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Single-nucleotide polymorphisms (SNPs) associated with complex disorders can create, destroy, or modify protein coding sites.
Single amino acid substitutions in the insulin receptor (INSR) are the most common forms of genetic variations that account for
various diseases like Donohue syndrome or Leprechaunism, Rabson-Mendenhall syndrome, and type A insulin resistance. We
analyzed the deleterious nonsynonymous SNPs (nsSNPs) in INSR gene based on different computational methods. Analysis of
INSR was initiated with PROVEAN followed by PolyPhen and I-Mutant servers to investigate the effects of 57 nsSNPs retrieved
from database of SNP (dbSNP). A total of 18 mutations that were found to exert damaging effects on the INSR protein structure
and function were chosen for further analysis. Among these mutations, our computational analysis suggested that 13 nsSNPs
decreased protein stability and might have resulted in loss of function. Therefore, the probability of their involvement in disease
predisposition increases. In the lack of adequate prior reports on the possible deleterious effects of nsSNPs, we have systematically
analyzed and characterized the functional variants in coding region that can alter the expression and function of INSR gene. In
silico characterization of nsSNPs affecting INSR gene function can aid in better understanding of genetic differences in disease
susceptibility.

1. Introduction

The insulin receptor (INSR) is a tyrosine kinase-specific
transmembrane receptor that is activated by insulin, insulin
growth factor I, and insulin growth factor II [1].Metabolically,
the INSR plays a crucial role in the regulation of glucose
homeostasis which may result in a range of clinical events
including diabetes and cancer [2, 3]. The main activity of
INSR is persuading uptake of glucose and because of a
decrease in insulin receptor signaling leads to diabetes melli-
tus type 2.The cells’ inability to take glucose results in hyper-
glycemia and all the sequels that result in diabetes. Insulin-
resistant patients may also display acanthosis nigricans. It is
already proven that the presence of mutant receptors in the
cell may have detrimental effects on the activity of the normal
receptor. A previous study conducted with kinase-deficient
INSRs transfected into cultured cells showed that such

receptors suppressed the function of endogenous INSRs and
functioned as dominant-negative mutations [4]. However, in
most cases of insulin resistance, the mutation is expressed
as a recessive form. Yamamoto-Honda et al. [5] studied the
function and consequences of recessivemutation in the INSR.
For example, Donohue syndrome known as Leprechaunism
is a rare and severe genetic autosomal recessive disorder due
to defect in the INSR gene.

Single-nucleotide polymorphisms (SNPs) are the most
common form of human genetic variations and nearly half
a million of SNPs reside in the exons of the human genome.
Among these SNPs, “nonsynonymous SNPs (nsSNPs)” can
alter the amino acid residues and contribute to functional
diversity in encoded proteins in the human population. The
genomic distribution of SNPs is not obviously homogenous.
In general, SNPs occur in noncoding regions more fre-
quently than in coding regions [6]. Genetic recombination
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and mutation rate are some other factors that can also deter-
mine SNP density [7]. SNPs are usually biallelic and a single
SNP may cause a Mendelian disease [8]. In case of complex
diseases, SNPs do not usually function independently but
rather they work as a group with other SNPs to exhibit a
disease condition which has been seen in osteoporosis [9].
A wide range of human diseases, such as sickle-cell anemia,
𝛽 thalassemia, and cystic fibrosis, result from SNPs [10–
12]. For drug discovery, diseases with different SNPs may
become crucial pharmacogenomic targets; some SNPs are
also associated with the metabolism of different drugs [13–
15]. For genome-wide association studies, SNPs can serve as
a useful genetic marker [16].The consequences or deleterious
effects of SNPs are generally attributed to their impact on
the protein structure and function. However, very few studies
have been done to predict the SNPs and their impacts on
INSR.

In this study, we identified the nsSNPs’ deleterious muta-
tions in silico which may have an impact on the structural
integrity of human INSR protein and are involved in several
genetic diseases. Knowledge of in silico analysis of SNPs will
play a major role in the understanding of the genetic basis
of several complex genetic human diseases. Furthermore, the
genetics of human phenotypic diversity could also be implied
by establishing the functions of these SNPs. Using laboratory
techniques, it is still a major obstacle to identify the func-
tional SNPs in a disease-related gene. However, with recent
advancements in the “in silico” technique and procedures, it is
now possible to carry out research investigations without the
need for extensive lab work. The main focus of this work is
to investigate the SNPs genetic variations in the human INSR
gene and their possible effects on structure and functions of
INSR using bioinformatics and computational algorithms.

2. Materials and Methods

2.1. Datasets. The data of human INSR gene was collected
from Online Mendelian Inheritance in Man (OMIM) and
Entrez Gene on National Center for Biological Information
(NCBI) web sites. The SNPs information (protein accession
number and SNP ID) of the INSR gene was retrieved from
the NCBI dbSNP (http://www.ncbi.nlm.nih.gov/snp/).

2.2. Analysis of Protein Variation Effects. A sequence based
predictor estimates the effect of protein sequence variation on
protein function. Many web servers are available to predict
the effect of single amino acid variations on protein stability
and protein binding efficiency. PROVEAN (http://provean
.jcvi.org/index.php), I-Mutant 3.0 (http://gpcr2.biocomp
.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi), and
PolyPhen (http://genetics.bwh.harvard.edu/pph2/)were used
in this study.

In PROVEAN, protein sequences of BLAST hits with
more than 75% global sequence identity were clustered
together and top clusters formed a supporting sequence set. A
delta alignment scoring system was used, where the scores of
each supporting sequence were averaged within and across
clusters to generate the final PROVEAN score. A protein
variant is said to be “deleterious” if the final score is below

a certain threshold (default is −2.5) or is predicted to be
“neutral” if the score is above the threshold [17].

PolyPhen version 2 predicts the influence of amino acid
substitution on the structure and function of proteins by
using the specific empirical rules. Protein sequence, database
ID/accession number, amino acid position, and amino acid
variant details are the input options for PolyPhen [18].
The tool estimates the position-specific independent count
(PSIC) score for every variant and calculates the score
difference between variants.

I-Mutant 2.0 and I-Mutant 3.0 are based on Support
Vector Machine (SVM) algorithm to predict the stability
of the protein due to single amino acid variations. It can
predict protein stability changes by using protein sequence or
structure. It has an overall accuracy of 77% when prediction
is based on protein sequence. I-Mutant 2.0 and I-Mutant 3.0
predict the DDG values as a regression estimator and the sign
of the stability change. I-Mutant 3.0 furthermore classifies
mutations into three categories: neutral mutation (−0.5 ≤
DDG≤ 0.5), large decrease (≤ −0.5), and large increase (>0.5)
[19, 20].

2.3. 3D Modeling and Analysis of Protein Structure. The
EMBL-EBI web-based tool PDBsum (http://www.ebi.ac.uk/
pdbsum/) was used to find the proteins related to the INSR.
PDBsum provides an at-a-glance overview of every macro-
molecular structure deposited in the Protein Data Bank
(PDB). It performs a FASTA search against all sequences
in the PDB to obtain a list of the closest matches [21]. LS-
SNP/PDB [22] annotates all human SNPs that produce an
amino acid change in a protein structure in PDB [23], using
features of their local structural environment, putative bind-
ing interactions, and evolutionary conservation.Thepresence
of an nsSNP in a highly conserved surface patch or a charged
surface patch suggests possible biological importance. These
annotations allow users to quickly scan a large number of
nsSNPs of interest and prioritize those with higher likelihood
of impacting normal protein activities. LS-SNP server is also
useful to analyze human nsSNPs onto protein homology
models [24].

PYMOL was used to generate the mutant models of each
of the selected PDB entries for the corresponding amino acid
substitutions. PYMOL allows browsing through a rotamer
library to change amino acids. A “Mutagenesis Wizard” was
used to replace the native amino acid with new one. The
mutation tool facilitates the replacement of the native amino
acid by the “best” rotamer of the new amino acid. The “.pdb”
files were saved for all the models.

2.4. Structure Validation and Energy Minimization. Struc-
tural Analysis and Verification Server (SAVES) was imple-
mented for evaluating the quality and validation of the refined
3D structural models. The SAVES integrates PROCHECK,
PROVE, and ERRAT software programs to check overall
quality of the 3D models obtained from the PYMOL muta-
genesis tool. Structure refinement was carried out using
KoBaMIN which is based on knowledge based potential
refinement for proteins protocol [25].
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2.5. Protein Stability Validation for Mutant Structure. The
approach called Mutation Cutoff Scanning Matrix (mCSM)
uses the concept of graph-based structural signatures to study
and predict the impact of single-point mutations on protein
stability and protein-protein and protein-nucleic acid affinity.
The mCSM encodes distance patterns between atoms to
represent protein residue environments [26].

2.6. Structural Analysis. Thepredicted structureswere viewed
in University of California San Francisco (UCSF) Chimera.
It is a computationally intensive program for visualization of
molecular models and it provides an interactive interface for
the user for analyzing the models and model related data.
It provides a platform for analyzing sequence alignments,
generating homology models, molecular docking, viewing
various density models, and also comparing different models
by superimposition [27].Themutant andwild type structures
were superimposed and the effect of the nonsynonymous
variation was observed in terms of steric hindrance due to
the changes of the side chains and charge of the amino
acid. Then, the degree of change in the hydrophobicity or
hydrophilicity of the substituted amino acid and its effect
on the interacting intrachain and interchain molecules was
analyzed.A summary of in silico approaches used in this study
is shown in Figure 1.

3. Results

3.1. SNP Dataset from dbSNP. The dbSNP contains both
validated and nonvalidated polymorphisms. In spite of this
drawback, we opted to avail the dbSNP because allelic
frequency ofmost of nsSNPs of INSR has been recorded there
and that is the most extensive SNP database. In our data
search, some previously reported SNPs in dbSNP have been
identified as invalid because of wrong sequencing and align-
ment. These erroneous SNPs have expired or have merged
with other SNPs. Some INSR genes have been renamed. We
carefully cross-examined the databases and removed those
old and invalid SNPs. At dbSNP, INSR gene contains data for
4967 SNPs. Out of 4967 SNPs, only 57 were nsSNPs in the
coding region (Table 1). Our investigation accounted for the
nsSNPs in the coding region only.

3.2. Effects of nsSNPs on INSR Predicted by Different Tools.
The PROVEAN algorithm works mainly with primary
sequence for prediction while other tools perform similar
task with the structure. Since PROVEAN can predict a large
number of substitutions and does not require structures, it is
advantageous over other tools. PROVEAN predicts the effect
of the variant on the biological function of the protein based
on sequence homology. The scores of PROVEAN are clas-
sified as “deleterious” below a certain threshold (here −2.5)
and “neutral” above it. A .txt file containing “db SNP rsIDs”
of all 57 nsSNPs was submitted to the “dbSNP rsIDs” page to
calculate the PROVEAN score. Out of 57 nsSNPs, PROVEAN
predicted 24 as deleterious and 33 as neutral (Table 1). Among
the 24 deleterious nsSNPs mutations, W1220L and C219R
were predicted as highly deleterious with PROVEAN scores
of −11.648 and −9.831, respectively.

Single-nucleotide polymorphisms (SNPs)
in insulin receptor

Coding region

Nonsynonymous amino acid changes

Dataset collection dbSNP, OMIM

Web-based servers for sequence analysis

PROVEAN PolyPhen I-Mutant

Finding the most closely related protein structure
(PDBSum, PDB)

Deleterious SNPs in selected protein structure
LS-SNP/PDB

Modeling of amino acid substitution
(PYMOL)

Structure validation and energy minimization
by structural analysis and verification server

Protein stability validation by mCSM

Structural analysis by
UCSF Chimera

Common SNPs predicted as deleterious, damaging
and decreased stability

Figure 1: Workflow of in silico approaches used in this study.

PolyPhen identifies homologues of the input sequences
via BLAST and calculates PSIC scores for every variant
and estimates the difference between the variant scores; the
difference of 0.339 is detrimental. There are certain empirical
rules applied to the sequences and the accuracy is approxi-
mately 82%with a chance of 8% false-positive prediction.The
protein accession number of INSR (P06213) and the amino
acid substitutions corresponding to each of the 57 nsSNPs
were submitted separately. Table 2 summarizes the results
obtained from the PolyPhen server. A PSIC score difference
was assigned to categorize SNPs as benign and damaging.
“PolyPhen-2: scores are evaluated as 0.000 (most probably
benign) to 0.999 (most probably damaging).” Twenty-one of
the 57 nsSNPs were predicted as “damaging,” and the PSIC
scores fell into the range of 1.51 to 3.41. 18 nsSNPs predicted to
be deleterious by the SIFT (Sorting Intolerant from Tolerant)
programwere also predicted to be damaging by the PolyPhen
server.

I-Mutant is a neural network based routine tool used in
the analysis of protein stability alterations by considering the
single-site mutation. I-Mutant also provides the scores for
free energy alterations, calculated with the FOLD-X energy
based web server. By assimilating the FOLD-X estimations
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Table 1: List of nsSNPs that were predicted by PROVEAN to have
functional significance.

SNP ID Mutation PROVEAN
results

PROVEAN
score

rs1799816 V1012M Neutral −2.418
rs52836744 G58R Deleterious −6.762
rs121913144 R1027∗

rs121913145 H236R Deleterious −5.616
rs121913156 R1201Q Deleterious −3.701
rs891087 D261E Neutral −0.116
rs2162771 P830L Neutral −1.576
rs13306449 Y1361C Deleterious −4.157
rs35045353 G811S Neutral −2.401
rs1051691 I448T Deleterious −3.774
rs1051692 Y171H Neutral −1.304
rs2229429 D546E Neutral −2.474
rs7508518 A2G Neutral 0.465
rs52800171 W1220L Deleterious −11.648
rs55816055 S353P Deleterious −2.761
rs56395521 L1065V Neutral −1.133
rs72549237 V362I Neutral −0.211
rs76077021 R889W Deleterious −4.254
rs76673783 E664G Deleterious −5.068
rs78433961 R796S Neutral −0.984
rs78827745 M65K Deleterious −3.808
rs79312957 R413C Deleterious −5.623
rs113527718 S1297G Deleterious −2.539
rs138528064 T320M Neutral −1.959
rs140762552 T107M Deleterious −2.922
rs140852238 E51K Deleterious −2.545
rs141484557 G262S Deleterious −3.037
rs142391704 A706D Neutral 0.622
rs142910337 D75G Neutral 1.672
rs143523271 S748L Neutral −0.793
rs143919163 G192D Neutral −1.884
rs144029037 V900I Neutral −0.698
rs146588336 D946E Neutral −0.743
rs147671523 E517G Deleterious −4.293
rs148838377 P755S Neutral −0.076
rs149536206 H8598∗

rs150114699 L991I Neutral −1.71
rs181150880 R410Q Neutral −2.011
rs182552223 T858A Deleterious −2.612
rs183360558 D893N Neutral −1.752
rs185736681 R1053C Deleterious −5.933
rs187282966 R889Q Neutral −1.492
rs199580495 S1033F Deleterious −5.642
rs199599404 M1319I Neutral −1.196
rs199659271 C219R Deleterious −9.831
rs200059069 K411Q Neutral −1.21
rs200110540 V866I Neutral −0.134

Table 1: Continued.

SNP ID Mutation PROVEAN
results

PROVEAN
score

rs200199169 P271L Neutral −2.315
rs200400127 A1340V Neutral −1.519
rs200921389 G1048D Neutral −1.585
rs201147780 K294R Neutral −0.904
rs201466857 T858M Deleterious −3.384
rs201506342 P1312T Deleterious −3.008
rs201978448 A537V Deleterious −3.252
rs201979105 S1221A Deleterious −2.698
rs202160383 R1128H Neutral −2.063
∗Premature stop codon.

with those of I-Mutant, about 93% precision can be achieved.
We have considered a threshold of −1.5 Kcal/mol to predict
a SNP to be destabilized. Forty-six nsSNPs were considered
as destabilized with DDG values by I-Mutant (Table 3).
Finally, we selected 18 significant nsSNPs because they were
predicted to be deleterious by PROVEAN, PolyPhen, and
SIFT programs and showed decreased structural stability
following analysis by I-Mutant (Table 4).

3.3. Effects of nsSNPs on Protein Structure. By using the
EMBL-EBI web-based tool PDBsum, the INSR protein struc-
tures were searched. Two related protein structures, namely,
2HR7 and 4IBM, were found to share 100% amino acid
sequence similarity. The single amino acid polymorphism
(SAAP) database server (http://www.bioinf.org.uk/saap/db/)
is offline due to essential maintenance. Thus, we were unable
tomap the deleterious nsSNPs into protein structure through
SAAP.Mapping the deleterious nsSNPs into protein structure
informationwas performed through the LS-SNP/PDB server.

According to this resource, 2HR7 accounted for 9 nsSNPs
and 4IBM had 4 nsSNPs. Apart from the SNP scanning,
LS-SNP/PDB server also predicts solvent accessibility and
conservation ratio of given protein structures. An overview of
mapping of mutant structures and their solvent accessibility
and conservation ratios is given in Table 5.

Out of 18 nsSNPs predicted to be deleterious by
PROVEAN or PolyPhen, a total of 13 were mapped to the
PDB ID 2HR7 and 4IBM native structures. All the functional
nsSNPs predicted using the PROVEAN and PolyPhen tools
were subjected to the PYMOL mutation tool. A model for
each functional nsSNP was made by PYMOL mutagenesis
tool and visualized using UCSF Chimera tool for comparison
with the native structures (Figure 2, only mutants rs1051691
(I421T) and rs121913156 (R1174Q) are shown).

Energy minimization is performed for the native struc-
tures (2HR7 and 4IBM) and the mutant modeled structures.
The KoBaMIN web server uses a force field for energy
minimization. The total energy for all the mutant and native
models after minimization is listed in Table 6. The total
energies for the native structures of 2HR7 and 4IBM are
−22087.6969 kJ/mol and −13041.4646 kJ/mol, respectively.
Change in total energy due to mutation is noticeable in
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Table 2: Potential effect of amino acid substitution for nsSNPs in human INSR predicted by the PolyPhen algorithm.

SNP ID Mutation PolyPhen results Score Sensitivity Specificity
rs1799816 V1012M Probably damaging 0.992 0.7 0.97
rs52836744 G58R Probably damaging 1 0 1
rs121913144 R1027∗

rs121913145 H236R Probably damaging 1 0 1
rs121913156 R1201Q Probably damaging 1 0 1
rs891087 D261E Benign 0 1 0
rs2162771 P830L Benign 0 1 0
rs13306449 Y1361C Probably damaging 1 0 1
rs35045353 G811S Benign 0.441 0.89 0.9
rs1051691 I448T Probably damaging 0.996 0.55 0.98
rs1051692 Y171H Benign 0.024 0.95 0.81
rs2229429 D546E Benign 0.032 0.95 0.82
rs7508518 A2G Benign 0 1 0
rs52800171 W1220L Probably damaging 1 0 1
rs55816055 S353P Possibly damaging 0.528 0.88 0.9
rs56395521 L1065V Benign 0 1 0
rs72549237 V362I Benign 0.003 0.98 0.44
rs76077021 R889W Benign 0.111 0.93 0.86
rs76673783 E664G Possibly damaging 0.592 0.87 0.91
rs78433961 R796S Benign 0.001 0.99 0.15
rs78827745 M65K Possibly damaging 0.934 0.8 0.94
rs79312957 R413C Probably damaging 0.999 0.14 0.99
rs113527718 S1297G Benign 0.004 0.97 0.59
rs138528064 T320M Benign 0.199 0.92 0.88
rs140762552 T107M Probably damaging 1 0 1
rs140852238 E51K Benign 0.003 0.98 0.44
rs141484557 G262S Possibly damaging 0.939 0.8 0.94
rs142391704 A706D Benign 0 1 0
rs142910337 D75G Benign 0 1 0
rs143523271 S748L Benign 0 1 0
rs143919163 G192D Benign 0.005 0.97 0.74
rs144029037 V900I Benign 0.048 0.94 0.83
rs146588336 D946E
rs147671523 E517G Possibly damaging 0.726 0.86 0.92
rs148838377 P755S Benign 0 1 0
rs149536206 H8598∗

rs150114699 L991I Benign 0.442 0.89 0.9
rs181150880 R410Q Possibly damaging 0.935 0.8 0.94
rs182552223 T858A Benign 0.007 0.96 0.75
rs183360558 D893N Benign 0 1 0
rs185736681 R1053C Benign 0.223 0.91 0.88
rs187282966 R889Q Benign 0.252 0.91 0.88
rs199580495 S1033F Probably damaging 0.968 0.77 0.95
rs199599404 M1319I Benign 0.007 0.96 0.75
rs199659271 C219R Probably damaging 1 0 1
rs200059069 K411Q Possibly damaging 0.75 0.85 0.92
rs200110540 V866I Benign 0 1 0
rs200199169 P271L Benign 0 1 0
rs200400127 A1340V Benign 0.021 0.95 0.8
rs200921389 G1048D Benign 0.009 0.96 0.77
rs201147780 K294R Benign 0.008 0.96 0.76
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Table 2: Continued.

SNP ID Mutation PolyPhen results Score Sensitivity Specificity
rs201466857 T858M Probably damaging 0.994 0.69 0.97
rs201506342 P1312T Possibly damaging 0.616 0.87 0.91
rs201978448 A537V Benign 0.143 0.92 0.86
rs201979105 S1221A Probably damaging 0.997 0.41 0.98
rs202160383 R1128H Benign 0.031 0.95 0.82
∗Premature stop codon.

Table 3: List of nsSNPs’ stability predicted by I-MUTANT.

SNP ID Mutation Stability SNP ID Mutation Stability
rs1799816 V1012M Decrease rs141484557 G262S Decrease
rs52836744 G58R Decrease rs142391704 A706D Decrease
rs121913144 R1027∗ rs142910337 D75G Decrease
rs121913145 H236R Decrease rs143523271 S748L Increase
rs121913156 R1201Q Decrease rs143919163 G192D Decrease
rs891087 D261E Increase rs144029037 V900I Decrease
rs2162771 P830L Decrease rs146588336 D946E Increase
rs13306449 Y1361C Increase rs147671523 E517G Increase
rs35045353 G811S Decrease rs148838377 P755S Decrease
rs1051691 I448T Decrease rs149536206 H8598∗

rs1051692 Y171H Decrease rs150114699 L991I Decrease
rs2229429 D546E Increase rs181150880 R410Q Decrease
rs7508518 A2G Decrease rs182552223 T858A Decrease
rs52800171 W1220L Decrease rs183360558 D893N Decrease
rs55816055 S353P Increase rs185736681 R1053C Decrease
rs56395521 L1065V Decrease rs187282966 R889Q Decrease
rs72549237 V362I Decrease rs199580495 S1033F Increase
rs76077021 R889W Decrease rs199599404 M1319I Decrease
rs76673783 E664G Decrease rs199659271 C219R Decrease
rs78433961 R796S Decrease rs200059069 K411Q Increase
rs78827745 M65K Decrease rs200110540 V866I Decrease
rs79312957 R413C Decrease rs200199169 P271L Decrease
rs113527718 S1297G Decrease rs200400127 A1340V Decrease
rs138528064 T320M Decrease rs200921389 G1048D Decrease
rs140762552 T107M Decrease rs201147780 K294R Increase
rs140852238 E51K Decrease rs201466857 T858M Decrease
rs201506342 P1312T Decrease rs201979105 S1221A Decrease
rs201978448 A537V Increase rs202160383 R1128H Decrease
∗Premature stop codon.

the both 2HR7 and 4IBM mutant models. RMSD is the
measure of the deviation of the mutant structures from
their native configurations. The higher the RMSD value, the
more the deviation between the two structures. Structural
changes, in turn, affect functional activity. RMSDs for all
the mutant structures are listed in Table 6. The mutants
rs79312957 and rs121913156 have higher RMSD value of 6.025
and 0.436 compared to native structures RMSD value 6.019
and 0.404, respectively. These two nsSNPs could be believed
to affect the structure of the proteins.These two nsSNPs were
also shown to be deleterious according to the PROVEAN
and PolyPhen server. The 3D structure of the native INSR
protein crystal structures 2HR7 and 4IBM and the predicted

mutant structures were superimposed over chain A. The
superimposed structures revealed that the mutants might
have considerably affected the protein structure and thus its
function (Figure 3; only rs79312957 is shown). Substituted
amino acid residues in the mutants might have altered the
conformation of the INSR or networking among neighboring
amino acids or interaction between the substrate and receptor
[28, 29].

3.4. Effects of nsSNP on Protein Stability. The effects of the
nsSNPs on protein stability were computed with FOLD-X
by mCSM server which uses an empirical energy equation
to calculate the Gibbs free energy DDG. The empirical
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Table 4: Common amino acid change due to deleterious nsSNPs in human INSR predicted by PROVEAN and PolyPhen algorithms.

SNP ID Mutation PROVEAN results PROVEAN score PolyPhen results PolyPhen score
rs52836744 G58R Deleterious −6.762 Probably damaging 1
rs121913145 H236R Deleterious −5.616 Probably damaging 1
rs121913156 R1201Q Deleterious −3.701 Probably damaging 1
rs13306449 Y1361C Deleterious −4.157 Probably damaging 1
rs1051691 I448T Deleterious −3.774 Probably damaging 0.996
rs52800171 W1220L Deleterious −11.648 Probably damaging 1
rs55816055 S353P Deleterious −2.761 Possibly damaging 0.528
rs76673783 E664G Deleterious −5.068 Possibly damaging 0.592
rs78827745 M65K Deleterious −3.808 Possibly damaging 0.934
rs79312957 R413C Deleterious −5.623 Probably damaging 0.999
rs140762552 T107M Deleterious −2.922 Probably damaging 1
rs141484557 G262S Deleterious −3.037 Possibly damaging 0.939
rs147671523 E517G Deleterious −4.293 Possibly damaging 0.726
rs199580495 S1033F Deleterious −5.642 Probably damaging 0.968
rs199659271 C219R Deleterious −9.831 Probably damaging 1
rs201466857 T858M Deleterious −3.384 Probably damaging 0.994
rs201506342 P1312T Deleterious −3.008 Possibly damaging 0.616
rs201979105 S1221A Deleterious −2.698 Probably damaging 0.997

Table 5: Mapping of nsSNPs in 2HR7 and 4IBM 3D structures.

SNP ID Mutation PDB residue number Solvent accessibility Conservation
2HR7
rs52836744 G58R 31 Intermediate 10% 5%
rs121913145 H236R 209 Intermediate 23% 10%
rs1051691 I448T 421 Buried 1% 1%
rs55816055 S353P 326 Buried 5% 3%
rs78827745 M65K 38 Buried 0% 8%
rs79312957 R413C 386 Exposed 58% 3%
rs140762552 T107M 80 Buried 2% 5%
rs141484557 G262S 235 Exposed 46% 25%
rs199659271 C219R 192 Buried 5% 11%
4IBM
rs121913156 R1201Q 1174 Intermediate 10% 0%
rs52800171 W1220L 1193 Buried 1% 0%
rs199580495 S1033F 1006 Intermediate 30% 0%
rs201979105 S1221A 1194 Buried 5% 0%

energy terms consider the location and type of a substituted
residue. The mCSM is a structure based prediction tool. Two
different analysis protocols were utilized to obtain maxi-
mum information over the effect of the single amino acid
substitutions: (1) all the nsSNPs were considered singularly
and their effect on the protein stability and interaction
potential was determined; (2) the nsSNPs were considered
according to the allelic sequences. Initially, all the structures
were minimized and obtained a stable protein stability value.
Then the structures for each single amino acid variation
were generated using the Build Model feature of FOLD-X
3.0. Finally, the effect of each single amino acid variation
on the protein stability of INSR was determined using the
analyzed complex features. The mutation was considered as

destabilizing and stabilizing when the DDG was >0 and
<0, respectively. In this prediction method, all the mutant
structures ultimately derived from the PROVEAN, PolyPhen,
and I-Mutant programs were finally submitted to the mCSM
server to predict mutant structure’s protein stability upon
mutation. The mCSM predicted all structures as “Destabiliz-
ing” including two as “Highly Destabilizing” (Table 7).

4. Discussion

The SNP in INSR can manifest several insulin-resistant syn-
dromes like Leprechaunism, Rabson-Mendenhall syndrome,
and type A insulin resistance [30, 31]. Diagnostic measures
have already been established on clinical examination as well
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(a) (b)

(c) (d)

Figure 2: A comparison of amino acid substitutions due to nsSNPs. Two mutant structures of deleterious nsSNPs rs1051691 (I421T) (c) and
rs121913156 (R1174Q) (d) were compared to their native structures 2HR7 (a) and 4IBM (b), respectively. Models were generated by using
PYMOL and visualized by UCSF Chimera.

as laboratory diagnostic tests with elevated insulin levels
as a constant feature. Functional and DNA analysis can be
used for absolute confirmation, but certain mutations do not
contribute to insulin binding and DNA analysis is still not
able to identify all the putative mutations. Although there is
no direct genotype-phenotype correlation, but mutations in
the alpha subunit of the insulin receptor are associated with a
more severe phenotype compared to the mutations affecting
the beta subunit [32]. Numerous studies have been conducted
using in silico analysis approaches to predict the functional
effects of nsSNPs on genes such as G6PD, BARF, and PTEN
[33, 34]. Therefore, for addressing this issue, we selected in
silico strategy to analyze and predict the functional effects of
SNPs on INSR.

We used different in silico methods based on the com-
bination of two distinctive approaches which are sequence
and structural based approaches. In comparison with the
structure based methods, sequence based prediction meth-
ods are one step ahead because they can be applied to
any proteins with known relatives, whereas structure based
approaches are not feasible to implement for proteins with
unknown 3D structures. Software programs and servers that

integrate both sequence and structure resources have advan-
tage of being able to assess the authenticity of the predicted
results by cross-referencing the results from both methods.
Most computational methods utilize this information for
the prediction and analyses of deleterious nsSNPs, among
which PROVEAN and PolyPhen algorithms are the main
representatives. Considering normalized probability score
below −2.5 in PROVEAN and a PSIC score 1.5 in PolyPhen
as deleterious, 24 and 21 of amino acid substitutions were
predicted to have functional impact on INSR gene. The
variation in prediction score of PROVEAN and PolyPhen is
mainly because of the difference in sequence alignment and
the values used to classify the variants. Significant similarity
was observed between the results obtained by PROVEAN
and PolyPhen. PROVEAN and PolyPhen in predicting the
effect of nsSNPs on protein functionmight be suitable in silico
approach [35].

In order to predict the impact of nsSNPs on protein
structure, I-Mutant 3.0 was used which evaluated the stability
change upon single-site mutation. I-Mutant 3.0 was ranked
as one of the most reliable predictors based on the work
performed byKhan andVihinen [36]. Based on the difference
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Figure 3: Superimposition of native and mutant structures. Native structure (2HR7) shows arginine at position 386 (a) and mutant modeled
structure rs79312957 (R386C) shows cysteine residue at the corresponding position (b). (c) shows the superimposition of the native structure
(red) with mutant modeled structure (green) in position 386.

Table 6: RMSDand total energy after energyminimization of native
structures and their mutant 3D models.

Molecules RMSD (Å)
Total energy after

energy minimization
(kJ/mol)

2HR7 native-type structure 6.019 −22087.6969
2HR7 mutant (rs52836744) 6.007 −21968.7347
2HR7 mutant (rs121913145) 5.985 −21815.0585
2HR7 mutant (rs1051691) 5.997 −22160.7304
2HR7 mutant (rs55816055) 5.957 −21903.7516
2HR7 mutant (rs78827745) 5.991 −21816.4353
2HR7 mutant (rs79312957) 6.025 −21962.4576
2HR7 mutant (rs140762552) 5.992 −21823.0448
2HR7 mutant (rs141484557) 5.995 −22076.7362
2HR7 mutant (rs199659271) 5.98 −21736.5417
4IBM native-type structure 0.404 −13041.4646
4IBMmutant (rs121913156) 0.436 −13091.3512
4IBM mutant (rs52800171) 0.39 −12830.5659
4IBM mutant (rs199580495) 0.402 −11940.1628
4IBM mutant (rs201979105) 0.376 −13076.6808

in Gibbs free energy value of mutant and wild type protein,
45 nsSNPs were found to largely destabilize the protein.
Structures of the several human INSRs are available in PDB
and have been used to analyze the effect of polymorphisms.
A 3D structure is essential for analyzing the impact of the
SNPs in structural level. Therefore, we predicted the 3D
structure most similar to human INSR through the EMBL
PDBsum program. Depending on the highest sequence
similarity and alignment, we selected 2HR7 and 4IBM from
the PDB. Already predicted deleterious and disease-related
nsSNPs predicted by PROVEAN and PolyPhen were further
subjected to LS-SNP/PDB server for mapping SNPs in 2HR7
and 4IBM crystal structures.Themutant structures served as
valuable tool to compare and predict protein stability, RMSD,
and energy calculation between wild type and mutant type
structures.

Each mutation was considered individually to study the
inherent effect of the SNP. In addition, the allelic sequences
were analyzed to investigate if the polymorphisms neutral-
ized each other by occurring simultaneously as an act of
preservation of function by nature. The mCSM was used to
analyze the effects of single amino acid variations on the
structure and stability of the protein.



10 BioMed Research International

Table 7: Protein stability upon mutation.

Molecules Mutation PDB residue number RSA (%) Predicted ΔΔ𝐺 Outcome
2HR7 native-type structure
2HR7 mutant (rs52836744) G58R 31 33.2 −1.11 Destabilizing
2HR7 mutant (rs121913145) H236R 209 30.5 −0.248 Destabilizing
2HR7 mutant (rs1051691) I448T 421 0 −2.403 Highly Destabilizing
2HR7 mutant (rs55816055) S353P 326 15.5 −0.339 Destabilizing
2HR7 mutant (rs78827745) M65K 38 0 −1.568 Destabilizing
2HR7 mutant (rs79312957) R413C 386 70.2 −0.931 Destabilizing
2HR7 mutant (rs140762552) T107M 80 2.3 −0.387 Destabilizing
2HR7 mutant (rs141484557) G262S 235 70.3 −0.775 Destabilizing
2HR7 mutant (rs199659271) C219R 192 3.2 −0.039 Destabilizing
4IBM native-type structure
4IBMmutant (rs121913156) R1201Q 1174 11.5 −1.347 Destabilizing
4IBMmutant (rs52800171) W1220L 1193 2.1 −3.223 Highly Destabilizing
4IBMmutant (rs199580495) S1033F 1006 16.7 −0.888 Destabilizing
4IBM mutant (rs201979105) S1221A 1194 9.5 −1.858 Destabilizing

Our results indicated that all of the 13 mutant structures
of 2HR7 and 4IBM were predicted as “Destabilizing” which
signified our results found by PROVEAN and PolyPhen.
Among all the destabilized mutant structures, two mutants
were labelled as “Highly Destabilizing” which were rs1051691
and rs52800171 in their I448T andW1220L positions, respec-
tively, which suggested that these polymorphisms should be
considered as a potential target for future experiments. If a
single amino acid variation shows a change in protein stability
or protein-protein interaction, it should give comparable
values with the sign reversal for the reverse mutation. This
would indicate that the prediction of the effect of the single
amino acid variation on the protein structure or protein-
protein interaction might be substantial.

5. Conclusions

This study shows a correlation between SNPs in the INSR
gene and several diseases like insulin-resistant syndromes
such as Leprechaunism, Rabson-Mendenhall syndrome, and
type A insulin resistance. The present study concludes that
13 nsSNPs especially rs1051691 and rs52800171 decreases
protein stability and are not tolerated or may result in
loss of function. Their presence in the INSR increases the
possibility of altered transcriptional and cell cycle regulation
and INSR mediated diseases. Therefore, the probability of
their involvement in disease predisposition increases. Thus,
for further analysis, these mutations should be given priority
to obtain detailed information on their effects. In order to
confirm the structures modeled in this study, the actual
structures should be determined by X-ray crystallography or
nuclear magnetic resonance spectroscopy. We anticipate that
the results obtained from our analysis would pave the way for
providing useful information to the researchers and can play
an important role in bridging the gap between biologists and
bioinformaticians.
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