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1  | INTRODUC TION

Major depressive disorder (MDD) is a mental disorder associated 
with mood disorders, characterized by depressed mood, decreased 
interest, cognitive impairment and even suicidal ideation. It is the 
main cause of global disability,1 and almost 20% of people will 
suffer one episode of depression at some point in their lifetime.2 
Treatments of depression mainly include cognitive behavioural ther-
apy and drug intervention. The pathogenesis of depression is asso-
ciated with disorder of monoamine neurotransmitter levels. Based 
on the pathogenesis, drug treatments include selective serotonin 
reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake 
inhibitors (SNRIs), tricyclic anti-depressants (TCAs) and monoamine 
oxidase inhibitors (MAOIs). Though traditional medications may al-
leviate depressive symptoms in some degree, they work slowly. It 
takes weeks to months for patients to benefit from drug treatment 
when up to 30% of those patients still do not relieve symptoms and 
even develop resistance after receiving medication.3

Unlike traditional anti-depressants, ketamine could reduce 
suicidal ideation and improve mood in a short period of time4 
(Tables 1 and 2). Ketamine is a commonly used anaesthetic and 
analgesic drug. Clinical study showed that intravenous injection 
of 0.5 mg/kg of ketamine for 40 minutes could induce a strong 
and rapid anti-depressant-like response in patients with depres-
sion,5 even in those who failed to treatment with traditional 
drugs. This effect could last 1-2 weeks.6,7 (R,S)-ketamine is a 
racemic mixture comprising equal parts of (R)-ketamine (arket-
amine) and (S)-ketamine (esketamine). Esketamine has five times 
greater affinity for N-methyl-d-aspartate receptor (NMDAR) 
than arketamine.8 Esketamine was approved by Food and Drug 
Administration (FDA) for adult patients with treatment-resistant 
depression (TRD) in 2019. It is the first anti-depressant in 30 years 
with a new mechanism. Several clinical trials demonstrated that 
esketamine nasal spray plus oral anti-depressant improved symp-
toms.9 The response arose at 28 days10 and appeared to persist 
for more than 2 months.11 However, the clinical application of 
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Abstract
Major depressive disorder takes at least 3 weeks for clinical anti-depressants, such as 
serotonin selective reuptake inhibitors, to take effect, and only one-third of patients 
remit. Ketamine, a kind of anaesthetic, can alleviate symptoms of major depressive 
disorder patients in a short time and is reported to be effective to treatment-resistant 
depression patients. The rapid and strong anti-depressant-like effects of ketamine 
cause wide concern. In addition to ketamine, caloric restriction and sleep depriva-
tion also elicit similar rapid anti-depressant-like effects. However, mechanisms about 
the rapid anti-depressant-like effects remain unclear. Elucidating the mechanisms 
of rapid anti-depressant effects is the key to finding new therapeutic targets and 
developing therapeutic patterns. Therefore, in this review we summarize potential 
molecular and cellular mechanisms of rapid anti-depressant-like effects based on the 
pre-clinical and clinical evidence, trying to provide new insight into future therapy.

www.wileyonlinelibrary.com/journal/cpr
mailto:￼
https://orcid.org/0000-0002-2612-4285
http://creativecommons.org/licenses/by/4.0/
mailto:bingjinli@hotmail.com


2 of 13  |     PENG Et al.

esketamine still needs to be concerned. On the one hand, the effi-
cacy of esketamine is controversial. It was found that in the phase 
3 clinical trials, the grouping criteria were not strict. About 22% 
of the patients only resisted to one class of drugs, which meant 
that they were not strictly defined TRD. Patients participated in 
the randomized withdrawal trial were those who had been pre-
viously randomly assigned to esketamine and achieved stable 
remission, leading to a statistically higher response to the drug. 
In addition, in the sole positive phase 3 trial, the mean decrease 
on the Montgomery-Åsberg Depression Rating Scale (MADRS) 
was 20.8 for esketamine vs 16.8 for placebo. Besides, the result 
of meta-analysis showed that the standardized mean difference 
(SMD) of esketamine was similar to the olanzapine-fluoxetine 
combination, and less than the SMD of aripiprazole and queti-
apine. These suggest that esketamine shows no significant advan-
tage over placebo or other drugs approved by FDA. Moreover, one 
of the trials involved older patients and showed non-significant 
results, indicating that the efficacy of esketamine in this demo-
graphic remained unclear. Finally, the rapid onset of response was 
not demonstrated formally. About 8%-10% of patients who took 
esketamine achieved a rapid clinical response, compared with 
5% of placebo. On the other hand, the results of the study 3003 
were not consistent with the FDA requirement for substantial 
evidence of effectiveness. One site in Poland drives the overall 
study result due to a 100% of placebo arm relapses in this study. 
Removement of the outlier site changed the results from signifi-
cant to non-significant.12 So far, the use of esketamine has been 
limited to certified medical offices or clinics in America. Another 
isomer (R)-ketamine is also a potential anti-depressant which is 
undergoing clinical trials.13 It is worth noting that (R)-ketamine has 
greater potency and longer-lasting anti-depressant effects than 
(S)-ketamine in rodents.14-16 In fMRI test, it was shown that (R,S)-
ketamine and (S)-ketamine significantly activated the cortex, nu-
cleus accumbens and striatum of conscious rats, so as the NMDAR 
antagonist MK-801. On the contrary, (R)-ketamine produced neg-
ative response.17 Similar pattern could be observed in clinical 
test.18 These indicate that NMDAR may not be the primary target 
of (R)-ketamine.19 (S)-ketamine and (R)-ketamine are also agonists 
of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid re-
ceptor (AMPAR) and both activated brain-derived neurotrophic 
factor (BDNF)-tropomyosin receptor kinase B (TrkB) pathway. It 
is worth noting that their mechanisms may be different. Study 
showed that (S)-ketamine activated BDNF-TrkB pathway through 
mTOR signalling pathway while (R)-ketamine activated MEK-ERK 
pathway, mediating the activation of BDNF-TrkB pathway.20 In an-
other study, it was shown that (R)-ketamine could activate BDNF-
TrkB pathway and reverse the decrease in dendritic spine density, 
inducing synaptogenesis in the pre-frontal cortex (PFC), CA3 and 
dentate gyrus (DG) of the hippocampus and eliciting sustained 
anti-depressant effects in depressed rodents.15 Nevertheless, 
neither isomer attenuated the reduced BDNF in the PFC of sus-
ceptible chronic social defeat stress (CSDS) mice after 30 min-
utes, indicating that neither isomer improved the level of BDNF or 

induced synaptogenesis.20 Whether the long-lasting anti-depres-
sant effects of (R)-ketamine is related to MERK-ERK signalling is 
unknown. Besides, detrimental side effects of (R)-ketamine are 
fewer than (R,S)-ketamine and (S)-ketamine.15,21 It was observed 
that (S)-ketamine caused a reduction in parvalbumin (PV)-positive 
cells in the medial pre-frontal cortex (mPFC) and DG, while (R)-
ketamine did not. PV-positive cell is related to schizophrenia, and 
this may be the reason why (S)-ketamine produces psychotomi-
metic side effects.15 In addition, side effects of (S)-ketamine are 
associated with mechanistic target of rapamycin (mTOR). The acti-
vation of mTOR signalling after drug abuse contributes to drug-re-
lated behaviours such as excessive drug intake.22 (S)-ketamine 
activates mTOR signalling in the brain regions, and this may lead 
to drug abuse. Moreover, a study using positron emission tomog-
raphy showed that in the conscious monkey, (S)-ketamine but 
not (R)-ketamine could reduce dopamine D2/3 receptor binding 
in striatum.23 It is possible that (S)-ketamine-induced dopamine 
release relates to acute psychotomimetic side effects in humans. 
In addition to ketamine, other drugs24-26 and treatments27-29 can 
also produce rapid anti-depressant-like effects, but they are not 
long-lasting. At present, mechanisms for the rapid anti-depressant 
effects are not completely clear. Defining the mechanisms of rapid 
anti-depressant-like effects and finding pathways and targets for 
related drugs and physical therapies are important for developing 
new, safe and long-acting therapeutic methods. Here, we high-
light the potential mechanisms of rapid anti-depressant effects.

TA B L E  1   Summary of the rapid anti-depressant-like effects of 
ketamine in human

Patient diagnosis Ketamine
Time 
(min) Source

Major depressive 
disorder

0.5 mg/kg, 40-
min infusion

40 Berman5

Bipolar I or II 
depression

0.5 mg/kg, 
intravenous 
infusion

40 Zarate138

Treatment-resistant 
depression

0.5 mg/kg, 40-
min infusion

240 Murrough139

Major depressive 
disorder

50 mg intranasal 
ketamine

40 Lapidus140

Major depressive 
disorder

0.5 mg/kg, 40-
min infusion

60 Hu141

Treatment-resistant 
depression

0.5 mg/kg, 40-
min infusion

120 Singh142

Treatment-resistant 
depression

0.5 mg/kg, 40-
min infusion

120 Phillips4

Treatment-resistant 
depression

0.5 mg/kg, 40-
min infusion

40 Chen143

Treatment-resistant 
depression

1 mg/kg oral 
ketamine

40 Domany144

Major depressive 
disorder

0.5 mg/kg, 40-
min infusion

230 Salvadore46
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2  | NEUR AL CIRCUIT

Depression is associated with multiple brain regions including pre-
frontal cortex (PFC), hippocampus (HP) and amygdala.30 These re-
gions do not play a separate role in the onset of depression but are 
connected by nerve fibres, forming different neural circuits. The 
structure and function of these circuits are abnormal under a con-
dition of depression.31-33 Restoring normal connections of neural 
pathways may be an effective and fast way to alleviate depression 
symptoms. Ketamine is a non-specific NMDAR antagonist. It can 
change the local activities of relevant brain regions and reshape the 
brain circuit in a short time (Figure 1).

2.1 | Neural circuits associated with pre-
frontal cortex

Pre-frontal cortex is related to cognitive function and emotional 
regulation.34 Reduced activity of PFC has been observed both in de-
pressed patients and in rodent models of depression. Dysfunction 

of the pre-frontal-hippocampal (PFC-HP) circuit is associated with 
major depression. It was demonstrated that in rat brain, functional 
connectivity within the PFC-HP system is increased by acute keta-
mine stimulation in a dose- and exposure-dependent manner.35 In 
the same way, the activation of ventral hippocampus (vHipp)-mPFC 
pathway was proved to be necessary in anti-depressant responses 
of ketamine.36

Abnormal functional connection within dorsal PFC and ante-
rior cingulate gyrus (ACC) is highly correlated with depression.37 
Ketamine has a positive effect on this connection. Study showed 
that functional connection between the right PFC and subgenual 
cingulate was increased in depressed patients 1 day after a single 
infusion of ketamine.38

Besides, the functional connection between the PFC and the 
amygdala also relates to depressive behaviour. It was reported 
that ketamine strengthens amygdala inputs to basal dendrites of 
layer V cells in mPFC and reversed depression-like behaviours.39 
Optogenetic experiment showed that light-activated mPFC-basolat-
eral amygdala (BLA) projection produced rapid anti-depressant-like 
effects. Light stimulation to D1 dopamine receptor (Drd1) neurons 

TA B L E  2   Summary of the rapid anti-depressant-like effects of ketamine in animal

Species Behavioural test  Time Source

C57BL/6 mice Sucrose consumption test
Forced swim test
Novelty-suppressed feeding test
Elevated plus maze

3 mg/kg ip 30 min Autry50

C57BL/6 mice Forced swim test
Novelty-suppressed feeding test

3 mg/kg ip 30 min Gideons145

Mice Forced swim test 2.5 mg/kg ip 30 min Maeng146

C57BL/6 mice Tail suspension test
Forced swim test
Sucrose preference test

10 mg/kg ip 120 min Zhang147

Sprague-Dawley rat Forced swim test 15 mg/kg ip 120 min Silva148

CD1 mice Forced swim test 10 mg/kg ip 60 min Clarke102

C57BL/6J mice Forced swim test 10 mg/kg ip 1 d Fitzgerald149

CD1 mice Forced swim test 5 or 10 mg/kg ip 60 min Landrigan150

Sprague-Dawley rat Forced swim test 10 mg/kg ip 30 min Zhang151

Sprague-Dawley rat Forced swim test 10 or 30 mg/kg ip 40 min Podkowa152

C57BL/6N mice Forced swim test 10 mg/kg ip 30 min Petryshen153

NMRI mice Forced swim test
Tail suspension test

3 mg/kg ip 60 min Kordjazy154

F I G U R E  1   The neural circuits of 
depression affected by ketamine. ACC, 
anterior cingulate gyrus; BLA, basolateral 
amygdala; Dorsal PFC, dorsal pre-frontal 
cortex; DRN, dorsal raphe nucleus; HP, 
hippocampus; mPFC, medial pre-frontal 
cortex
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in the brain region of mPFC increased the neuronal activity in the 
BLA area exclusively, indicating that the Drd1 neurons mediated 
BLA area to participate in the rapid anti-depressant-like effects.40 
However, whether ketamine stimulates mPFC and amygdala in the 
same time has not been proved.

In addition, the PFC-dorsal raphe nucleus (DRN) circuit has been 
confirmed to be implicated in depression.41-43 The mPFC is one of the 
various areas projecting densely to the DRN,44 which has abundant 
5-HT cell bodies located in. Activation of 5-HT neurons can improve 
depression-like behaviours in elevated plus maze and forced swim 
test (FST).45 Combining whole-cell recordings with optogenetic ap-
proaches, it was found that the mPFC axon monosynapse was con-
nected with 5-HT neurons and GABAergic neurons in the DRN.46 
The mPFC pyramidal cell, projecting to 5-HT neurons in DRN, is a 
kind of glutamatergic neuron. The action potential of pyramidal cells 
is controlled by GABA interneurons. Ketamine blocks NMDAR lo-
cated on GABA interneurons, leading to decrease in GABA activity, 
facilitating the firing activity of pyramidal cells and inducing gluta-
mate release. As a result, high level of extracellular glutamate acti-
vates the post-synaptic AMPAR.47,48 In a word, ketamine activates 
5-HT neurons in DRN and increases the release of 5-HT by stimulat-
ing AMPAR in mPFC.

2.2 | Neural circuits associated with ventral 
tegmental area

Anhedonia, which is related to structure and function abnormalities 
of the reward circuit, is a core clinical feature of award-control dis-
order and also a core symptom of depression. The ventral tegmental 
area (VTA) is a heterogeneous brain region, mainly composed of do-
paminergic (DAergic) neurons (60%-65%).49 VTA projects to mPFC 
and nucleus accumbens (NAc) and forms the mesolimbic dopamine 
system with the latter one. The mesolimbic dopamine system is re-
lated to depression. Studies have shown that DAergic neurons in 
the VTA-NAc circuit directly participated in the regulation of coding 
and expressing of depressive behaviour with anhedonia.50,51 Animal 
experiments demonstrated that stress could activate VTA DAergic 
neurons and stimulate DAergic transmission to the NAc.52 Similarly, 
clinical evidence proved that ketamine was able to increase activity 
in VTA, and this effect persisted for 1 week after ketamine injection, 
accompanied by depression-like behaviour improved.53 VTA-NAc 
circuit may be considered to contribute to the pathophysiology and 
symptomatology of depression, but whether the rapid anti-depres-
sant-like effects of ketamine works through VTA-NAc circuit is lack 
of evidence.

2.3 | Neural circuits associated with 
lateral habenula

Lateral habenula (LHb), located in the epithalamus, is a component 
of the habenula nucleus. It is the main relay station for transmitting 

information between the marginal forebrain and midbrain. It can 
control the midbrain reward pathway and mediate the transmission 
of negative feedback information of dopamine neurons in marginal 
forebrain and midbrain marginal. It is also closely related to 5-HT sys-
tem. On the one hand, the indirect excitatory glutamate projection of 
LHb to ventral tegmental area DAergic neurons was closely related to 
learned helplessness behaviour in rats. In learned helplessness model, 
excitatory synapses projected by LHb neurons into VTA were en-
hanced, leading to an increased probability of pre-synaptic release.54 
On the contrary, stimulating GABAergic neurons would mediate inhib-
itory synaptic transmission, subsequently inhibiting the post-synaptic 
discharge of LHb neurons and increasing the spontaneous discharge 
rate of VTA DAergic neurons.55 On the other hand, most DRN sero-
tonergic neurons received monosynaptic glutamatergic inputted from 
LHb, suggesting that LHb could bidirectionally regulate the activity 
of 5-HT neurons in DRN.56 The above two experiments applied the 
methods of optogenetics and chemical genetics, respectively, to iden-
tify LHb-related neural projections function in depression. At present, 
there is little evidence on ketamine acting on LHb-related circuits. 
Nevertheless, a recent study found that abnormal clustered excita-
tory post-synaptic potentials appeared in the medial and LHb nucleus 
in congenitally learned helpless (cLH) rats and chronic-restraint stress 
(CRS) mice. Ketamine could block the clustered discharge pattern in 
the LHb and improve the symptoms of depression rapidly. The mecha-
nism was associated with NMDAR and low-voltage-sensitive T-type 
calcium channels (T-VSCCs). In the study, ketamine but not AMPAR 
antagonist NBQX eliminated the burst firing in the LHb of cLH rats 
and rescued the depression-like behaviours quickly. The same results 
could be seen in specific NMDAR antagonist 2-amino-5-phosphon-
opentanoic acid (AP5) and T-VSCCs blocker mibefradil and ZD7288. 
Moreover, bilateral infusion of mibefradil into the LHb of cLH rats and 
systematic injection of the T-VSCCs blocker 2-ethyl-2-methylsuccin-
imide (ethosuximide) in CRS mice elicited rapid anti-depressant ef-
fects.57 According to this research, blocking T-VSCCs may produce 
rapid anti-depressant effects. Nevertheless, ethosuximide did not 
exert the same potent anti-depressant effects in CSDS-susceptible 
mice58 or non-medicated adult MDD patients.59 Differences exist in 
different depressive animal models since the pathogenesis is diverse. 
More than that, the internal environment of the human body is more 
complicated than that of animal. Even one pathway is affected by ket-
amine, other alternatives can be activated instead. Studies on other 
T-VSCCs blockers and the possible targets need to be done.

2.4 | Neural circuits associated with amygdala

The amygdala is involved in coordinating the function of cortical 
networks when evaluating the biological significance of affective 
stimuli. Liu et al39 discovered that ketamine activated amygdala 
and increased the amygdala output to the PFC through the ante-
rior marginal area in the chronic unpredictable stress (CUS) model 
of rats. By using fMRI and resting-state fMRI (rsfMRI), it was found 
that in healthy subjects without any mental, neurological or medical 
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illness, ketamine reduced neural reactivity in the bilateral amygdalo-
hippocampal complex during emotional stimulation, which was dif-
ferent from amygdala-PFC circuit.60

It is hypothesized that the amygdala and its interaction with the 
pre-genual anterior cingulate cortex (pgACC) could predict the re-
sponse of patients to ketamine. Clinical studies have demonstrated 
that MDD patients were either in working memory task mode or 
stimulated by rapidly presenting fearful faces, and the pgACC was 
highly activated but could be inactivated by ketamine within 4 hours. 
Pre-treated with ketamine, patients with the lowest pgACC activa-
tion had the greatest improvement in depressive symptoms when 
working memory load increased. Moreover, the functional connec-
tion between the pgACC and the amygdala was negatively correlated 
with the change in anti-depressant symptoms.61,62 Notably, another 
study showed that a single bilateral infusion of (R)-ketamine into 
basolateral amygdala and central nucleus of the amygdala had no 
anti-depressant effects.63 Unlike (R)-ketamine, (S)-ketamine induced 
acute proteomic changes in the amygdala in wild mice after 2 hours, 
which may contribute to its the fast antidepressant effects.64 In clin-
ical trial, it was found that (S)-ketamine decreased then the connec-
tivity among the amygdala, ACC and insula.65 Maybe (S)-ketamine is 
the key to the function of (R,S)-ketamine on the amygdala.

3  | SYNAPTIC PL A STICIT Y

Another crucial mechanism of ketamine rapid anti-depressant-like 
effects is synaptic plasticity. Synapse is the basic structure of in-
formation transmission and processing between neurons. Synaptic 
plasticity, including changes in the number, structure and function 
of synapse, is a kind of adaptive change which enables brain to do 
self-repair. It is critically important for individuals to maintain nor-
mal functions when facing changing internal and external environ-
ments. Synaptic plasticity includes long-term potentiation (LTP) and 

long-term depression (LTD). Stress can interfere with the normal 
balance in synaptic plasticity, inhibiting LTP and/or promoting LTD, 
resulting in synaptic weakening and neuronal atrophy. Impairment of 
synaptic plasticity in hippocampus and pre-frontal cortex is particu-
larly pronounced in depression.66

3.1 | Classical mechanisms of synaptic plasticity

N-methyl-d-aspartate receptor is ionotropic glutamate recep-
tors and widely distributed in the central nervous system. It is a 
heterotetramer with subunits including GluN1, GluN2A, GluN2B, 
GluN2C, GluN2D, GluN3A and GluN3B.67 NMDAR is ion channels 
of Na+ and Ca2+. Under physiological conditions, the permeability 
of NMDAR is blocked by Mg2+ in resting state. When stimulated, 
glutamate released by the pre-synaptic membrane acts on AMPAR 
and enhances its ion flow, releasing Mg2+ and unblocking the NMDA 
receptor channel. Then, a large amount of Ca2+ goes into neurons, 
resulting in excitatory toxicity and death of nerve cells. Ketamine 
acts on NMDAR and blocks the influx of Ca2+, resulting in neurons 
survival and reversion of synaptic structural defect. Activation or 
inhibition of NMDAR triggers a series of cascades, altering expres-
sion level and function of AMPAR, leading to decrease or increase 
in AMPAR-mediated synaptic transmission BDNF. Meanwhile, in-
hibition of NMDAR also leads to inactivation of eukaryotic elonga-
tion factor 2 (eEF2), resulting in reducing eEF2 phosphorylation and 
enhancing BDNF protein synthesis68 and regulating synaptogen-
esis (Figure 2). Other drugs also produce anti-depressant effects. 
Cannabidiol, neuropeptide VGF (non-acronymic) C-terminal peptide 
TLQP-62 and NV-5138 increased activity of BDNF-mTOR signalling 
in the mPFC to induce rapid anti-depressant effects.69-71 d-Metha-
done is a non-competitive NMDAR antagonist and could decrease 
immobility of rats in FST in 24 hours.72 Another NMDAR blocker 
Ro 25-6981 also exhibited anti-depressant effects in pre-clinical 

F I G U R E  2   Proposed mechanisms 
of ketamine act on synaptic plasticity. 
AMPAR, α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionic acid receptor; BDNF, 
brain-derived neurotrophic factor; eEF2, 
eukaryotic elongation factor 2; GSK-3β, 
glycogen synthase kinase-3β; mTORC1, 
mechanistic target of rapamycin complex 
1; NMDAR, N-methyl-d-aspartate 
receptor; P70S6K, P70S6 kinase; PSD-
95, post-synaptic density-95; TrkB, 
tropomyosin receptor kinase B
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and clinical tests.73,74 However, a meta-analysis showed that non-
ketamine NMDAR antagonists were superior to placebo only on 
days 5-8, while ketamine reduced depression in 40 minutes.75 Not 
all non-ketamine NMDAR antagonists elicit robust anti-depressant 
effects such as ketamine, suggesting that NMDAR may not be the 
key role in the anti-depressant mechanisms of ketamine. Inhibition 
of NMDAR causes changes in its downstream molecules and signal-
ling pathways, and these changes can be seen in depression-related 
brain regions.76 But now, there are more and more reports of rapid 
anti-depressants that are less related to NMDAR. Maybe we should 
stop focusing on NMDAR only and begin to pay more attention to 
other potential targets. Other mechanisms of anti-depressant ef-
fects of ketamine will be discussed below.

3.1.1 | AMPAR in synaptic plasticity

AMPAR belongs to the ionic glutamate receptor and is dynamically 
expressed in the post-synaptic membrane. It mediates rapid excita-
tory synaptic transmission in the central nervous system and is re-
lated to induction and maintenance of LTP and LTD.77-80 Increasing 
insertion and phosphorylation of AMPAR leads to LTP and increases 
the sensitivity of glutamate to synaptic transmission.81 NMDAR an-
tagonists facilitate glutamate release and increase synaptic gluta-
mate concentration by blocking NMDARs on pre-synaptic neurons 
or GABA interneurons. On the one hand, inhibiting the pre-synaptic 
NMDARs leads to a release of glutamate from pre-synaptic neu-
rons. On the other hand, suppressing the NMDARs on GABA in-
terneurons will decrease the activity of GABA interneurons and 
disinhibit the pre-synaptic neurons.82-84 Glutamate can activate 
AMPAR and downstream signalling pathways. On the one hand, 
BDNF in post-synaptic neurons will be released into the synaptic 
cleft immediately after AMPARs are activated, activating the TrkB 
on the post-synaptic membrane.85 Then, the activation of TrkB in-
creases the phosphorylation level of glycogen synthase kinase 3-β 
(GSK-3β) via ERK signalling pathway, leading to a decrease in the 
phosphorylation level of post-synaptic density-95 (PSD-95) and 
the internalization of the AMPA GluA1 subunit, allowing ketamine 
to enhance signalling through the AMPAR86 and promote synapse 
generation.87 On the other hand, the downstream ERK and PI3K-
AKT signalling pathways activate and stimulate mechanistic target 
of rapamycin complex 1 (mTORC1) phosphorylation to promote 
synapse formation.88 Subsequently, the phosphorylation level of 
P70S6 kinase (P70S6K) increases, resulting in synaptogenesis.89 
These results induced by ketamine could be eliminated by AMPAR 
antagonists and mimicked by AMPA-positive allosteric modulator 
CX614.88

3.1.2 | BDNF in synaptic plasticity

Brain-derived neurotrophic factor is a vital protein in the process 
of synaptic transmission. It regulates neural plasticity, synaptic 

production, neurogenesis and cell survival. BDNF is necessary for the 
formation and maintenance of activity-dependent synaptic connec-
tions. It has been found that the expression of BDNF in the pre-fron-
tal cortex and hippocampus was downregulated in animal depression 
models, so as the level of BDNF in depressed patients.90,91 Evidence 
showed that ketamine administration increases BDNF levels and 
improves depressive-like behaviours.92-94 More importantly, BDNF 
is indispensable in anti-depressant effects. In the BDNF Met gene 
knock-in mice, especially Met/Met mice, synaptogenesis was signifi-
cantly weakened,95 consisted of depressed patients.96 Clinical study 
showed that either 0.5 or 0.2 mg/kg of ketamine injection could 
reduce suicidal ideation of patients who had the Val allelic genes. 
However, patients with genotype Met/Met only responded at a dose 
of 0.5 mg/kg ketamine.96 Sufficient BDNF content regulates synaptic 
plasticity and participates in reversing depression.97-99

Except for ketamine, acute caloric restriction (CR) is also able 
to elevate BDNF level. CR refers to a 30%-40% reduction in cal-
orie intake while retaining protein, vitamins, minerals and water 
intake to maintain proper nutrition. Some mental illnesses, such 
as the typical major depression and anorexia nervosa, are char-
acterized by reduced calorie intake. Previous studies showed that 
long-term strict energy limitation (5 weeks, 50% intake of the 
control group) may cause brain 5-HT system dysfunction, lead-
ing to the development of depression and anxiety.100 Otherwise, 
strict energy limitation might lead to malnutrition101 and other 
metabolic dysfunctions in the body. Our group found that 9-hour 
acute CR increased BDNF level in the PFC and hippocampus, re-
sulting in neurogenesis in the subgranular region and producing 
anti-depressant-like effects.27 Aiming to figure out whether the 
anti-depressant effects of CR are related to the 5-HT system, 
we combined CR with imipramine and 5-HT2A/2C receptor ago-
nist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydro-
chloride (DOI) for authentication. The results showed that DOI 
could partially reverse the anti-depressant effects of imipramine 
and 9-hour CR.28 We also found that DOI could suppress the in-
crease in BDNF level and 5-HT2AR antagonist ketanserin inhibited 
the effects of DOI on BDNF.102 There is a possibility that acute 
fasting may exert anti-depressant effects by blocking 5-HT2AR. 
Evidence shows that the activation of 5-HTergic system leads to 
an activation of glutamatergic system. Activated by 5-HT recep-
tors, glutamate pyramidal cells in mPFC release BDNF rapidly and 
activate BDNF signalling pathway, resulting in synaptogenesis 
accompanied by rapid anti-depressant effects.103-105 These stud-
ies suggest that monoamine manner (5-HT) and non-monoamine 
manner (BDNF) are not separated in anti-depressant effects. This 
suggests us that combining monoamine with non-monoamine may 
be a new strategy for treating MDD. Some studies showed that CR 
regulated the release of orexin106-109 and ghrelin,110-117 producing 
some anti-depressant effects. But this evidence on synaptic plas-
ticity is weak, and we mention here only for reference (Figure 3).

Additionally, scopolamine has similar pharmacological mechanisms 
to ketamine for its anti-depressant effects. Scopolamine activates 
AMPARs, promotes BDNF release rapidly and stimulates BDNF-mTOR 
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signalling pathway.118 The difference is that scopolamine acts on cho-
linergic system. Scopolamine inhibits GABAergic neuron function by 
combining with M1-AChR on GABA interneurons in mPFC.119

3.2 | Neuroglia in synaptic plasticity

Ketamine also affects glial cells in the central nervous system to 
regulate synaptic plasticity. Glial cells are mainly divided into three 
categories: astroglia, microglia and oligodendroglia. Among them, 
the former two are associated with depression. Astroglia is the most 
abundant glial cell. Its main functions are to regulate regional blood 
flow and energy metabolism, immune defence and amino acid neu-
rotransmitter clearance. It is also associated with the stabilization 
and dissection of synaptic connections120 and participates in anti-
depressant effects.121 Pre-treated with ketamine 1 day after, im-
mobility time in FST was significantly reduced. The volume of CA1 
stratum radiatum and molecular layer of the dentate gyrus in the 
hippocampus and the volume of astrocytes of rats increased sig-
nificantly, so as the number and length.122 Ketamine modified the 
morphology of astrocytes and astrocytes, regulating the synaptic 
microenvironment, neurogenesis and angiogenesis.123 Microglia is a 
kind of immunocompetent cell. Excessive microglial activation would 
cause inflammatory process, leading to astrocyte glutamatergic dys-
function and activation of microglial function in turn.124 Evidence 
showed that ketamine inactivates microglial due to inhibition of 
ERK1/2 phosphorylation.125 Besides, ketamine regulated STAT3 and 
the type I interferon pathway in microglia through eEF2, increas-
ing the BDNF expression and promoting the synthesis of PSD95 
and synapsin I (SYN1).126 Additionally, microglial cells induce im-
mune dysfunction by producing quinolinic acid (QUIN). QUIN is an 

endogenous modulator with agonistic properties on NMDA. It was 
observed that in acutely depressed patients, QUIN increased in sub-
regions of the anterior cingulate gyrus.127 Increase in QUIN comes 
along with decrease in kynurenic acid (KYNA), a NMDA receptor an-
tagonist synthesized by astrocytes.128 Ketamine could modulate the 
microglial reactivity and decrease QUIN production. It was reported 
that KYNA-to-QUIN ratio was a predictor of ketamine response 
in treatment-resistant depressed patients, while the reduction in 
QUIN after treated by ketamine was a predictor to the reduction 
in MADRS score.129 Ketamine regulates functions of astrocytes and 
microcytes to maintain synaptic complement.

3.3 | Neuroinflammation in synaptic plasticity

Depression is considered to be relevant with the activation of 
chronic, low-grade inflammatory responses and cell-mediated im-
munity.130,131 Chronic inflammatory reactions cause neurons ap-
optosis in brain regions associated with emotion regulation such 
as hippocampus,132,133 leading to impairment of synaptic plasticity. 
Ketamine could normalize abnormal neurobehaviours induced by 
neuroinflammation through regulating the interleukin (IL)-1β, tu-
mour necrosis factor (TNF)-α and IL-6.134 In rodent model, ketamine 
would reverse the increase in IL-1β and TNF-α caused by lipopoly-
saccharide (LPS), shortening the immobility time significantly in FST 
and promoting hippocampal neurogenesis.135 In addition, ketamine 
also plays an anti-depressant part in the central nervous system 
by regulating the immune system's immune response. It promoted 
the conversion of macrophages in CNS into M2-type cells with 
anti-inflammatory properties, reversing the inflammatory response 
through NMDAR and mTOR.136 Zhang et al found that the desper-
ate behaviours of susceptible mice in the social defeat stress model 
were improved in FST and tail suspension test (TST) after receiving 
intravenous injection of the inflammatory factor IL-6 receptor anti-
body MR16-1. MR16-1 treatment increased the expression of PSD95 
and AMPAR1, so as the dendritic spines in hippocampus, and PFC 
and NAc in susceptible mice. Besides, MR-16 normalized the com-
ponents of gut microbiota in susceptible mice by downregulating the 
level of IL-6 in the periphery.137 Changes in peripheral IL-6 and gut 
microbiota may be vital for the pathogenesis of depression. It was 
found that baseline serum levels of IL-6 were both higher in keta-
mine responder and non-responder groups than control group. More 
than that, serum level of IL-6 is significantly higher in the responder 
group than non-responder group.138 Another clinical study also dem-
onstrated that higher baseline interleukin-6 (IL-6) in serum predicted 
better response to ketamine.139 Serum IL-6 may be a predictive bio-
marker for the anti-depressant effects of ketamine in TRD patients.

3.4 | A1R in synaptic plasticity

A1 receptors (A1R) are of high affinity with adenosine and are 
distributed both pre- and post-synaptically. A1R is essential for 

F I G U R E  3   Proposed mechanisms of CR act on synaptic 
plasticity. AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptor; BDNF, brain-derived neurotrophic factor; 
ERK, extracellular signal-regulated kinase; GHS-R1a, growth 
hormone secretagogue receptor 1a; PI3K, phosphatidylinositol 
3-kinase; PKA, protein kinase A
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sleep deprivation (SD) to exert rapid anti-depression-like effects. 
Therapeutic SD is a direct and rapid treatment for MDD, reducing 
the depressive symptoms of 50%-60% of MDD patients signifi-
cantly within a few hours,140 consistent with animal experiment.141 
It was reported that SD produced rapid anti-depressant effects 
by activating adenosine A1R in astrocytes and could be mim-
icked by the application of A1 agonist CCPA.142 A1R exerts anti-
depressant-like effects by regulating synaptic plasticity through 
Homer1a. Homer1a is a kind of synaptic protein upregulated by 
ketamine and SD, and the upregulation of Homer1a produces 
rapid anti-depressant-like effects. When Homer1a was knocked 
out in mPFC, the upregulation of A1R and the anti-depressant 
effects of SD were inhibited.143,144 TAT-Homer1a, which is a fu-
sion of the HIV TAT peptide with full-length Homer1a protein, has 
brain and membrane permeability. The application of TAT-H1A in 
vivo and in vitro increased the level of Homer1a and enhanced me-
tabotropic glutamate receptor 5 (mGlu5) signal transduction. As a 
result, phosphorylation of the mTOR increased and the expression 
and activity of AMPAR were elevated.145 The molecular change 
was consistent with those caused by ketamine and also SD. In ani-
mal studies, AMPAR level in the cerebral cortex and hippocampus 
was about 40% higher after arousal than after sleep. The change 
in AMPAR phosphorylation and other enzymes important for plas-
ticity was consistent with synaptic strengthening during wakeful-
ness and contraction during sleep.146 These evidence indicates 
that synaptic homeostasis is regulated by wakefulness and sleep. 
Synaptic homeostasis refers to the ability of neurons to regulate 
their own excitability and synaptic strength, connected closely 
with synaptic plasticity. The core of the synaptic homeostasis 
hypothesis is that the number and intensity of cortical synapses 
vary widely throughout the sleep-wake cycle. It is believed that 
wakefulness leads to a net increase in synaptic strength of the cor-
tical circuits, while a basic function of sleep is to reduce the pro-
portion of cortical synapses.147 Given to that, circadian rhythms 

also regulate synaptic plasticity. Circadian rhythms are reset by 
the transcription of clock genes, including the cycle genes PER1, 
PER2 and PER3. After 2-hour SD treatment on mice, the expres-
sion levels of PER1 and PER2 significantly increased.148 Similarly, 
ketamine regulated circadian rhythms by affecting clock genes 
accompanied by a rapid anti-depressant effect. In animal experi-
ment, it was seen that clock genes including PER2, neuronal PAS 
domain protein 4 and D-Box binding protein, were downregulated 
in mice treated with ketamine and SD.149 Reviewing data from 
human, animal and neuronal cell, both low-dose SD and ketamine 
could regulate circadian rhythms.150 It is hypothesized that A1R 
ameliorates the depression-like behaviours through regulating 
cycle genes and then affecting synaptic homeostasis.151 However, 
we still lack evidence for that so far (Figure 4).

4  | CONCLUSION

In this review, we summarized the mechanisms of rapid anti-depres-
sant-like effects induced by ketamine, CR and SD. Rapid anti-depres-
sant-like effect is a result of mutual regulation of neural circuits and 
synaptic plasticity. On the one hand, rebuilding the neurotransmitter 
balance by regulating the levels of dopamine and serotonin can re-
shape neural circuits. On the other hand, glial cells, hormones and 
related receptors regulate the microenvironment and synaptic ho-
meostasis. As a result, the functions and connections of various areas 
in the brain that regulate emotion return to normal. Clinically, the 
symptoms of depression are alleviated. Rapid anti-depressant drugs 
and behavioural interventions bring a glimmer of hope to it. Although 
depression is a refractory disease and there exist many unknowns in 
the pathogenesis of depression, with the application of optogenet-
ics and the discovery of crosstalk in different pathways, more and 
more safe and effective rapid anti-depressant treatments are about 
to occur.
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