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Simple Summary: Hepatocellular carcinoma (HCC) is a deadly primary liver cancer that most often
develops in a cirrhotic (highly scarred) liver. Cirrhosis is associated with large-scale mechanical
changes in the liver, with increases in stiffness to levels that alter liver cell behavior. Importantly,
recent research has yielded two key observations: that mechanical changes in the microenvironment
can promote the development and progression of a variety of cancers, and that nuclear deformation
can increase genetic instability and the accumulation of DNA damage in some contexts. HCC is a
unique cancer given that it occurs in an environment that is already very stiff and that liver cells in
cirrhosis have highly deformed nuclei. This suggests that mechanical changes in the liver could be a
source of genetic instability that leads to cancer development.

Abstract: Hepatocellular carcinoma (HCC) is the second most deadly primary cancer in the world
and is thus a major global health challenge. HCC primarily develops in patients with an underlying
chronic liver disease, the vast majority with advanced cirrhosis, characterized by increased matrix
deposition and liver stiffness. Liver stiffness is highly associated with cancer development and poor
patient outcome and is measured clinically to assess cancer risk; cirrhotic livers greatly exceed the
threshold stiffness shown to alter hepatocyte cell behavior and to increase the malignancy of cancer
cells. Recent studies have shown that cirrhotic liver cells have highly irregular nuclear morphologies
and that nuclear deformation mediates mechanosensitive signaling. Separate research has shown
that nuclear deformation can increase genetic instability and the accumulation of DNA damage in
migrating cancer cells. We hypothesize that the mechanical changes associated with chronic liver
disease are drivers of oncogenesis, activating mechanosensitive signaling pathways, increasing rates
of DNA damage, and ultimately inducing malignant transformation.
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1. Introduction

Hepatocellular carcinoma (HCC) is the second most common cause of cancer death in
the world, resulting in up to 800,000 deaths per year [1], and is one of the few cancers that is
increasing in incidence [1]. Cirrhosis and increased liver stiffness are significant risk factors
for the development of HCC, with 80-90% of cases occurring in stiff, cirrhotic livers [2].
Furthermore, the magnitude of liver stiffening is highly correlated with patient outcomes,
such that patients with the stiffest livers have the highest risk of developing HCC, the
highest mortality rates, and the shortest survival times [3-5]. The association between
increased stiffness and HCC has been documented in patients with a variety of underlying
etiologies, and stiffness is used for clinical assessment [6]. Stiffness compromises important
hepatocyte functions [7-9] and multiple mechanosensitive pathways have been implicated
in HCC progression. The published research thus shows a strong association between
abnormal tissue mechanics and the development of HCC.
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There is now a growing body of mechanobiology literature (as detailed in the rest
of this volume) suggesting that tissue stiffness contributes to malignancy and modulates
the behavior of multiple cell types, including hepatocytes [9,10]. It remains unknown,
however, whether liver stiffness plays a causative role in HCC oncogenesis, rather than
just being correlated with the progression of chronic liver disease. In this perspective, we
review general lessons from the field of cancer mechanobiology and argue that HCC is a
mechanically-driven primary cancer, occurring in livers characterized by large shifts in cell
and tissue mechanics that lead to changes in cell behavior and the accumulation of DNA
damage. We emphasize that better understanding the impact of mechanical stress on liver
cells has the potential to lead to new interventions to prevent HCC development.

2. The Liver Progressively Stiffens in Fibrosis and Cirrhosis

The development of HCC is closely associated with the progression of fibrosis and
cirrhosis. Cirrhosis, which is the accumulation of extracellular matrix (ECM) proteins and
the disruption of normal liver architecture, arises in the setting of chronic liver disease,
including viral hepatitis, alcoholic and nonalcoholic fatty liver disease (NAFLD) and
cholestatic diseases. The relationship between liver stiffness and fibrosis is complex. In
early stages, stiffness increases out of proportion to fibrosis, largely due to increases in
lysyl oxidase (LOX)-mediated collagen cross-linking [11,12]; the increased stiffness enables
the first round of myofibroblast differentiation and abnormal matrix deposition. A similar
sequence of events has been reported for the development of lung fibrosis [13]. Even at later
stages, liver stiffness and collagen content are not linearly related, although the progression
of fibrosis is highly correlated with increasing liver stiffness, both in rodents [11,14] and
human patients [15,16]. Stiffness measurements have proven to be highly predictive
of fibrosis progression in patients with liver diseases of multiple etiologies and, due to
the accuracy and noninvasive nature of screening, transient elastography and magnetic
resonance elastography (MRE) are now frequently used clinically for disease surveillance
and for assessing prognosis [6,17,18].

Inflammation is also a major component of most chronic and acute liver diseases and
may be both a cause and effect of increased liver stiffness. The activation of hepatic stellate
cells is a crucial event in hepatic inflammation and early fibrosis, and liver stiffness has been
shown to trigger this activation, even before increased matrix deposition [16]. Interestingly,
even in the case of acute liver failure, liver stiffness, cell damage and hepatic stellate cell
activation are positively correlated, suggesting that inflammation may lead to increases in
tissue stiffness [19,20]. A similar relationship has been shown for patients with hepatitis
C, where increased inflammation (as measured by serum alanine aminotransferase (ALT))
correlates with liver stiffness among patients with early fibrosis [21].

In addition to increasing in bulk stiffness, the liver demonstrates more heterogeneity
in stiffness as fibrosis progresses [9,22]. Normal mouse livers exhibit a modest level of
mechanical heterogeneity, with portal tracts being slightly stiffer than pericentral regions,
both in the range of ~100-300 Pa [9]. The presence of fibrotic septa in these mouse livers
dramatically increases local stiffness by more than a factor of 10, but this effect does not
propagate to areas distant from collagen deposition. Nonetheless, these regional mechanical
changes are likely to have an impact on the phenotype of nearby cells, as described below.
The presence of a stiffness gradient may also impact cell behavior, as in vitro experiments
have shown that cells will migrate towards higher stiffness areas [23].

Other features of the fibrotic and cirrhotic liver also have an impact on liver mechanics,
although these have not been as well defined as changes in bulk stiffness. For example, the
presence of portal hypertension increases pressure in the sinusoids, potentially compress-
ing and mechanically stressing liver cells. This is particularly relevant in the context of the
thickening and stiffening of the capsule that occurs in advanced liver disease [24], which
further constrains tissue expansion and impacts the mechanical environment that liver cells
experience. Fibrotic tracts can also fully encase liver cells, generating stiff boundaries and
increasing pressure on individual lobules. Both solid stress and interstitial fluid pressure
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(referring to the compressive and tensile forces exerted by the solid and fluid components
of the liver [25-28]) are likely to change significantly in cirrhosis due to the accumulation of
various matrix components. This has already been shown for pancreatic adenocarcinoma,
where collagen and hyaluronic acid deposition correlate with large increases in interstitial
fluid pressure and solid stress [27,29,30]. This phenomenon has primarily been examined
in the context of drug delivery, as vessels within the tumor are constricted by increased
pressure, preventing the penetration of chemotherapy drugs [31-33], however, more re-
cently it has been shown that different stromal morphology in pancreatic cancer correlates
to different functional outcomes, suggesting that matrix mechanical changes could alter
oncogenesis and cancer progression [34]. Importantly, these mechanical changes do not
act on cells in isolation (Figure 1); increased interstitial pressure will compress the matrix,
increasing the effective stiffness that cells sense in addition to directly compressing them.

Fibrosis

Matrix deposition

T Sinusoidal pressure

Collagen Cell and tissue T Interstitial pressure
crosslinking confinement and solid stress

Figure 1. Tissue stiffness and mechanical stress compound over time as fibrosis progresses to cirrhosis,
even before developing HCC.

3. Liver Cells Are Mechanosensitive

Almost all cells studied thus far are mechanosensitive, and the same holds true for
cells of the liver. This has significant implications for the phenotype of cells in mechanically
abnormal environments such as fibrosis. For example, hepatocytes remain fully differenti-
ated in vitro only within a narrow window of stiffness [9], dedifferentiating rapidly even
with modest increases. High substrate stiffness alters cell morphology, reduces hepatocyte-
specific gene expression, and decreases hepatocyte-specific metabolism [9,35]. Elevated
shear stresses have been shown to increase the severity of the hepatocyte response to matrix
stiffness, leading to dedifferentiation [35], suggesting that multiple mechanical stresses
can amplify cell responses. This is especially relevant given that HCC occurs in a cirrhotic
environment with numerous mechanical stresses and that cycles of hepatocyte death and
regeneration are thought to underly HCC oncogenesis. Furthermore, hepatocytes remain
mechanosensitive even in malignancy; elevated liver stiffness increases the proliferation, in-
vasion, and chemotherapeutic resistance of malignant hepatocytes, increasing the severity
of HCC [7-9].

Portal fibroblasts and hepatic stellate cells are also mechanosensitive, increasing ECM
gene expression and matrix deposition in response to mechanical cues in stiff environ-
ments [36-38]. As noted above, liver stiffness has been shown in rodent models to precede
fibrosis, suggesting a mechanism whereby fibrosis is initiated by increases in tissue stiffness
through collagen crosslinking [11]. Consistent with this mechanism, blocking early tissue
stiffening through the use of LOX inhibitors slows myofibroblast activation and the progres-
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sion of fibrosis due to CCly-mediated liver injury [11]. Activated fibrogenic cells play an
important role in the emergence of HCC. Persistent activation of both hepatic stellate cells
and portal fibroblasts promotes their differentiation into highly contractile myofibroblasts,
making them likely precursors of cancer-associated fibroblasts (CAFs) in HCC [39,40].
Several CAF-dependent mechanisms promote hepatocarcinogenesis, including alteration
of the liver ECM, increased tumor angiogenesis, and the secretion of inflammatory and
tumor permissive cytokines [41].

As has been shown for other cancers discussed in this volume, numerous mechanosen-
sitive pathways impact progression of HCC including focal adhesion kinase (FAK), PI3K/
AKT [42-44], Ras/MEK/ERK [45-47], and the transcription factors YAP and TAZ [48,49].
Importantly, these pathways are upregulated in fibrosis [50-53]. In particular, FAK is more
significantly upregulated in cirrhotic tumors than in those with less dense ECM, suggesting
that stiffness-dependent FAK activation plays a role in tumor aggressiveness [54]. FAK also
plays a key role in activating hepatic stellate cells in early fibrosis, increasing expression of
a-smooth muscle actin and collagen [55], both markers of myofibroblasts that are associ-
ated with cancer development. Interestingly, FAK depletion in human HCC cells reduces
growth by inhibiting histone H3k27me3 [56], consistent with work showing that chromatin
condensation can increase DNA damage in epithelial cells under mechanical stress [57].
This suggests that mechanosensitive signaling pathways are activated in early fibrosis,
contribute to fibrotic progression, and increase cancer aggressiveness once it develops.

4. Mechanically Induced Nuclear Deformation Activates Oncogenic Signaling and
Increases DNA Damage

Intriguing recent data have shown that compression and deformation of the nucleus
may be significant components of mechanotransduction. Actin stress fibers that form
in stiff environments compress the nucleus, permitting the translocation of YAP [58],
and increasing instances of nuclear envelope rupture [59]. The same effect is seen if the
nucleus is compressed osmotically or in the absence of an intact cytoskeleton, suggesting
that nuclear deformation can directly activate mechanosensitive signaling [58,60]. While
many of these mechanobiology studies have been completed in mesenchymal cells, recent
work analyzing the nuclear morphology of liver cells in cirrhosis suggests that nuclear
deformation regulates mechanosensing directly, and that severing cytoskeletal-nuclear
links can restore a rounded nuclear morphology and quiescent phenotype [61].

Confined cells (such as those in a cirrhotic nodule) exhibit decreased mitotic fidelity.
Mechanical and geometric constraints limit the ability of cells to round up when entering
mitosis, generating chromosome segregation defects, multipolar spindles, and asymmetric
cell division [62-64]. This effect has also been shown in 3D culture conditions, in which
cell spheroids embedded in agarose exhibited longer prometaphase periods and spindle
misorientation [65], which can contribute to carcinogenesis [66]. The effect of confinement
is magnified as the environment stiffens: cells compressed under stiff polyacrylamide
gels have more frequent mitotic errors than those under soft polyacrylamide gels [67,68].
Tissue architecture is particularly important for chromosome segregation in the liver.
While hepatocytes in a regenerating liver have high mitotic fidelity, those dissociated and
expanded on collagen-coated glass coverslips had significantly more lagging chromosomes
and a 5-fold increase in aneuploidy [69]. Chromosome missegregation and aneuploidy are
common in HCC [70] and may be the result of cell division in a stiff cirrhotic environment.

Importantly, deformation of the nucleus, whether by migration through small pores,
direct application of force, or spreading on stiff substrates, has been implicated in the loss of
nuclear repair factors and accumulation of DNA damage [71-74]. Though increased DNA
damage from deformation has not yet been documented in primary liver cells, nuclear
deformation is increased in chronic liver diseases, raising the possibility that deformation
is a mechanism of oncogenesis [61,75]. This may be related to chromatin condensation:
in order to prevent mechanically-induced DNA damage, cells may soften their nuclei by
decondensing heterochromatin, and preventing decondensation increases double stranded
DNA breaks [57]. Cells have been shown to condense chromatin in response to substrate
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stiffening [76], suggesting that cells in a stiff cirrhotic liver may be particularly sensitive to
mechanically induced DNA damage.

Consistent with this idea, recent sequencing of normal and cirrhotic human livers
indicates that cirrhosis increases copy number variations and structural variants [77].
While this study did not report mechanical characterization of the tissues that were studied
genetically, there is extensive literature (as summarized above) demonstrating that cirrhotic
livers are much stiffer than normal or non-cirrhotic fibrotic livers. This is also consistent
with work showing that genomic variation (including both somatic mutations and large
scale chromosome copy-number variations) scales with tissue stiffness [78]. Previous
attempts to explain this phenomenon focused on cell migration as a source of mechanical
stress—stiffer tissues have a denser collagen matrix and cells migrating through this matrix
experience large scale nuclear deformations that lead to DNA damage accumulation. Given
more recent research showing that deformation directly mediates mechanosensing and can
induce damage in contexts other than constricted migration [60,73], it is plausible that the
nuclear deformation seen in chronic liver diseases could contribute to HCC development,
independent of the underlying etiology.

We have recently reported that nuclear deformation occurs in fatty liver disease, with
lipid droplets appearing to cause deformation and compression [75]. Notably, NAFLD
patients have an increased risk of HCC development even without cirrhosis [79]. 35-54%
of NAFLD-related HCC tumors develop in the absence of cirrhosis, and 18% in the absence
of steatohepatitis (NASH) [80,81]. Given the strong association between stiffness and HCC
development in cirrhotic livers, we hypothesize that nuclear deformation by lipid droplets
could activate cellular mechanosignaling and increase DNA damage, even in a soft liver.
We have previously shown that the presence of large lipid droplets in cirrhotic human liver
increases the nuclear translocation of YAP, suggesting that nuclear deformation by large
droplets may activate mechanosensitive gene expression [75].

5. Conclusions

While much cancer mechanobiology research is focused on cancer metastasis or me-
chanical changes in the tumor microenvironment post oncogenesis, HCC presents a unique
case: a primary cancer that occurs 90% of the time in an environment that is already me-
chanically very stiff. The progression is clear: fibrosis and cirrhosis are associated with large
increases in stiffness, further compounded by other associated pressures and mechanical
forces, and cancer develops most often in the stiffest livers. Similarly, there is abundant
evidence that mechanical changes are associated with malignancy. What has not been
shown is that these mechanical changes cause HCC. We hypothesize that liver cells are
similar to other cells that undergo malignant transformation in response to mechanical
stress: that the pressures and forces experienced by liver cells in the stiff environment of the
cirrhotic liver promote genomic instability, nuclear rupture, proliferation, and other onco-
genic behaviors. Importantly, recent research suggests that nuclear deformation may serve
as a cellular integration point, allowing cells to respond to force regardless of its source.
This could further provide an explanation for the rare cases of HCC development in softer
fatty liver tissue, whereby intracellular lipid droplets could cause nuclear deformation in a
similar manner to increased substrate stiffness.

If mechanical stresses are a source of cancer-causing mutations in hepatocytes, it
would offer several new approaches for preventing HCC, including modifying the extra-
cellular environment and altering cell mechanosensitivity. While existing drugs targeting
tumor or ECM stiffness have had mixed results in clinical trials, they have been aimed at
altering cancer progression rather than development. Treating fibrotic or cirrhotic liver
patients before they develop HCC with these drugs as a preventative measure might be
more successful.
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