isolates of each genera was calculated in Kbase
[37]. Sequence variants (SNPs and indels) compared to the Pseudomonas
siliginis D26 reference genome (assembly accession GCF_001605965.1)
were called by mapping the raw sequencing reads from each P. siliginis
strain using SNIPPY (version 4.6.0). Further details are given in the
Supplementary Methods.

Assessment of the isolates carbon preferences and cross-
feeding potential

Production of spent media and evaluation of cross-feeding interactions.
After testing all isolates for their growth patterns in the media they were
enriched in, for potential auxotrophies and sucrose utilization in presence
of other nutrients (see Supplementary Methods for full details on
evaluation of the isolates carbon preference) we concluded Pseudomonas
strains must have cross-fed from Pantoea and this was investigated in-
depth. Pantoea isolates were grown in S-CA (sucrose-only) media and after
48 h, the supernatant was collected by centrifugation and profiled by
UHPLC-HRMS. Pseudomonas strains were first precultured in R2A broth and
then inoculated in the Pantoea spent media. Growth (ODggonm) and
metabolite consumption were recorded after 48 h. The same procedure
was followed to assess the cross-feeding potential of several leaf-extract
isolates (FrLE and FtLE) towards Pseudomonas.

Competition between Pseudomonas strains while cross-
feeding

To evaluate whether fast growing Pseudomonas would outcompete
slow-growing strains while cross-feeding from Pantoea, we tagged the
isolates Pseudomonas Fr-CA_5 (fast grower) and Pseudomonas Fr+CA_3
(slow grower) with the fluorophores mTagBFP2 and mOrange2,
respectively, making them clearly distinguishable for colony counting.
We used the delivery plasmid systems pMRE-Tn7-140 and pMRE-Tn7-144
developed by Schlechter et al. [38] (see Supplementary Methods for
details). Next, we set three different experiments: in the first one, the
tagged strains were combined individually with Pantoea Fr-CA_6 or
together in a full mix (both Pseudomonas strains and Pantoea) and
inoculated in black 96-well plates containing S-CA media. The fast-
growing Pseudomonas isolate was added at half the density of the slow-
growing isolate. The plate was incubated in a BioLector | (m2p-labs
Beasweiler, Germany) at 500 rpm, 30°C with humidity control. The
controls (each Pseudomonas alone with Pantoea and Pantoea alone)
were passaged every 24 h eight times, while the full community was also
passaged four times every 48 h. After each passage, samples were taken
for CFU counts. Growth of Pseudomonas Fr+CA_3 was monitored by
normalizing the red filter channel signal to the biomass signal (more
details are given in the Supplementary Methods).

In the second experiment, the two tagged Pseudomonas strains were
grown either in monoculture or in co-culture in S+ CA over four 24-h
passages. This experiment was carried out in clear 96-well plates and
incubated in an orbital shaker at 28 °C and 220 rpm. The ODggonm and the
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fluorescence of the mTagBFP2 and mOrange2 were read in a Tecan Plate
Reader at the time of passaging (more details in Supplementary Methods).

For the third experiment, the fast growing strains (Pseudomonas Fr-
CA_5:mTagBFP2 and Pseudomonas Fr+CA_18) and the slow growing
strains (Pseudomonas Fr+CA_2 and Pseudomonas Fr+CA_3:mOrange2)
were combined in all possible pairs and passaged six times on Pantoea Fr-
CA_6 spent media. Each strain was also inoculated in monoculture. The
incubation conditions, as well as the monitoring parameters for ODggonm
and fluorescence, were the same as in the previous experiment. The used
media from the 1st passage was centrifuged (5000 rpm for 5min) and
40 pL of the supernatant were collected for UHPLC-HRMS analysis. The last
passage was plated out in LB agar to count CFUs of each strain.

Evaluating link of cross-feeding efficiency and colonization to
host species

In-planta testing of Pseudomonas colonization. We tested the ability of
two Pseudomonas strains: Fr-CA_5 and Fr+CA_3 to persist in leaves of F.
robusta or F. trinervia. For this we inoculated three-week old cuttings
grown in potting soil with a washed cell suspension of either Pseudomonas
alone or in combination with Pantoea (ODgggnm 0.002 of each). The plants
were kept in a growth chamber. After 10 days, the leaves which had been
inoculated were harvested, surface sterilized first with 2% bleach + 0.02%
Triton, followed by 70% ethanol to remove surface bacteria and then
washed three times with sterile water. They were then processed to obtain
CFU counts/g of leaf. The inoculation was repeated in two fully
independent experiments for each species. See Supplementary Methods
for full details.

Assessing cross-feeding potential of Pantoea isolates. Following the same
procedure as before, Pantoea isolates from all enrichments (Fr + CA, Ft -CA
and Ft +CA) were tested for their potential to cross-feed Pseudomonas.
Samples of the supernatant were taken after 48 h and subjected to UHPLC-
HRMS. To test for inhibitory effects, the spent media of the isolates Pantoea
Ft-CA_14 and Pantoea Ft+CA_17 were diluted 1:2 with spent media of
Pantoea Fr-CA_6 before growth of Pseudomonas. Full details of these
experiments are specified in the Supplementary Methods.

SPRINGER NATURE

Pantoea and Pseudomonas experimental adaptation

To address whether the nutrient environment affects the cross-feeding
interactions, we passaged the two tagged Pseudomonas (Fr-CA_5:mBFP2
and Fr+CA_3:mOrange2) together with either Pantoea Fr-CA_6 or Pantoea
Fr+CA_20 on the two different media: S-CA or S+ CA. The precultures
were prepared and diluted as before, but in this case, 10 pL of the Pantoea
suspension (ODggonm = 0.2) were mixed with 5uL of each Pseudomonas
strain (ODgoonm = 0.2) and inoculated into 180 uL of the corresponding
media. Each community had four replicates. The communities were
passaged every 24 h for 25 days. At passage 22, the communities that had
been growing in S-CA were transferred to S+ CA and vice versa. The
ODgoonm and fluorescence were measured as before (See also Supple-
mentary Methods).

RESULTS

Leaf apoplasts have plant species-specific availability of
potential nutrient resources

To get a first idea of the nutrient environment that leaf colonizing
bacteria are exposed to upon entering the apoplast, we extracted
apoplastic fluid from three species of Flaveria that each use
distinct photosynthesis pathways (Fig. 1A). F. robusta utilizes C3
photosynthesis, F. trinervia utilizes C4 photosynthesis and F.
linearis uses an “intermediate” photosynthesis strategy. Com-
pounds were identified as distinct peaks in the untargeted UHPLC-
HRMS profiles. Constrained analysis of principal coordinates based
on all detected compounds showed an overall clear separation of
the plant species (Fig. 1B, PERMANOVA p value = 9.999e-05).
Using a targeted approach in parallel, we could quantify amino
acids in the extracted apoplastic fluid. Among all detected amino
acids, there were significant differences between plant species
(Kruskal Wallis p value < 0.05) in all except Glu and Trp. Among the
seven amino acids with highest metabolic costs (56) the aromatics
(Tyr, Trp and Phe) were significantly more abundant in F. trinervia
than in F. linearis and tended to be higher in F. robusta (Fig. 1C).
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Three of the other four could also be detected (Met, lle, Lys, not
His) and all were significantly higher abundance in F. trinervia than
the other two species (Fig. 1C). Thus, the nutrient landscape for
potential leaf apoplast colonizers differs between plant species,
with some like F. trinervia potentially offering higher amino acid
availability.

Nutrient and taxonomic diversity shapes microbiome function
in Flaveria leaf enrichments

We tested whether and how the nutrient landscape can influence
assembly of leaf bacterial communities (Fig. 2A). We enriched
bacteria derived from leaves of F. trinervia and F. robusta (Fig. 2B) in
a base minimal media with sucrose as the only carbon source and
either no amino acids (S-CA) or addition of casamino acids (S + CA)
at low levels similar to those previously reported in the apoplast
[39]. The final ODgponm Was used as a measure of productivity
(function) of the enrichments (Fig. 2C). In the S-CA condition where
sucrose was the only carbon source, the F. robusta enrichment was
slightly more productive than the F. trinervia enrichment. Addition-
ally, enrichments from F. robusta tended to increase their
productivity when the potential carbon and nitrogen sources were
richer (S + CA), but those from F. trinervia did not.

To have a broader picture of their taxonomic composition, we
conducted amplicon sequencing on the enriched communities
(Fig. 2D). Despite diverse bacteria in the original leaves (Fig. 2D),
enrichments selected very few taxa, which was not affected by
additional resource availability in the form of amino acids. F.
trinervia enrichments were fully dominated by Pantoea sp.
(Fig. 2D). F. robusta enrichments also contained a high prevalence
of Pantoea, but in combination with Pseudomonas (Fig. 2D). To
investigate why the productivity differed between the enrich-
ments, we collected 25 random bacterial isolates from the F.
robusta and F. trinervia S-CA and S+ CA communities (isolates
designated as Fr-CA_X, Fr+CA_X, Ft-CA_X or Ft+CA_X, where X is
a unique isolate number), identified them taxonomically (Fig. 2E)
and tested the growth of each in S-CA and S + CA (Supplementary
Table 2). The isolates included multiple individuals of both
Pseudomonas and Pantoea, the only genera that were found
using 16 S data. In the S-CA community, the fraction of Pantoea
was higher than in S + CA (67% vs. 16%, respectively, Fig. 2E). All
tested Pantoea isolates could grow on sucrose or amino acids as a
sole carbon source (Supplementary Table 2). The fact that
productivity did not increase in F. trinervia enrichments with

The ISME Journal (2022) 16:2280 - 2289

casamino acid addition suggests that another resource must have
limited additional growth. All tested Pseudomonas isolates could
use amino acids as a sole carbon source (Supplementary Table 2).
Thus, the increased productivity in the F. robusta S+ CA
enrichment suggests that they could make use of the additional
resources. Pseudomonas isolates did not use sucrose as a sole
carbon source even though they were present in the S-CA
(sucrose-only) enrichment (Supplementary Table 2). Therefore,
Pseudomonas in this enrichment may have been somehow
dependent on Pantoea, which could explain the higher produc-
tivity in F. robusta enrichments compared to F. trinervia when
sucrose was the only carbon source.

Cross-feeding on diverse metabolites sustains Pseudomonas in
the absence of a primary carbon source

We then asked how Pseudomonas isolates survived in the S-CA
enrichment if they could not utilize sucrose directly. One
possibility is they were auxotrophs and could only grow when
amino acids were available in the environment (either in S + CA or
provided from Pantoea in S-CA). However, all tested Pseudomonas
isolates could grow on glucose without amino acid supplementa-
tion (Supplementary Table 2), suggesting that they were not strict
auxotrophs.

We tested whether Pantoea produced other metabolic by-
products that Pseudomonas could grow on (Fig. 3A). Indeed, all
Pseudomonas isolates from the sucrose-only enrichment (Pseudo-
monas Fr-CA) could grow on spent media of a Pantoea isolated
from the same enrichment (Pantoea Fr—CA_6, Fig. 3B). To
determine what Pseudomonas consumed, we performed untar-
geted metabolomics on the spent media before and after growth
of three Pseudomonas isolates and considered metabolite peaks to
be consumed if their area was strongly reduced (log2FC < —2,
FDR < 0.05). With this strict cutoff, we detected uptake of between
23-25 metabolites by each strain, including 2-hydroxybutyric acid,
hypoxanthine, spermidine and, in one of the isolates, alanine
(Supplementary Table 3). This indicates a complex metabolic
dependency of Pseudomonas on Pantoea in the sucrose-only
enrichments. We did detect trace levels of glucose and/or fructose
in the Pantoea spent medium (hexoses are indistinguishable with
this method), but they were not significantly taken up (log2FC =
—0.85, p value = 0.36 on average, not shown).

Several isolates from the original leaf extracts (FrLE and FtLE)
could also feed Pseudomonas. The growth on Bacillus
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ODeoonm refers to optical density measured at 600 nm.

FrLE_12 spent medium, for example, was especially high, even
compared to growth on Pantoea spent medium (Supplementary
Fig. 1). Metabolomic analyses suggested that Pseudomonas may
utilize a diverse array of metabolites from this isolate (log2FC <
—2, FDR < 0.05) with little or no overlap with compounds utilized
from Pantoea spent media (Supplementary Table 4). None of the
taxa with potential to cross-feed Pseudomonas were found in the
enrichments, probably due to their lower growth rate in sucrose,
when compared to Pantoea (Supplementary Fig. 1). Overall, these
results suggest that when competition for sucrose dominates
dynamics, Pseudomonas will be limited in cross-feeding partners
but otherwise may be able to persist by feeding on exudates of
diverse leaf bacteria.

Diverse plant-derived Pseudomonas strains cross-feed in
parallel from Pantoea
In the S-CA enrichment, Pseudomonas survived exclusively by
cross-feeding on diverse resources from Pantoea exudates, but in
the S+ CA enrichment, it would have been able to either cross-
feed or utilize amino acids or both. Therefore, we hypothesized
that multiple Pseudomonas strains may exist to optimally utilize
this niche diversity. Indeed, we observed that two Pseudomonas
isolates displayed distinct growth phenotypes on Pantoea spent
medium. Pseudomonas Fr-CA_5 grew earlier and reached max-
imum ODgoonrm faster compared to Pseudomonas Fr-+CA_3 (Fig. 3C
and Supplementary Fig. 2a). A correlated phenotype was observed
in R2A medium, where only the slower cross-feeder switched to
more rapid growth when supplemented with vitamins that were
present in the enrichment medium (Supplementary Fig. 2b). We
predicted that in the S-CA enrichment where cross-feeding was
required, faster cross-feeders would outcompete slower ones to
dominate the mix, while the more diverse nutrient conditions in
the S+ CA enrichment would result in @ more balanced mix.
However, when we checked the phenotype across all Pseudomo-
nas isolates, we found that the strains were in similar ratios in both
enrichments (Supplementary Fig. 2¢c, X2 p=1).

To test whether faster and slower-growing strains could
simultaneously cross-feed from Pantoea, we labeled the slow
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and fast cross-feeder (Pseudomonas Fr+CA_3 and Pseudomonas
Fr-CA_5) with fluorescent tags, which did not alter their growth
patterns on Pantoea spent media (Supplementary Fig. 3a). We
then combined the strains and grew them directly with Pantoea
Fr-CA_6 in sucrose-only media (Fig. 4A). Although the fast cross-
feeder was inoculated with only half the cells as the slow cross-
feeder (see Supplementary Methods), they were approximately
equivalent within 48 h (Supplementary Fig. 3B). However, neither
strain overtook the other after four 48 h or eight 24 h passages
(Supplementary Fig. 3b, ¢, raw signals provided in Supplementary
Fig. 4). In the 24 h passages, the slow grower did reach higher
levels with Pantoea alone than it did together with the fast grower
(Fig. 4B), consistent with a hypothesis of partially overlapping
niches. Total biomass was higher when Pantoea was with
Pseudomonas than alone, similar to productivity observations in
the original enrichments (Supplementary Fig. 4). Interestingly, the
strains could also persist together in the more complex S + CA
media without Pantoea (Supplementary Fig. 5).

Differential niches is also supported in genetic analysis of two
fast-growing and one slow-growing strain. All were identified as P.
siliginis and shared 99.98 to 99.99% ANI (Supplementary Table 5).
Aligned to the closest reference Pseudomonas genome, they
shared about 97,000 sequence variants with only a few hundred
unique to any one genome (Supplementary Fig. 6). Among unique
and potentially disruptive variants in each strain, many were in
genes likely to influence nutrient acquisition, including porins and
carboxylate, sugar and peptide transport proteins (Supplementary
Fig. 6 and Supplementary Methods). Thus, we reasoned that the
strains must have unique nutrient niches whereby fast-growing
strains can dominate only some resources, reducing the growth of
the slow-growers when they are together, but the slow-growers
can persist because they also use unique resources.

Niche differentiation among distinct Pseudomonas strains
maintains diversity during cross-feeding

To test whether and how Pseudomonas strains exploit comple-
mentary niches, we cultured the two labeled Pseudomonas (Fr-
CA_5 and Fr4+CA_3) and two additional fast and slow growing
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isolates (Pseudomonas Fr+CA_18 and Pseudomonas Fr+CA_2,
respectively) individually and in all possible pairs in Pantoea spent
media (Fig. 4C) and evaluated metabolite uptake (niches) and
growth patterns. The pattern of metabolite uptake by the strains
growing alone was consistent with partially overlapping niches.
Several significantly taken up metabolite peaks were shared by all
four isolates (common niches) and each also significantly depleted
unique sets of metabolite peaks (unique niches) (Fig. 4D, E and
Supplementary Table 6). When grown in pairs (Supplementary
Figs. 7-12), most of the common niches and some of the unique
niches were maintained, further supporting partially overlapping
niches. However, new compounds were also taken up, suggesting
some cooperative niche exploration. Similar to previous results
(Supplementary Table 3), the annotated peaks matched to purines
and pyrimidines and to amino acids Trp and lle/Leu in some
combinations (Supplementary Table 6). Over 6 24-hr growth
cycles, growth of individual tagged strains was reduced in co-
cultures compared to monocultures (based on both fluorescence
signal and CFU counts, Supplementary Figs. 13 and 14) but both
strains in co-cultures successfully persisted, further supporting a
lack of competitive exclusion. Notably, Pseudomonas Fr+CA_2
alone or in co-culture had lower total growth (CFUs) than other
combinations (Supplementary Fig. 14). This was apparently not
because of inhibition, since growth of other strains with Fr
-+CA_2 spent media was rather promoted (Supplementary Fig. 15).
A likely explanation is that Fr+CA_2 inefficiently used some
limiting resource thereby reducing growth of itself and co-
colonizers. Regardless, this further highlights the extent of
Pseudomonas commensal strain diversity.

Cross-feeding is selected for in a leaf nutrient-dependent
manner

Two additional lines of evidence suggested that the plant nutrient
landscape could actively select on cross-feeding interactions. First,
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F. robusta and F. trinervia leaves were inoculated with a slow- or a
fast-growing Pseudomonas with or without a partner Pantoea
strain and endophytic growth was measured (Supplementary
Fig. 16a). Alone, each of the two Pseudomonas strains successfully
colonized F. robusta leaves only occasionally, but consistently
colonized F. trinervia leaves at high levels (2-sided t-test, p value =
0.06 and 0.05, respectively). We did not observe differences in
Pseudomonas colonization when it was inoculated together with
Pantoea, but this is likely due to very variable colonization success
(Supplementary Fig. 16a). The inability of a commensal to colonize
the relatively less nutrient-rich F. robusta alone could increase
possible dependence on partners. Second, we found among four
characterized Pantoea isolates (one from each enrichment) a
gradient in their ability to feed Pseudomonas corresponding to the
richness of the origin plant and the enrichment condition. Pantoea
from F. robusta fed Pseudomonas best (Fr-CA better than Fr4-CA)
while Pantoea from F. trinervia supported Pseudomonas hardly or
not at all (Supplementary Fig. 16b). Additional analyses suggest
that differences are likely due to specific exudates, not antag-
onistic traits (Supplementary Note). The cross-feeding differences
between the Pantoea strains do not correlate to their genetic
relatedness: The two Pantoea Fr strains that best support
Pseudomonas growth shared only ~81% ANI, but Pantoea Fr-
CA_6 and the poor cross-feeding Pantoea Ft isolates share ~98.6%
ANI (Supplementary Table 7), consistent with good cross-feeding
emerging as a convergent trait in Pantoea in F. robusta.

Next, we tested the hypothesis that the cross-feeding interac-
tion can be selected on by the nutrient environment by evolving
two communities across 25 24-hr passages (the tagged P. siliginis
Fr-CA:5mBFP2 and P. siliginis Fr+-CA_3:mOrange2 both together
with either Pantoea Fr-CA_6 or Pantoea Fr+CA_20) in two
contrasting nutrient environments (S-CA where cross feeding is
required or S + CA where it is not necessarily needed) (Fig. 5). At
the 22nd passage, the evolved communities were switched to the
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>0.05, *p < =0.05, **p < = 0.01, **p < =0.001, N= 4.

opposite environment for 4 cycles. Thus, we obtained two
outputs: (1) How growth of the Pseudomonas strains with Pantoea
changed (based on fluorescence over the 25 cycles) and (2) How
changes affected growth in the other environment (based on
fluorescence after switching). (Fig. 5 and see additional details
in Supplementary Notes and raw growth data in Supplementary
Fig. 19). Pseudomonas growth could change due to adaptation of
either Pantoea or Pseudomonas or both, so here we refer just to
interaction fitness.

Although each Pantoea was always simultaneously evolved
together with two Pseudomonas strains, each interaction clearly
followed distinct paths (Fig. 5B). The Pseudomonas Fr-CA:5mBFP2
interaction generally fit our hypothesis for how environment
should select on cross-feeding. When evolved in the -CA
environment, the cross-feeding interaction exhibited either no
change or increased (with Pantoea Fr-CA_6 and Fr+CA_20,
respectively) and this came at a cost to fitness in the +CA
environment. When evolved in the richer +CA environment,
fitness did not change or decreased only slightly (with Pantoea Fr-
CA_6) over 25 cycles, but the cross-feeding interaction signifi-
cantly degraded (evidenced by lower growth of the evolved strain
after the switch compared to the naive strain). The Pseudomonas
Fr+CA_3:mOrange2 interaction, on the other hand, evolved in a
way that was very dependent on the Pantoea isolate. With
Pantoea Fr-CA_6, fitness increased over the experiment in both
environments (3/4 replicates in —CA and 4/4 replicates in +CA)
apparently because fitness was coupled across the environments
(evolved replicates that grew better in one environment also grew
better in the other environment after switching). With Pantoea Fr
+CA_20, fitness decreased over the course of the experiment (3/4
replicates in —CA and 4/4 replicates in +CA) with evolved fitness
in each environment again strongly correlated to fitness after
the switch between environments. Together, these results
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demonstrate a more complex but consistent story of selection:
Selection for cross-feeding depends on amino acid richness for
some strains, while for others it is independent of richness but
highly dependent on the cross-feeding partner.

DISCUSSION
Leaf bacteria play important roles in protecting plants from
pathogens and stress via a variety of different mechanisms, so
there is broad interest in understanding the factors that shape
their diversity and abundance [40]. It is increasingly clear that
interactions between microbial colonizers play major roles in
community structuring, whereby the presence of specific micro-
organisms can drastically alter leaf communities [5]. However, the
complications of studying microbe-microbe interactions in-vivo in
leaves severely limits our understanding of the types of
interactions that are important. To overcome this, we used
in vitro enrichment of leaf bacteria under defined nutrient regimes
and could demonstrate that leaf bacteria interact with one
another via metabolic cross-feeding. This supports previous work
that showed that pervasive cross-feeding is possible between leaf-
derived bacteria [41] and that it can explain how a surprising
diversity can subsist on single carbon sources. Our work
additionally showed that cross-feeding can support bacterial taxa
who have no direct utilizable carbon source and that in this case,
they can survive by utilizing only secreted or leaked metabolites
from diverse bacteria. We also showed that environmental
conditions relevant in plants can exert selection pressures on
cross-feeding interactions in bacterial strain-dependent ways.
The cross-feeders in our enrichments consistently were only
Pantoea and Pseudomonas. This was surprising to us, since in
previous studies, the diversity of cross-feeding taxa enriched on
single carbon sources was high due to promiscuous cross-feeding
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interactions [41, 42] and because of our finding that multiple other
bacterial taxa that we isolated from leaves could have fed
Pseudomonas. The most likely explanation is simple resource
competition. Pantoea grew much faster than other leaf isolates on
sucrose, allowing it to become the sole feeder of Pseudomonas.
Pseudomonas also grew rapidly on Pantoea spent medium and
could have thereby outcompeted others for key resources. Our
results do not necessarily mean that cross-feeding partners would
be this restricted in leaves. In contrast to the well-mixed and
homogeneous in vitro enrichment environment where competi-
tion would dominate dynamics, the leaf apoplast is highly
compartmentalized and heterogeneous [43]. Additionally, most
endophytic commensal bacteria in leaves reach only low
colonization density [44]. These factors would decrease the
importance of resource competition and thereby diverse taxa
would be able to establish a niche consuming primary plant-
derived resources and Pseudomonas or others could establish to
take up leaked metabolites. Therefore, cross-feeding interactions
in leaves can potentially arise between taxonomically much more
diverse members than what we observed in enrichments.

It is important to note that our findings that bacterial diversity is
relevant for metabolic interactions among very common leaf
bacteria is based on a culture-dependent approach and a limited
set of isolates. While such culture-dependent work is critical
especially given technological barriers that limit our ability to
directly observe metabolic interactions in leaves, it also means
that we cannot yet fully weigh the relative importance of
metabolic or other (e.g., competitive) interactions among our
isolates or especially uncultivated microbes. On the other hand,
culture independent techniques and modeling can help provide
some insight into the relevance of such interactions. Generally,
inference of inter-bacterial interactions in leaves based on culture-
independent taxa correlations has suggested extensive negative
interactions, but recent improvements that utilize abundance
information suggests that positive interactions have probably
been underestimated [44]. Similarly, experimental results suggest
frequent positive interactions among co-colonizing leaf bacteria
[45, 46]. This might seem unlikely, since ecological models have
predicted that cooperative interactions can destabilize microbial
communities and that competition should therefore benefit hosts
[47]. However, the instability in these models is caused by strong
species dependencies that can easily be interrupted. In contrast,
cross-feeding among leaf bacteria seems to involve weak coupling
and high promiscuity.

This type of cross-feeding involving promiscuous interactions
could even benefit host plants by stabilizing microbiomes to
invasion if cross-feeding networks are redundant enough to leave
few resources for invaders [48]. Additionally, apoplast nutrients are
important regulators of pathogen virulence, so full occupation of
resources by cross-feeding could directly limit damage caused by
them even if they successfully invade [49]. This could explain, for
example, how Pantoea protects crops from pathogenic P. syringae
by decreasing its virulence without eliminating it from the leaf
microbiome [50]. Additionally, cross-feeding would be beneficial if
it allows bacteria to establish who can, upon invasion, switch to
competitive behaviors that protect plants, such as antibiotic
production [51]. Therefore, more thorough investigations into the
role of cross-feeding in interactions between leaf bacteria and
pathogens and its general role in shaping and stabilizing co-
colonizing leaf microbiota are needed, including dissection of how
metabolic networks arise from host resources through the
microbiome.

The three Pseudomonas siliginis isolates we sequenced were
genetically similar with ANI of ~99.98% to 99.99% and
~97,000 shared SNPs against the most similar P. siliginis reference
genome. While more study is needed to understand this diversity,
it appears to be functionally relevant. The sequenced strains had
distinct cross-feeding niches with only partially overlapping
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metabolite uptake profiles, making it possible to cross-feed in
parallel despite different growth rates. In addition, two of the
strains each showed clearly distinct patterns of adaptation when
evolved with Pantoea in two nutrient environments. This diversity
must have originated in the original leaf communities since the
phenotypes appeared both in sucrose-only enrichments where
cross-feeding was required and in enrichments with amino acids
as additional resources. Similar levels of diversity were previously
found in leaf-associated Pseudomonas viridiflava, where a single
OTU (99% 16 S rRNA gene sequence similarity) harbored at least
82 distinct strains (99.9% genome identity), with clearly different
host interaction phenotypes [8]. Commensal Sphingomonas
bacteria were also shown to exhibit extensive diversity in the
presence of secretion systems likely relevant for microbe-microbe
interactions [52]. Given that diverse leaf bacteria from multiple
plant species have been shown to readily engage in cross-feeding
[41], our results strongly suggest that leaf bacterial genetic
diversity has important functional relevance for inter-bacterial
metabolic interactions in leaves and probably wherever they
persist. Since nutrition plays key roles in virulence [53, 54], it also
raises the intriguing question of whether interactions like cross-
feeding may ultimately influence interactions with hosts.

Pantoea isolates also exhibited interesting and surprising
functional diversity. Those from F. robusta enrichments, where
cross-feeding occurred, fed Pseudomonas better than those from
F. trinervia enrichments, probably by producing more of key
metabolites. However, two “good” cross-feeders enriched from F.
robusta were only distantly related (81% ANI), consistent with
inter-species differences [55] compared to 98-99% ANI between
good and bad cross-feeders. This result is consistent with the F.
robusta environment selecting for Pantoea with increased
metabolite secretion, benefitting cross-feeders. This agrees with
in-planta data, where individual bacteria persisted in F. trinervia
leaves alone at higher levels than in F. robusta, possibly due to
relatively lower levels of key nutrients like amino acids methio-
nine, isoleucine, lysine and valine. Except for the aromatic amino
acids, methionine, isoleucine and lysine are three of the four
biosynthetically highest-cost amino acids (together with histidine,
[56]. The availability of these amino acids could also directly affect
exchange of the diverse metabolites we observed here. For
example, cross-fed purines guanine and hypoxanthine are
connected to methionine via the THF cycle. Thus, differences in
the apoplast metabolite landscape could alter selection for traits
underlying cross-feeding. Indeed, experimental evolution of cross-
feeding interactions in contrasting nutrient environments con-
firmed that the nutrient environment and the specific cross-
feeding interaction determine the adaptive path followed by the
strains.

In extreme cases, increased metabolite secretion could result
from evolution of reciprocal cross-feeding between Pantoea and
Pseudomonas specifically, which can in turn lead to strong co-
adaptation [23]. However, this seems unlikely in leaves since
conditions including compartmentalization, low bacterial density
and high bacterial diversity are likely to make interactions
between specific taxa transient, decreasing the likelihood that
reciprocal cross-feeding will arise [57]. Thus, if more metabolite
secretion is a beneficial adaptation in the F. robusta apoplast
environment, it is more likely because Pantoea derives benefits
from  cross-feeding with  diverse taxa rather than
Pseudomonas alone.

It is important to note that our results were based on a single
set of enrichments from Flaveria plants and therefore represent
only a sliver of the interactions that probably happen in a more
diverse leaf microbiome and across more diverse host plants.
However, given the clear evidence that microorganisms influence
one another’s colonization patterns in leaves [5, 6] and the
promiscuity of cross-feeding among leaf bacteria, it seems highly
unlikely that the vast genetic diversity and stable phenotypes
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known to exist among leaf bacteria [8] only developed in response
to interactions with hosts. Whether the most important interac-
tions shaping this diversity are cooperative metabolic interactions
or some other interactions type remain to be seen and this will be
an important future avenue of research. However, our results that
nutrient differences that are relevant in host plants can drive
divergent adaptive cross-feeding responses in closely related
bacterial strains add weight to the argument that metabolic
interactions may plant important roles.

The apoplast is together with the roots a critical site of host
interaction with microbes. While it is not yet clear why some
amino acids and other metabolites differ strongly between
Flaveria species, one possibility is their different photosynthesis
mechanisms. Evolution of C4 photosynthesis in Flaveria has had
diverse effects. For example, higher glutathione turnover in sulfate
assimilation [28] has led to higher cysteine levels in F. trinervia
leaves. While we could not reliably quantify cysteine, it is the
direct precursor to methionine, which was significantly elevated in
F. trinervia apoplast. Thus, links between photosynthesis and
apoplast metabolites are plausible. This is reminiscent of roots,
where the exudate nutrient landscape is key to shaping microbial
communities [58, 59] and differs between different plant species
[60, 61]. Our results strongly suggest that apoplast exudates
influence the arisal of microbial interactions, which in turn help
shape leaf microbiomes [5]. If so, this is an exciting prospect
because it could offer targets for manipulation by plant breeders.

DATA AVAILABILITY

Supplementary methods, figures and tables are provided in the files Supplementary
Information and Supplementary Tables 2, 3, 4, 6, 8 and 11. Scripts and data used to
recreate all figures and supplementary tables are publicly available via Figshare:
https://figshare.com/projects/Niche_separation_in_cross-feeding_sustains_bacterial_
strain_diversity_across_nutrient_environments_and_may_increase_chances_for_sur-
vival_in_nutrient-limited_leaf_apoplasts/125920. Raw sequencing data has been
made publicly available in the NCBI BioProject PRINA778092 and raw metabolomic
data is being made publicly available in MetaboLights under the study MTBLS3719.
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