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Abstract

Commonly classified as individual, task or environmental, constraints are boundaries which shape the
emergence of functional movement solutions. In applied sport, an ongoing challenge is to improve the
measurement, analysis and understanding of constraints to key stakeholders. Methodological considerations for
furthering these pursuits should be centred around an interdisciplinary approach. This integration of
methodology and knowledge from different disciplines also encourages the sharing of encompassing
principles, concepts, methods and data to generate new solutions to existing problems. This narrative review
discusses how a number of rapidly developing fields are positioned to help guide, support and progress an
understanding of sport through constraints. It specifically focuses on examples from the fields of technology,
analytics and perceptual science. It discusses how technology is generating large quantities of data which can
improve our understanding of how constraints shape the movement solutions of performers in training and
competition environments. Analytics can facilitate new insights from numerous and complex data through
enhanced non-linear and multivariate analysis techniques. The role of the perceptual sciences is discussed
with respect to generating outputs from analytics that are more interpretable for the end-user. Together,
these three fields of technology, analytics and perceptual science may enable a more comprehensive
understanding of constraints in sports performance.
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Key Points

� The fields of technology, analytics and the
perceptual sciences offer opportunities to further the
understanding of constraints in applied sport.

� Developments in the fields of technology, analytics
and the perceptual sciences can accelerate the
benefits of an interdisciplinary approach to some of
sport’s most pervasive performance questions and
challenges.

Introduction
Sport science, in general, has long been criticised for its
insular nature, with various sub-disciplines typically
looking to solve existing problems internally [1–5]. In
research, this has manifested in the establishment and
reproduction of sub-discipline-specific methodologies [6,
7]. In practice, this is often observed in the separation of
departments (e.g. strength and conditioning, medical
and performance analysis) in high-level sporting organi-
sations, culminating in isolated and siloed thinking [8,
9]. These issues may be due to a variety of reasons, such
as disciplines researching sport at varying levels from
molecular to the environment, whilst also applying
discipline-specific terminology [1, 7]. Within the tertiary
education sector, the fast growth of sport science has led
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to a focus on specialisation [10, 11], which has partially
been attributed to the lack of an overarching, unifying
framework [7, 11]. Furthermore, current practices are
often seen to offer the illusion of integration, but do not
fully combine methods and techniques alongside theor-
ies and concepts [1].
Accordingly, there have been numerous calls for sport

science to progress beyond this insularity and embrace
an inter- and even transdisciplinary approach [2, 5, 7,
12–15]. Adoption of an interdisciplinary approach in
sport, whilst challenging, could serve to (i) coordinate
and unify activity, (ii) communicate translatable ideas
coherently and (iii) design and quantify activities which
support the emergence of complex and adaptive behav-
iours [1, 7, 8, 14]. For instance, if practitioners could op-
erate more collaboratively, it could improve the
allocation of time and resources by limiting the duplica-
tion of data collection and analysis. Data and its subse-
quent analysis could also be better communicated
through consistent language which may aid the transfer
of concepts and ideas between disciplines [8]. Through
this, an enhanced ability to address some of sport’s most
pervasive performance questions and challenges could
be gained.
A true interdisciplinary approach would see sports

performance disciplines working collaboratively to fully
encompass principles, concepts, data and methods to
solve problems and support practice [7]. This could re-
sult in enhancements of learning, which could then be
shared between a range of operational areas, like talent
identification, talent selection, performance analysis and
coaching [14, 16]. Independent methodologies and
measurement techniques could be reconciled to build
upon and learn from one another. Interdisciplinarity of-
fers collaborative problem-solving which may potentially
lead to enhanced inquisition, the identification of new
questions and the resolving of existing problems [10].
For interdisciplinarity to occur, new methods and proce-
dures are required, which may challenge engrained and
culturally pervasive disciplinary norms.
Frameworks such as ecological dynamics or Newell’s

constraint model offer a basis upon which sports per-
formance can be measured [7, 17]. Either has the ability
to act as a vehicle upon which an interdisciplinary ap-
proach could be implemented [18], and may aid the
alignment of methods and data [7]. Ecological dynamics
is the integration of concepts from ecological psychology
[19], complexity sciences [20] and coordination dynam-
ics [17, 21]. Newell’s constraint model [17] and its appli-
cation views skill, learning, development and expertise as
emergent properties of a functionally adaptable and
evolving relationship formed between an individual and
the constraints of their environment [22]. It is note-
worthy that these rationales are not localised to a single

sport science discipline; rather, they seek to enhance the
understanding of related concepts such as skill, perform-
ance, learning and expertise [23].
Constraints are understood as the boundaries which

shape the emergence of functional movement solutions
[24] and are commonly classified into individual, task
and environmental categories [17]. Individual constraints
can be defined as structural (e.g. body dimensions, tech-
nical attributes), historical (e.g. development of resili-
ence, experience) and/or functional (e.g. motivation,
cognition) [24–26]. Task constraints are typically defined
as rules (e.g. laws of the game, boundary markings), task
goals and/or instructional features (e.g. coach instruction
or umpire feedback) [25, 27–29]. Environmental con-
straints can be physical (e.g. weather, light, gravity) or
sociocultural (e.g. values, cultural beliefs, peer support)
[24, 26, 30]. It has been proposed that task constraints
are emergent properties of a system which are able to be
distributed between the individual and environment
[31]. Moreover, constraints have been hypothesised to
interact and be correlated via circular causality and can
be nested based on characteristic time-scales [31].
An understanding of the manipulation of constraints

and their impact on skilled performance is, therefore,
central to the design of activities intended to promote
performance and learning in sport. This can be achieved
through the manipulation of constraints to design repre-
sentative practice tasks which preserve key information-
movement couplings experienced during competition.
However, a central feature of constraints and their im-
pact on emergent movement solutions relates to their
interaction [23, 24]. The interaction between constraints
is often misunderstood in both practice and research
given previous methodological limitations relating to
their measurement and interpretation [7]. A methodo-
logical limitation is the collection of discrete events
without accounting for constraints or the context influ-
encing these events [32]. For example, how do con-
straints such as time in possession, pressure type,
playing at home or away and/or fatigue state interact to
influence the emergence of skilled actions in team sports
[32]? Future research could overcome this through the
use of technology to capture constraints like these and
then applying a multivariate analysis technique, could
help practitioners understand their influence on emer-
gent behaviour.
Fortunately, for multiple reasons, an interdisciplinary

approach to measuring constraints in applied sport is ar-
guably more feasible now than ever before. Recent im-
provements in a number of seemingly disparate fields
and disciplines have the potential to progress this oppor-
tunity. Using examples from technology, analytics and
the perceptual sciences, this review details how advance-
ments in a range of fields can be leveraged to achieve
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interdisciplinarity and disciplinary integration in high-
performance sport.

Technology
Ongoing, and recently accelerated, improvements in the
field of technology have enhanced the measurement of
almost all aspects of sport [33]. Sport science disciplines,
including coaching and performance analysis, have trad-
itionally used largely manual methods to measure con-
straints in practice and competition. However,
technology has made it possible to capture these con-
straints more efficiently and accurately as well as in a
more detailed manner [7]. These improvements have
impacted a range of disciplines, leading to the manufac-
turing of better-quality hardware, increased feasibility of
athlete tracking and enabling the automated capture of
events through computer vision. For instance, develop-
ments such as video annotation software enabled practi-
tioners to move from pencil, paper and stopwatch
techniques to facilitating the recording of match events
and corresponding contextual information in greater de-
tail [34]. More recent technological developments have
enabled the capture of an athlete’s location on a playing
field through global and local positioning systems as well
as optical technologies [35, 36]. Presently, such systems
are now capable of providing semi- or automated detec-
tion of athlete actions [37, 38].
In addition to incremental improvements, some

technological developments have facilitated the identifi-
cation and measurement of variables and metrics which
were previously unrecognised in research and practice.
For example, eye-tracking, the detection of emotion in
competition [39, 40] and automatic marker-tracking sys-
tems [36, 37] have offered insight into the non-linear
and complex interaction between variables in near real-
time—clarity which is not possible with the human eye
alone [41, 42]. Consequently, the number of individual
constraints which can be recorded has continued to
grow with the development and implementation of tech-
nology. A selection of these constraints is reported in
Table 1. As technology continues to develop, so too will
the opportunities to improve the quality of constraint
measurements. Further opportunities exist to develop
these technologies with knowledge from other disci-
plines such as agriculture, city planning and the military
(Table 1). However, as observations are embedded in
context, the measurement and collection of reliable con-
straint data is required to take place without losing the
validity required for scientific rigour and thereby aid in
promoting experimental representative design [107].
To represent the influence of technology on the meas-

urement of constraints, the concept of pressure in a
team sport context presents a useful example. As a sci-
entific construct, pressure has been measured in

multiple ways; through the proximity of opponents on
the field as measured by player tracking systems [104,
108], an athlete’s physiological and emotional response
measured via sensors [39, 56] or the context of a game
via the scoreboard or time remaining [48, 90]. Adding
more data types to define pressure more comprehen-
sively will likely lead to a greater understanding of its in-
fluence on performance outcomes.
Extending these ideas, technology can enable greater

clarity with regards to the measurement of constraints
players experience during competition. Beyond helping
practitioners contextualise actions observed during com-
petition, it can assist with the design of practice tasks
that are more representative of the requirements of
competition to support athlete development and learn-
ing [109]. For example, by understanding the key con-
straints that shape athlete behaviour, practitioners could
design them into practice tasks, thereby preserving
information-movement couplings to support athletes in
becoming more self-regulating in performance [110].
Of course, both researchers and practitioners will al-

ways experience some limitations with respect to the
volume of data they collect. Furthermore, the continual
addition of new types of data has the potential to over-
complicate modelling and limit user interpretability
[111]. From a resourcing perspective, it may not be feas-
ible to collect all possible data sources in training or
competition environments. In some cases, the feasibility
of measurement may be influenced by the sport itself.
For example, whilst an inertial movement unit could
provide insight into constraints and contextual factors
surrounding limb motion, most governing sports organi-
sations restrict the use of such devices during competi-
tion [112]. Additionally, ball tracking systems in team
sports are becoming more commonplace in practice, yet
the resources to analyse and interpret the outputs re-
main intensive [109, 113]. Thus, finding a feasible ‘sweet
spot’ for the collection of data is required in practice to
enable the most impactful implementation of
technology.

Analytics
One criticism leveraged at ecological dynamics points
towards its complexity, with research to date being
largely conceptual or performed in a laboratory [114].
The measurement of constraints in practice has often
been reductionist in approach [107], emphasising either
one or two constraints that are measured in isolation
[32]. This can provide rigour in relation to the methodo-
logical approach; however, it is less representative of the
environment being explored [107]. This may result in an
overly narrow and potentially even misleading interpret-
ation of sports performance by not accounting for, or
misrepresenting, the nuances of a complex system [115–
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117]. Thus, whilst the literature referred to in Table 1 is
encouraging with respect to the large volume of con-
straints captured in performance settings, it is important
to recognise that (i) constraints do not act or interact in-
dependently and (ii) not everything can be measured
and analysed in research or practice.
Analytics refers to the methods based on the computa-

tion of statistics and data [118] and, therefore, considers
both computation and algorithms. Machine learning, the
application of artificial intelligence that affords a system
the ability to autonomously learn through experience or
example data, has had increased application in sport
[119]. Analytics may aid sport science practices in iden-
tifying complex and non-linear patterns within datasets.
Machine learning techniques have been used in sport to
quantify defensive patterns [37], as well as predict events
[48, 120] and match outcomes [120, 121]. Improved ana-
lytical methodologies allow for more complex phenom-
ena, such as the interaction of players, to be measured
[36, 122]. Accordingly, analytical approaches applied are
an important aspect of performance research and
decision-making [123–125], supporting the experiential
knowledge of professional practitioners. To make analyt-
ics applicable to industry settings, practitioners may
need enhanced skillsets to use data tools which can ana-
lyse and summarise big datasets and/or seek to establish
bespoke workbooks that automate preferred data visuali-
sations following data capture. In the time-constrained
environment of high-performance sport, analytics may
streamline decision-making across multiple departmen-
tal areas [36, 122, 126].
A key benefit of analytics when applied to sports per-

formance relates to its flexibility. Specifically, in regard
to how different machine learning algorithms can often
be used interchangeably on the same dataset [127–129].
This can enable a problem to be viewed through mul-
tiple lenses which may be implemented or visualised dif-
ferently based on user preferences. Returning to the
abovementioned example, it has been acknowledged that
pressure has been analysed in various ways. For example,
weighted densities paired with linear and quadratic func-
tions have been used to understand defensive players’
movements through spatiotemporal data in soccer [104],
whereas in basketball, matrix factorisation and regres-
sion models have been utilised for the same purpose
[86]. The creation and measurement of a pressure metric
can be achieved with either discrete or continuous vari-
ables. Representation of pressure in a categorical format
(i.e. ‘high’ or ‘low’) may make for easier stakeholder
comprehension and implementation in the applied set-
ting. Irrespective of the format in which the data are
represented, however, more context than solely player
movement is required to fully measure pressure. Thus,
using player density or pitch control [130, 131],

alongside score board margin, time remaining and indi-
vidual traits of an athlete could offer greater insight into
the pressure experienced at any given time.
The collection of more data related to different inter-

acting constraints can ultimately make the analysis of
variables more difficult. The principle of parsimony is
critical within analytics to strike a balance between feasi-
bility and obtaining a high-level understanding of phe-
nomena of interest. Without enhanced analytical tools,
the translation of model outputs which contain a large
number of variables into meaningful information re-
mains a challenge [111, 132]. Parsimony relates to
achieving a balance between collecting enough variables
to sufficiently support an evaluation but not so many
that only provide small improvements in understanding
[133, 134]. Within sport, parsimony is vital to the uptake
of new models and decision support systems, as it can
reduce data redundancies and optimise time invest-
ments. For example, if a model requires five variables to
achieve 80% accuracy on a given problem, the time and
resources required to collect an additional ten variables
to improve accuracy by 5%, may not outweigh the bene-
fit of a slightly less accurate model. This has useful ap-
plications in scenarios whereby a model requires
implementation across multiple environments. For in-
stance, comparing junior athlete performance with pro-
fessional competition for team sport scouting purposes
may see the user having access to differing levels of data,
leading to a lack of direct comparability of performances.
Many variables used within the professional competition
may not be available at lower levels; thus, invoking the
notion of parsimony forces the user to focus on includ-
ing those variables that are not only the most important,
but also readily available across all levels of competition.
Parsimony also helps to avoid problems with overfit-

ting. Overfitting describes a model, which is generated
specifically to a training dataset, but where the results
are not generalisable or validated on a new or unseen
test dataset [123, 135]. In the example above, a scouting
model used in professional competition may show ac-
curate predictive performance when applied to profes-
sional players, but due to its large number of inputs
(amongst other factors) may generalise less well to other
competition levels [124]. Striking a compromise between
parsimony and model accuracy is a complicated exercise,
particularly in the field, but is an increasingly important
consideration as sports performance models become
more complex and detailed.

Perceptual Science
The growth in data along with the enhanced analysis of
these data have been emphasised to this point of the re-
view. However, without the output from such analyses
being appropriately communicated to and interpreted by
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key stakeholders, the gains achieved by sport science will
go unrealised. Learnings from the perceptual sciences
could hold the key to assist in this area. Perceptual sci-
ences refers broadly to the integration of neuroscience,
computer science and psychology with the aim to under-
stand the link between external properties and cognition
[136, 137]. Specifically, components of cognitive science
such as psychophysics, alongside the art of visualisations,
may be used to enrich the interpretation of analytics and
explain why some visualisations better enable the detec-
tion of key information. Together, the concepts of cogni-
tive science and the perceptual sciences can provide a
foundation and guide for the utilisation of the science
and language of visualisations to maximise comprehen-
sion and improve the communication of complex phe-
nomena in sport. In doing so, visualisations may enable
the user to identify the relationship between an individ-
ual and their environment with enhanced clarity by pre-
serving the complex and non-linear interactions at work,
which are typically reduced through traditional, linear
approaches.
Visualisations have been proposed as a method to le-

verage data communication to highlight findings clearly
with precision and efficiency. This is required as despite
the improvements in technology and analytics, a linear
improvement in performance has not occurred [116].
This may be partially due to a user’s reduced ability to
gain insight from numerical data, as tables may be infer-
ior to visualisations in communicating results [138].
Visualisations provide a tool to translate numbers into a
simpler medium for ease of interpretation and imple-
mentation [136]. This may be due to the increased cog-
nitive load required to comprehend numerical data
compared with visualisations [136, 139]. Thus, as analyt-
ical model outputs become more complex, visualisations
can help to support the user’s comprehension. Ultim-
ately, if such output is not interpretable or operationali-
sable, even the best performing model will not be
implemented by key stakeholders in the applied setting
[113, 134].
Given the inherent complexity of ecological dynamics,

visualisations are critical in their ability to indirectly con-
vey key information. Visualisations are an essential tool to
enable the appreciation of complex and multidimensional
constraints in a system. The ability to visualise multiple
variables may further enhance the communication of
complex information. For instance, five dimensions can be
displayed and manipulated through the two regular axes
as well as hue, shape and size of data points. The impact
of visualisations on stakeholder decision-making has been
examined in forecasting, communication and planning
[140–143]. Furthermore, visualisation aesthetics have been
linked with an individual’s engagement, enjoyment and
memorability [144–147]. However, an awareness of

inherent biases is also required in the generation of visua-
lisations. Biases are cognitions which prejudice decision-
making [148]. For instance, as the number of components
displayed in a bar chart increases, the accuracy with which
the chart is interpreted decreases [149]. The transition
from data and analysis to the creation of a visualisation
may aid in the uptake of information and thus, insight in
the applied setting [136].
Returning to the pressure example discussed in earlier

sections, it is apparent that despite their visual potential,
pressure or defensive actions are often reported as ag-
gregate data, for example as a frequency count in a table
[110, 150]. However, in scenarios whereby continuous
pressure metrics have been proposed [104, 130], visuali-
sations can be used in different ways to provide alternate
insights with the same data. For example, Fig. 1 provides
an example of how pitch control can be used to visualise
pressure. Pitch control is a concept which defines the
probability that an athlete or team has control of a spe-
cific point of a certain region of the pitch at a given time
point [130]. It is based on athlete location, velocity and
relative distance from the ball at a given time point,
where the aggregate influence of each team’s athletes is
calculated on a continuous scale to provide a measure of
pitch control [130]. Specifically, Fig. 1a shows an over-
view of a passer in football (represented by the white
dot) at a discrete moment in time during a match. The
darker the blue area the more pressure experienced by
the passing player, based on their level of ‘pitch control’.
Such a visualisation can be used to provide further con-
text to the pressure not just surrounding the passer, but
the options available to them. Furthermore, the level of
pitch control varies throughout a game, which can be
visualised as a time series to display how pressure
changes for the team in possession throughout a match
(Fig. 1b). Thus, ‘1’ would represent total pitch control by
team 1, 0.5 represents equal levels of pitch control by
both teams and ‘0’ relates to total pitch control by team
2. Furthermore, visualising pitch control at the location
of the passer and receiver may provide insight into game
style, risk-taking behaviour and decision-making (Fig. 1c,
d). For instance, a team may relinquish some pitch con-
trol at the location of the passer to create more space at
the location of the receiver. This tactic may increase the
pressure, or decrease pitch control, at the ball location
but lessen the pressure for the receiver. Thus, visualisa-
tions may enable the facilitation of the improvements in
technology and analytics to be realised. When operatio-
nalised in unison, they may help aid decision-making
and encourage interdisciplinarity—demonstrated by this
pressure example, which uses player tracking data along-
side algorithms to generate a pitch control metric and
visualisations to help convey these data in a usable for-
mat. Thus, appropriate visualisations using the same
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data or model can improve the communication of find-
ings to key stakeholders and facilitate rapid interpret-
ation and implementation [139, 151, 152].

Conclusion
This narrative review has provided some methodological
considerations for the measurement of constraints though
an interdisciplinary approach. The benefits of an interdis-
ciplinary approach could arise from greater consistency be-
tween disciplines, more efficient workflows and optimised

communication procedures [8]. These improvements may
allow for questions to be answered more completely, rather
than solutions that have origins and applications in a single
discipline. This narrative review specifically discussed how
the continually developing fields of technology, analytics
and perceptual sciences are situated to help guide and sup-
port sport science to make the integration between disci-
plines more feasible. Importantly, these fields are not all
encompassing and many others exist which can further the
measurement of constraints in applied sport. Whilst other

Fig. 1 Examples of different ways pressure may be visualised via an exemplar from football. The metric of pitch control is used, a concept which
defines the probability that an athlete or team has control of a specific point. a Static image of the pitch with player locations and pitch control
at the time indicated by the red line in b. Ball possession is represented by the white circle. b Time series of pitch control of the attacking team
calculated as a minute by minute average of pitch control over course of a game, where 1 represents total pitch control by team 1, 0.5
represents equal levels of pitch control of both teams and 0 relates to total pitch control by team 2. The red line indicates the time a was taken
from. c Density plot of the level of pitch control of passer. d Density plot of the level of pitch control of receiver
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fields may further the development of constraint measure-
ment, interdisciplinarity can also be encouraged through
applying an overarching framework [7]. By embracing a
truly interdisciplinary approach, progress on many of sport
science’s most pervasive and important questions can be
realised. However, for sport science to continue to progress
towards interdisciplinarity, more needs to be done to create
environments open to change, where improvements can
transcend sub-disciplines. Furthermore, academic institu-
tions need to provide training and education which are sup-
portive of interdisciplinary approaches, as opposed to
driving a continued discipline speciality. This may see high-
performance sports organisations reassess structures, move
away from siloing departments, towards creating integrated,
functioning environments where time and resources are
available to be utilised in an interactive way. The removal
of such barriers may aid sport scientists in adopting the
principles of interdisciplinarity.
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