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Abstract 

Background:  Several studies have investigated the correlation between physiological parameters and the risk of 
acute respiratory distress syndrome (ARDS), in addition, etiology-associated heterogeneity in ARDS has become an 
emerging topic quite recently; however, the intersection between the two, which is early prediction of target condi-
tions in etiology-specific ARDS, has not been well-studied. We aimed to develop and validate a machine-learning 
model for the early prediction of moderate-to-severe condition of inhalation-induced ARDS.

Methods:  Clinical expertise was applied with data-driven analysis. Using data from electronic intensive care units 
(retrospective derivation cohort) and the three most accessible vital signs (i.e. heart rate, temperature, and respiratory 
rate) together with feature engineering, we applied a random forest approach during the time window of 90 h that 
ended 6 h prior to the onset of moderate-to-severe respiratory failure (the ratio of partial pressure of arterial oxygen to 
fraction of inspired oxygen ≤ 200 mmHg).

Results:  The trained random forest classifier was validated using two independent validation cohorts, with an area 
under the curve of 0.9127 (95% confidence interval 0.8713–0.9542) and 0.9026 (95% confidence interval 0.8075–1), 
respectively. A Stable and Interpretable RUle Set (SIRUS) was used to extract rules from the RF to provide guidelines 
for clinicians. We identified several predictive factors, including resp_96h_6h_min < 9, resp_96h_6h_mean ≥ 16.1, 
HR_96h_6h_mean ≥ 102, and temp_96h_6h_max > 100, that could be used for predicting inhalation-induced ARDS 
(moderate-to-severe condition) 6 h prior to onset in critical care units. (‘xxx_96h_6h_min/mean/max’: the minimum/
mean/maximum values of the xxx vital sign collected during a 90 h time window beginning 96 h prior to the onset of 
ARDS and ending 6 h prior to the onset from every recorded blood gas test).

Conclusions:  This newly established random forest‑based interpretable model shows good predictive ability for 
moderate-to-severe inhalation-induced ARDS and may assist clinicians in decision-making, as well as facilitate the 
enrolment of patients in prevention programmes to improve their outcomes.
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Background
Acute respiratory distress syndrome (ARDS) is life-
threatening and the major cause of morbidity and mor-
tality in intensive care units (ICUs), with a mortality 
rate exceeding 40% [1, 2]. Despite the fact that therapies, 
such as ECMO, were well developed in the modern era, 
those did not remarkably reduce the mortality of the dis-
ease, this is because guidelines provide a uniform rec-
ommendation while neglecting the effect of case-mix in 
etiologies. Etiology-specific patients are more likely to 
respond to a given therapy [3]. Therefore, early predic-
tion of patients with a high risk for developing moderate-
to-severe ARDS and the use of prevention strategies for 
such patients are of great value in critical care units [4]. 
However, healthcare providers experience challenges in 
recognising ARDS patients [5], which may be due to the 
diversity of causes (e.g. inhalation, trauma, coronavirus 
disease [COVID-19]) [4]. Additionally, ARDS is rarely 
present at the time of hospital admission [5, 6], increas-
ing the risk of clinicians not readily recognising, inter-
preting, and acting upon relevant information [7].

Because of the high mortality and difficulty in disease 
recognition, understanding the relationship between risk 
factors and ARDS is of considerable value. For example, 
serum zinc levels have been recommended as an appro-
priate biomarker for evaluating the risk of developing 
inhalation-induced ARDS [8]. Additionally, XGBoost, 
an open-source software library, has been adopted 
to identify ARDS based on non-invasive physiologi-
cal parameters, such as heart rate and respiratory rate 
[9]. Alternatively, machine-learning has recently been 
used for the early prediction of ARDS [5]. Although 
ARDS prediction has attracted the attention of many 
researchers, previous studies have been focused on all-
cause ARDS, without considering the etiology of the 
disease, and studies on etiology-specific ARDS predic-
tion are lacking. In addition, it is challenging to translate 
machine-learning methods into clinical practice owing 
to the following reasons: (1) most models have not been 
validated using an independent test set and therefore 
have unknown generalisability [10]; (2) ensemble learn-
ing models (e.g. XGBoost), despite providing good pre-
diction performance, lack transparency (interpretability); 
and (3) many models incorporate too many indices (e.g. 
laboratory blood tests), increasing their potential com-
plexity and burden in clinical practice [5, 9–11].

To overcome the above obstacles, we focused on inha-
lation-induced ARDS. Smoke inhalation was one of the 

leading causes of pulmonary ARDS after pneumonia [3]. 
Owing to the nature of the injury (e.g. smoke from fires, 
smoke bombs), patients with inhalation-induced ARDS 
often present in groups, increasing pressure on clinical 
practitioners. Limited access to health care resources, 
such as low nurse-to-patient ratios, has made the situ-
ation worse; for example, it has caused delays in initiat-
ing and providing adequate treatment for deteriorating 
patients and higher ICU mortality [7]. Thus, this study 
aimed to develop a simple transparent (interpretable) 
model to predict early moderate-to-severe inhalation-
ARDS with generalisability using data from eICUs [12], 
as a retrospective derivation cohort, and independently 
validate the model with Cohort 1 (PLAGH): patients 
with acute HC/Zinc chloride smoke inhalation lung 
injury who were admitted to the respiratory department 
at People’s Liberation Army General Hospital (PLAGH) 
in 2014; Cohort 2: freely available critical care data from 
the Medical Information Mart for Intensive Care III 
(MIMIC-III; www.​mimic.​physi​onet.​org) [13]. Our model 
is able to reliably predict the onset of moderate-to-severe 
inhalation-induced ARDS 6 h prior to onset.

Methods
This study used a random forest approach for the early 
prediction of inhalation-induced ARDS. To develop the 
model, we used a retrospective observational cohort, 
obtained from the eICU Collaborative Research Database 
that consists of inpatient ICU encounters at 32 de-iden-
tified medical centres between 2014 and 2015. Fifteen 
patients from respiratory department at PLAGH and 
nine patient encounters from the MIMIC-III database 
were used as a validation cohort. eICU and MIMIC-III 
databases are publicly accessible, and the MIMIC-III pub-
lication states that ‘the project was approved by the Insti-
tutional Review Boards of Beth Israel Deaconess Medical 
Center (Boston, MA) and the Massachusetts Institute of 
Technology (Cambridge, MA)’. Requirement for individ-
ual patient consent was waived because the project did 
not impact clinical care and all protected health informa-
tion was deidentified.  This study is reported following 
the STrengthening the Reporting of OBservational stud-
ies in Epidemiology (STROBE) guidelines. Additional 
file 1 shows the completed STROBE checklist.

Trained investigators extracted data from electronic 
patient medical records from the two public cohorts. 
Selection of patients was based on ICD-9/10 codes 
and diagnostic key words. Patients with previous ICU 
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admission were excluded. Each patient was cared for at 
a single medical centre. We applied additional inclusion 
criteria to focus the scope of our study. Patient stays that 
did not involve at least one recorded measurement of the 
variables were excluded [5, 11]. In addition, we included 
only patient stays with a duration within a specified win-
dow (see “Predictor variables” section for details). The 
final derivation cohort (i.e. eICU) consisted of five unique 
patients corresponding to 48 unique observations. The 
final validation cohort (i.e. PLAGH, MIMIC-III) com-
prised 15 unique patients (177 observations), and three 
unique patients corresponding to 19 observations. The 
characteristics of both cohorts are presented in Table 1. 
Figure 1 outlines the patient selection process and details 
the number of patients after each selection procedure.

Outcome variables
The primary outcome of interest in this study was the 
ratio of partial pressure of arterial oxygen to fraction of 
inspired oxygen (PaO2/FiO2 ratio) 6  h since investiga-
tion. ARDS was diagnosed according to the Berlin defini-
tion established in 2012 [14]. Depending on the severity 
of lung failure according to the PaO2/FiO2 ratio, ARDS 
is currently classified as mild (200 < PaO2/FiO2 ≤ 300), 
moderate (100 < PaO2/FiO2 ≤ 200), or severe (PaO2/
FiO2 ≤ 100) [14, 15]. In the model development, the 
numeric ratio was converted to a binary outcome: pres-
ence of moderate or severe ARDS (PaO2/FiO2 ≤ 200) ver-
sus mild or better ARDS (PaO2/FiO2 > 200).

Predictor variables
For model development, the predictive power of three 
primary vital signs (body temperature, pulse (heart rate 
[HR]), and breathing rate (respiratory rate)), were evalu-
ated. These were selected as predictor variables because 
they are the most accessible, non-invasive physiological 
parameters that are continually monitored. In addition, 
measurements for these vital signs generated in different 
platforms are easily compared as they are not affected by 
external factors or obtained by means of different medi-
cal devices. Thus, if a correlation between the vital signs 
and ARDS could be established, it would allow a predic-
tion with simplicity and generalisability.

Feature engineering was performed before features 
were included in the random forest analysis. We adopted 
a “time-phased” strategy that calculated the minimum, 
maximum, and mean values of the three vital signs col-
lected during a 90 h time window beginning 96 h prior to 
the onset of ARDS and ending 6 h prior to the onset from 
every recorded blood gas test (by which the PaO2/FiO2 
ratio could be calculated) [16]. The feature’s spatiotem-
poral pattern representation is shown in Fig. 2 for three 
representative patients from each cohort.

Model development
We adopted a random forest classifier, an ensemble 
learning method for classification, to predict the binary 
diagnosis outcome of ARDS. In the random forest analy-
sis, each tree was constructed using a different bootstrap 
sample from the original training data [17]. The param-
eter “Number of trees” was set to 5,000 to ensure that 

Table 1  Characteristics of the final cohorts

Data are presented as mean (95% range) or N (proportion), unless otherwise stated

Derivation cohort Validation cohort p value

eICU PLAGH MIMIC-III

# Data points (subjects N) 48 (5) 177 (15) 19 (3) –

# Positive labels (total) 26 (48) 79 (177) 3 (19) < 0.05

Age, years 42.2 (31.0–57.6) 20.7 (18.7–23.3) 63.3 (48.6–84.6) < 0.05

Females 1 (5) 0 (15) 0 (3) 0.15

Hospital discharge status–death 2 (5) 1 (15) 0 (3) 0.12

Ethnicity, N (%)

 White 4 (80%) 0 2 (66.67%)

 Hispanic 1 (20%) 0 0 < 0.05

 Asian 0 15 (100%) 0

 Others (unknown) 0 0 1 (33.33%)

Length-of-stay (LOS) hours (difference between 
admission and discharge)

321.8 214.5, 262.6, 1048 85.5

44.1 201.8, 783.0, 238.6 181.5

92.0 231.0, 258.3, 282.2 91.0 0.31

849.5 1048, 214.6, 273.8

4.2 158.8, 272.8, 475.1
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every input row would be predicted at least a few times; 
all other parameters were set to default. During the initial 
model training process, nine predictor variables during 

the 90-h time window were included: minimum, maxi-
mum, and mean HR; minimum, maximum, and mean 
respiratory rate; and minimum, maximum, and mean 

Fig. 1  The patient selection process (including the number of patients after each selection procedure)

Fig. 2  The feature’s spatiotemporal pattern representation for three representative patients from each cohort
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temperature. The importance of each variable was ranked 
according to the mean decrease in Gini values. The top 
four features (i.e. resp_96h_6h_mean, HR_96h_6h_mean, 
resp_96h_6h_min, and temp_96h_6h_max) were finally 
selected because their importance, measured according 
to the mean decrease in Gini value, was higher than the 
average mean decreases in Gini for all candidate features. 
In this way, we could halve the number of features in the 
model for a small cost in accuracy.

Seven prediction models, including the random forest, 
were developed for comparison: multivariate logistics 
regression (MLR), Lasso regression, random forest and 
XGBoost were developed for both four-variable and all-
variable sets as appropriate. Optimal parameters of ML 
algorithms (e.g., XGBoost) were obtained through cross 
validation on training set (i.e., eICU). Model perfor-
mances were compared on two independent validation 
sets (i.e. PLAGH, MIMIC).

Statistical analysis
Cohort characteristics were expressed as mean (range) 
and proportions (n, %), as dictated by the data type. 
We used the analysis of variance (ANOVA) to compare 
means of continuous variables of more than two groups, 
and χ2 test to compare the frequencies of categorical 
variables between groups. Gini-based feature selection is 
implemented in the randomForest R package [18].

Receiver operating characteristic (ROC) curves were 
generated to quantify the predictive accuracy of the 
models, and the area under the curve (AUC) was used to 

assess the discriminatory ability of the models. Cut-off 
threshold for optimal point was determined by perform-
ing ROC curve analysis in the retrospective cohort [6].

Data were analysed using R V.4.0.1. Two-sided p val-
ues < 0.05 were considered statistically significant.

Results
Performance on independent test set
The binary ARDS diagnosis prediction performance by 
our final model (i.e. RF with selected variables) is sum-
marised using a ROC curve in Fig. 3. Model performance 
comparison was shown in Additional file  2: Table  S1. 
The random forest with the selected four features per-
formed better than other models (e.g., MLR, Lasso, XGB) 
The final model (i.e., Four-Var RF) demonstrated an area 
under the ROC curve (AUROC) of 0.9127 (95% confi-
dence interval [CI] 0.8713–0.9542) and 0.9026 (95% con-
fidence interval [CI] 0.8075–1) for early ARDS prediction 
with the independent validation sets (PLAGH, MIMIC-
III) 6 h prior to the onset of moderate or severe ARDS. 
The corresponding ROC curve is shown in Fig.  3. The 
final model was internally validated and the bootstrap 
estimate of AUC was 0.8391 (500 times).

We also measured the prediction performance of the 
model using other evaluation metrics (i.e. sensitivity, 
specificity, and accuracy. The results are presented in 
Table 2.

Fig. 3  Receiver characteristic operating (ROC) curves of the application of the model on the independent validation sets (PLAGH, MIMIC III
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Model interpretation
The lack of interpretability of the ensemble learning 
methods is a strong limitation for applications involv-
ing clinical decision-making. To overcome this issue, 
we employed an interpretable random forest model, 
Stable and Interpretable RUle Set (SIRUS) [19], as 
implemented in the R package SIRUS [20], to extract 
rules from a tree ensemble based on their frequency 
of appearance. As stated in the original method article 
“the most frequent rules, which represent robust and 
strong patterns in the data, are ultimately linearly com-
bined to form predictions” [21]. SIRUS outputs a sim-
ple set of 10 rules (with all parameters set to default). 
To generate the prediction for each specific instance, 
SIRUS considers whether the conditions for each rule 
are satisfied to assign one of the two possible likeli-
hood output values. In the next step, the 10-rule out-
puts were averaged to provide the predicted probability 
of the onset of moderate or severe ARDS. The 10-rule 
set is presented in Table 3. Overall, the rules, generated 
by the interpretable model, provide transparent and 

concise information regarding how the prediction is 
made, thus overcoming the aforementioned challenges 
hindering translational research of ARDS.

Discussion
In this study, we developed a machine-learning model for 
the early prediction of inhalation-induced ARDS (mod-
erate-to-severe condition) at 6  h prior to onset in criti-
cal care units. The model demonstrated good prediction 
performance and clinical interpretability on eICU data. 
Specifically, the model achieved a high AUROC with 
two completely independent external validation set (i.e. 
PLAGH, MIMIC-III). All features used in the model were 
derived from clinical variables that are routinely/continu-
ously collected in ICUs, which can be simply and non-
invasively obtained. This clinically applicable model can 
be easily applied to ICU patients to assist clinical deci-
sion-making and thus, holds great potential for improv-
ing patient outcomes.

Importantly, the model provided a convenient way 
of calculating the likelihood of the target event, i.e. the 

Table 2  Prediction performance of the model using different evaluation metrics

Cut-off 
threshold

PLAGH MIMIC-III

Accuracy Sensitivity Specificity Positive 
predictive 
value

Negative 
predictive 
value

Accuracy Sensitivity Specificity Positive 
predictive 
value

Negative 
predictive 
value

0.1 0.4463 1 0 0.4463 NA 0.1579 1 0 0.1579 NA

0.2 0.4463 1 0 0.4463 NA 0.1579 1 0 0.1579 NA

0.3 0.4463 1 0 0.4463 NA 0.1579 1 0 0.1579 NA

0.4 0.8249 0.8861 0.7755 0.7609 0.8941 0.5789 1 0.5 0.2727 1

0.5 0.7458 0.443 0.9898 0.9722 0.6879 0.5789 1 0.5 0.2727 1

0.6 0.7401 0.4177 1 1 0.6806 0.6316 1 0.5625 0.3 1

0.7 0.5537 0 1 NA 0.5537 0.8421 0 1 NA 0.8421

0.8 0.5537 0 1 NA 0.5537 0.8421 0 1 NA 0.8421

0.9 0.5537 0 1 NA 0.5537 0.8421 0 1 NA 0.8421

Table 3  Rules for calculating the likelihood of moderate to severe ARDS developing in 6 h

No. Conditions Satisfied Not satisfied

1 resp_96h_6h_min < 9 0.864 0.269

2 resp_96h_6h_mean < 16.1 0 0.684

3 HR_96h_6h_mean < 102 0.447 0.9

4 temp_96h_6h_max < 100 0.292 0.792

5 temp_96h_6h_max < 100 0.222 0.733

6 resp_96h_6h_mean < 19 0.211 0.759

7 resp_96h_6h_mean ≥ 16.1 & resp_96h_6h_min ≥ 9 0.412 0.613

8 HR_96h_6h_mean < 84.3 0.333 0.636

9 resp_96h_6h_mean ≥ 16.9 & resp_96h_6h_min < 9 0.905 0.259

10 HR_96h_6h_mean < 110 0.488 1
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development of inhalation-induced ARDS (moderate-
to-severe condition). To the best of our knowledge, no 
previous study has used the SIRUS in a clinical setting. 
The model improved prediction performance based on 
the random forest approach while maintaining transpar-
ency. More precisely, the rule set and how each of the 
rules contributed to the prediction was clearly shown. 
Instead of a decision-making path (where rules work 
interactively), those rules work independently towards 
a probability, making mechanistic exploration and/or 
explanation more realistic. It is noteworthy that we con-
ducted experiments with both linear (e.g., MLR, Lasso) 
and non-linear (e.g., RF, XGBoost) algorithms, and cho-
sen RF based on a data-driven approach, because the 
discrimination ability of RF is better than other algo-
rithms (the comparison of the prediction performance of 
different ML algorithms in validation sets was in Addi-
tional file 2: Table S1).

To generate the predicted likelihood of the presence of 
moderate to severe acute respiratory distress syndrome 
(ARDS), the model considers whether the conditions 
for each rule are satisfied to assign one of the two pos-
sible output values. For example: resp_96h_6h_min = 5:0 
(minimum value of respiratory rate of all available res-
piratory rate measured during 96–6  h prior to the tar-
get time point), then the first rule is satisfied, returning 
p (1) = 0.864. Next, the 10 rule outputs are averaged to 
provide the predicted probability of ARDS (moderate or 
severe) onset.

There are several vital signs typically examined by 
medical professionals, such as temperature, HR, and res-
piratory rate. Additionally, although blood pressure is not 
considered a vital sign, it is often measured alongside the 
vital signs. However, the three vital signs are generally 
more accessible and accurate than blood pressure, which 
is more prone to influence from external factors [22]. 
Moreover, model simplicity can lead to higher feasibility 
of implementation, particularly in low-income countries 
that lack ICU capacity. Furthermore, because of infre-
quent vital sign monitoring and a lack of standardised 
management practices in resource-limited settings, basic 
monitoring measures need to be better used [23]. Thus, 
we included only three simple, non-invasive, routinely 
monitored vital signs in our model.

The risk factors identified in our study are consist-
ent with those from previous studies and were validated 
using an independent validation set. In 2020, Liu et  al. 
compared the most commonly used early warning scor-
ing systems for hospitalised patients with and without 
infection at risk for in-hospital mortality and transfer 
to the ICU and found that the National Early Warning 
Score (NEWS) exhibited the highest discrimination 
for mortality (followed by the Modified Early Warning 

Score-MEWS) [24]. The main findings of the present 
study agreed with the role of the NEWS [25]. For exam-
ple, a respiratory rate ≤ 9 breaths/min increases the 
risk of developing critical or moderate-to-severe ARDS 
according to both the NEWS and our model. To fur-
ther compare the discrimination capability of our model 
to that of commonly used risk scoring systems, we cal-
culated MEWS and Systemic Inflammatory Response 
Syndrome (SIRS) for each data point of the included 
patients in the 90-h time window and the real time of the 
recorded blood gas test both. Discrimination capability 
of the scores based on AUCs was compared in Additional 
file 2: Table S2. Our model had a better performance in 
early warning of moderate to severe ARDS given the 90-h 
window performance and it also had a better reproduc-
ibility and generalizability as its AUC is stable on two 
independent validation sets both.

Rather than providing a binary outcome, our model is 
able to calculate the likelihood of developing moderate-
to-severe ARDS. This was achieved by aggregating the 
vital sign measurements collected during hospital stay 
to yield the score used in our model, allowing the output 
to reflect risk for the target event. In addition, our pre-
diction leaves a definite time window prior to the event, 
making potential intervention realistic. Such time-phase 
determination is suitable for clinical practice as clini-
cal practitioners generally prefer having a suitable time 
window that is neither too far nor too near to onset, in 
order to leave sufficient time for intervention. The exact 
time window for feature engineering can be treated as a 
hyperparameter, which may vary slightly across differ-
ent cohorts (e.g. patient characteristics) [16]. However, 
parameter tuning was outside the scope of this study.

In comparison with other similar studies using 
machine-learning models for the early prediction of 
ARDS, our model showed improved prediction perfor-
mance. The prediction performance measured using the 
AUROC ranged from 0.75 to 0.87 in previous studies 
[5, 26, 27], whereas our model achieved an AUROC of 
being greater than 0.90 with two an independent valida-
tion sets. In addition, the predictors used in our model 
were further simplified [5]. A potential explanation may 
be that the retrospective cohort included in this study 
were etiology-specific ARDS patients (ARDS patients 
with inhalation injury). The improved modelling perfor-
mance suggests that the etiology of ARDS could be used 
to identify a more homogeneous subset of ARDS for pre-
diction enrichment which is an important component of 
etiology-associated heterogeneity in ARDS [3].

Although the prediction ability of the model was vali-
dated using two completely unrelated data sets, our 
study had some limitations. Similar to the limitations in 
previous data challenges “the analysis was performed in 
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a retrospective setting. The generalisability and stability 
of the proposed model need to be evaluated systemati-
cally in prospective settings” [16]. Moreover, we included 
first admissions only, which might be a potential source 
of selection bias. We also acknowledge the limitation 
that the sample size was small. In order to overcome 
the issue, we extended the limited number of patients to 
hundreds of data points at the first place to ensure the 
credibility and power of model training, model valida-
tion and model performance evaluation, for example, the 
derivation set contained 48 data points with each class 
label being balanced; Secondly, the patients from differ-
ent cohorts (i.e., eICU, MIMIC, PLAGH) had diversity 
in patient profiles, the model developed and validated on 
cohort with diversity had reproducibility and generaliza-
bility to new patients thereby; Last but not least, our final 
model was validated internally (e.g., bootstrap, LOOCV) 
and on two independent validation cohorts which were 
geographically distinct and demographically distinct 
from the derivation cohort. We believe that studies with 
a small number of subjects can quickly address research 
questions in a relatively short space of time; thus, a more 
efficient allocation of resources (e.g. subjects, time, finan-
cial costs) will be achieved by first testing a new research 
hypothesis in a small number of subjects [28].

Conclusions
In this study, an interpretable machine-learning model 
with key features (derived from three non-invasively 
measured vital signs) was successfully established for 
predicting moderate-to-severe condition of inhalation-
induced ARDS 6 h prior to onset. The prediction model 
is intended to improve communication between nursing 
staff and junior doctors and “flag” patients who need to 
be given immediate priority [29]. Inhalation-induced 
ARDS typically affects individuals such as fire fighters 
and soldiers, who are often in otherwise good condi-
tion without chronic diseases, and providing critical care 
expertise at an early stage is extremely important for 
improving patient outcomes.

In future research, we hope to include more patients, 
while expanding to other etiology-specific ARDS, such as 
COVID-19, as the current ARDS predictions for patients 
with COVID-19 are either risk factor analysis [30], real-
time risk scoring systems [31], and/or utilising relatively 
complex predictors, such as the neutrophil-to-lympho-
cyte ratio [32]. We hope to accomplish this aim by inte-
grating this early prediction model in our own ICU risk 
management system to evaluate its effectiveness.

In conclusion, as clinical instances accumulate and 
clinical records become more comprehensive, this study 
forms a basis for evaluating the effectiveness of person-
alised intervention (e.g. vital sign-directed therapy) [33]. 

etiology-specific medicine is a critical component of pre-
cision, personalised healthcare and will be the core of 
effective care in the anticipatable future.
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