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Abstract
Purpose  Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying pro-
gression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical 
utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic 
targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a 
putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and 
acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy.
Methods  PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been 
selected and thoroughly analysed.
Results  Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, 
miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, 
miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was 
reported of prognostic value in TNBC patients.
Conclusion  Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, 
understanding of which should assist disease prognostication and therapy.
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Introduction

Despite continuous advances in early detection and devel-
opment of personalized therapy, breast cancer (BCa) is still 
the leading cause of death from cancer among women, with 
age-standardized mortality rate of 12.9/100,000 worldwide 
(Ferlay et al. 2014; Tao et al. 2015). Comprehensive gene 

expression profiling has identified five major BCa molecular 
subtypes (luminal A, luminal B, HER2-type, triple-nega-
tive and normal-like BCa) characterised by specific mor-
phological patterns and distinct biological properties and, 
more importantly, different clinical course and prognosis 
(Perou et al. 2000; Polyak 2007). The most aggressive, 
triple-negative breast cancer (TNBC), lacks expression of 
valid predictive markers [oestrogen receptor (ER), proges-
terone receptor (PR) and epidermal growth factor receptor 
2 (HER2)], and thus devoid of clear therapeutic targets, it 
presents a serious clinical challenge. Patients with TNBC do 
not benefit from endocrine or HER2-targeted therapies and 
have worse outcome after chemotherapies in comparison to 
sufferers from other BCa subtypes (Lehmann and Pietenpol 
2015). Shortened disease-free and overall survival of TNBC 
patients calls for urgent identification of new molecular tar-
gets that may improve prognostication and, above all, assist 
in development of efficient specific therapies.

MicroRNAs (miRNAs) are small, non-coding, endog-
enous, universal RNA regulators of key biological pro-
cesses (Lin and Gregory 2015). In cancer, dysregulation 
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of miRNA profile has been associated with mechanisms of 
disease development, including activation of invasiveness 
and metastasis (Lin and Gregory 2015). In TNBC, in par-
ticular, emerging in vitro and in vivo studies identified vari-
ous miRNAs likely to be linked to the aggressive phenotype 
(Chang et al. 2015; Zhu et al. 2017; Lü et al. 2017; Paszek 
et al. 2017; Avery-Kiejda et al. 2017).

As metastatic process is considered the major cause of 
cancer-related death, our review focuses on key microRNAs 
of potential clinical value in TNBC, involved in regulation of 
main mechanisms underlying invasive progression, particu-
larly, the epithelial-to-mesenchymal transition (EMT) and 
acquisition of stem cell-like properties (CSC).

Triple‑negative breast cancer—molecular 
features

Systemic investigation of gene expression patterns in human 
breast tumours revealed the molecular taxonomy of BCa 
dividing them into five subgroups dependent on genetic 
and biological similarities (Perou et al. 2000). The micro-
array analyses identified the triple-negative breast cancer 
(ER-, PR- and HER2-negative) as a clinically heterogeneous 
malignancy and the most aggressive BCa subtype that is 
characterised by high rates of tumour recurrence and poor 
overall survival. Aggressive phenotype of TNBC defined by 
poor disease-free survival, high recurrence rate and short-
ened time of overall survival is connected with biological 
and clinical factors, including high nuclear grade, high his-
tological grade, high genomic instability, loss of suppressor 
genes, as well as gain of migratory, invasive and stem cell-
like properties of cancer cells (Arpino et al. 2015).

MicroRNAs

Biology of miRNAs

MicroRNAs comprise a class of 22–25 nucleotides long, 
non-coding, endogenous RNA molecules, which play impor-
tant regulatory roles by targeting mRNA transcripts, lead-
ing to their translational repression or degradation (Lin and 
Gregory 2015). Biogenesis of miRNA is under tight spatial 
and temporal control and is cell- and tissue-specific (Lin and 
Gregory 2015). In human, majority of miRNAs are encoded 
among introns, however, their presence was also observed in 
exonic regions. Production of miRNAs starts when so-called 
pri-miRNAs are transcribed by RNA polymerase II/III. Clus-
tered pri-miRNAs are further converted into pre-miRNAs by 
a microprocessor complex consisting of RNAse III enzyme 
Drosha and DGCR8 (DiGeorge Critical Region 8) protein 
(Lee et al. 2002, 2003). Drosha cleaves 11 bp away from the 

single-stranded stem loop junction, converting pri-miRNA 
into pre-miRNA, which contains 5′ phosphate group and 2–3 
nucleotides 3′ overhang (Lee et al. 2002, 2003). Pre-miRNA 
is translocated to the cytoplasm and cleaved by a specific 
endonuclease—RNAse III Dicer to finally form a single-
stranded, mature miRNA (Hutvágner et al. 2001). This is 
then activated by the Argonaute family protein and coupled 
into the microRNA-induced silencing complex (miRISC), 
which attaches to the 3′ untranslated region (3′ UTR) of the 
target mRNA (Fire et al. 1998; Hannon et al. 2000; Mar-
tinez et al. 2002). The degree of complementarity between 
miRNA and its target mRNA determines efficacy of miRNA 
action. While a perfect match leads to mRNA deadenylation, 
and consequently its degradation, an imperfect pairing only 
inhibits translation of the target mRNA.

Regulatory role of miRNAs

MicroRNAs regulate diverse cellular processes (Hwang and 
Mendell 2006; Shivdasani 2006; Olivieri et al. 2013), and 
thus create a characteristic signature/profile reflecting both 
tissue-specificity and developmental stage (differentiation) 
of the cell. For example, expression changes of specific 
miRNA clusters are highly informative and may be used to 
identify the tissue of origin of poorly differentiated tumour 
(Hwang and Mendell 2006). In TNBC, various miRNAs 
have been associated with processes essential to disease 
progression, such as epithelial-to-mesenchymal transition 
(EMT), acquisition of stem-like properties by cancer cells, 
migration, invasiveness, and metastatic spread.

Epithelial‑to‑mesenchymal transition

EMT, regarded as a prerequisite for metastasis, is a cel-
lular reprogramming mechanism crucial to the ‘invasive 
makeover’ of cancer cells (Sethi et al. 2011; Seton-Rog-
ers 2016; Felipe Lima et al. 2016). A fundamental event 
in EMT, marking the onset of the process, is the loss of 
E-cadherin expression, which in normal epithelial cells 
is required for maintenance of integrity of the entire cad-
herin–catenin–actin network. Regulation of E-cadherin 
expression at the transcriptional level is not fully understood 
yet, but several transcription factors, such as SNAI1/Snail1, 
SLUG, ZEB1, ZEB2, E47 and KLF8 (Kruppel-like factor 
8) have been shown to bind to the E-cadherin promoter and 
repress directly its transcription (Singh and Settleman 2010; 
Lamouille et al. 2014; Seton-Rogers 2016; Felipe Lima et al. 
2016).

The epithelial–mesenchymal switch involves changes in 
several pathways, including TGF-β, WNT, HIF1/2, NOTCH, 
NF-κB and RAS-ERK1/2. In the TGF-β pathway, the sig-
nal is generated from the TGF-β-activated kinase receptors 
(TGF-βRI and TGF-βRII) and processed downwards by the 
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SMAD-dependent (formation of the activated complex of 
SMAD2, SMAD3 and SMAD4) or SMAD-independent 
(including PI3K/AKT and ERK/MAPK) signalling. This 
results in overexpression of SNAIL1/2 and ZEB1/2 and, 
finally, in the repression of E-cadherin expression (Shi-
rakihara et al. 2011; Massagué 2012; Weiss and Attisano 
2013). Activation of the WNT pathway, found particular 
significance in breast cancer, results in the stabilization of 
β-catenin, leading to the subsequent break of its interaction 
with E-cadherin and translocation into nucleus, where it 
participates in the induction of the mesenchymal-specific 
gene profile (Yook et al. 2006; Niehrs 2012; Lamouille 
et al. 2014). Notch signalling induces EMT both directly 
and via the crosstalk with other signalling pathways. Direct 
signals created by binding of Delta or Jagged family ligands 
to the Notch receptors cause cleavage of Notch intracellular 
domain (NICD), which migrates to the nucleus, where it pro-
motes expression of SNAIL1/2 (Kaidi et al. 2007; Sahlgren 
et al. 2008; Wu et al. 2009; Espinoza et al. 2013). In Hedge-
hog (Hh) signalling, glioma 1-associated protein (GLI1), the 
Hh effector, promotes SNAIL1/2 expression (Kalluri and 
Weinberg 2009; Thiery et al. 2009). EMT can also be trig-
gered by the signals induced by growth factor (FGF, EGF, 
HGF, VEGF) receptors involved in activation of the RAS-
ERK1/2 or PI3K-Akt pathways. The EMT process is also 
strongly influenced by stimuli derived from tumour micro-
environment, such as inflammation, hypoxia and metabolic 
or oncogenic stress (Kalluri and Weinberg 2009; Yuan et al. 
2012). The existence of a positive feedback loop between 
pro-inflammatory microenvironment and EMT has been 
shown in several experiments (Mantovani et al. 2008; López-
Novoa and Nieto 2009). Cohen et al. reported that inflamma-
tory cytokines induced EMT in inflammatory breast cancer 
cell lines (SUM149PT, KPL4, IBC-3, SUM190PT), whereas 
their inhibitors blocked the process (Cohen et al. 2015). 
Stimulation of normal breast epithelial cells with inflamma-
tory cytokines, such as tumour necrosis factor alpha (TNF-α) 
and interleukin 1beta (Il-1β), resulted in induction of EMT 
(mainly by upregulation of ZEB-1 and SNAIL expression), 
and this was associated with acquirement of invasive pheno-
type by the cells (Leibovich-Rivkin et al. 2013) Reversely, 
overexpression of the key EMT transcription factors led to 
increased secretion of pro-inflammatory cytokines IL-1, 
IL-6, IL8 by the cells, further stimulating EMT (Ricciardi 
et al. 2015). Decrease of reactive oxygen species caused 
by tumour-related hypoxia upregulated hypoxia-inducible 
factors (HIF1/2), which led to EMT via overexpression of 
ZEB1/2 and protection of SNAIL from degradation (Wang 
and Zhou 2011; Lamouille et al. 2013).

MiRNA-200 family, which embraces miR-200a, miR-
200b, miR-200c, miR-141 and miR-429, are well-known 
negative regulators of EMT, specifically targeting ZEB1/2 
(Table 1; Fig. 1) (Korpal et al. 2008; Kalluri and Weinberg 

2009; Wang et al. 2013, 2014; Humphries et al. 2014; Zara-
vinos and Apostolos 2015). Functional in vitro studies iden-
tified miR-200 family as downregulated in TNBC cells and 
confirmed their tumour-suppressive action in normal tissues 
(Korpal et al. 2008; Mekala et al. 2018). Humphries and col-
leagues showed significantly lower levels of miR-200 family 
members in metastatic TNBCs in comparison to other sub-
types of breast cancer (Humphries et al. 2014). MiRNA-200 
family contributes to the pathogenesis of TNBC via various 
pathways, including BRCA1/2, however, their most sig-
nificant impact is exerted via regulation of EMT (Korpal 
et al. 2008; Humphries et al. 2014; Erturk et al. 2015). The 
interdependence between miRs-200 family and EMT was 
reported by Korpal and colleagues, who in NMuMG cells 
(murine mammary epithelial cells—a model of TGFβ1-
induced EMT) observed a strong downregulation of all miR-
200 family members (except for miR-141) upon stimulation 
with TGF (Korpal et al. 2008). Moreover, overexpression 
of miR-200 resulted in EMT repression in NMuMG cells. 
MiR-200 was linked to an increase of E-cadherin level and 
reversal of mesenchymal phenotype in 4TO7 cells, the 
murine TNBC cell line (Korpal et al. 2008). Gregory and 
co-workers obtained consistent results and found that miR-
200 level was markedly lower in cells undergone EMT in 
response to the TGFβ treatment (Gregory et al. 2008) and 
inhibition of miR-200 was sufficient for induction of EMT 
via upregulation of ZEB1. Decreased expression of miR-200 
family was detected in mesenchymal-like TNBC invasive 
human BCa cell lines (MDA-MB-435, BT-549) (Gregory 
et al. 2008). Overexpression of miR-200c in TNBC cells 
(MDA-MB-231 cell line) resulted in loss of the elongated 
shape associated with a motile, mesenchymal phenotype and 
acquisition of the epithelial-like morphology. Downregu-
lation of miR-200b was found crucial in increase of EMT 
in TNBC cells by targeting ZEB1/2 and suppressing PKCα 
(Kolacinska et al. 2014; Humphries et al. 2014; Rhodes et al. 
2015). Loss of the actin-based structure was orchestrated by 
miR-200c, which directly targeted actin regulatory proteins, 
FHOD1 and PPM1F, in a ZEB1/2-independent manner and 
led to the inhibition of migration and invasion of the cells 
(Jurmeister et al. 2012).

MiR-205, in addition to the miR-200 family, has been 
revealed by microarray analyses as significantly reduced in 
cells induced to undergo EMT (Gregory et al. 2008; Pio-
van et al. 2012). MiR-205 expression in mesenchymal-like 
BCa cells is strongly downregulated in comparison to that 
in cells with the epithelial phenotype. Interestingly, micro-
RNA expression profiling has shown decreased expression 
of miR-205 in TNBC, suggestive of its tumour-suppressive 
role (Huo et al. 2016). Gregory et al. demonstrated that in 
MDA-MB-231, MDA-MB-435 and BT-549 cells, miR-205 
suppressed ZEB1/2 and, reversely, induction of EMT via 
TGFβ led to decrease of miR-205 (Gregory et al. 2008). 
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This reciprocal regulatory loop between miR-205 and 
ZEB1/2 transcription factors is similar to that described 
for the miR-200 family (Gregory et al. 2008; Chao et al. 
2014).

MiR-199a-5p is another example of microRNA that con-
fers tumour-suppressive role and is downregulated in TNBC. 
Ectopic expression of miR-199a-5p in MDA-MB-231 cells 
significantly altered expression pattern of EMT-related 
genes such as CDH1, ZEB1 and TWIST, leading to the inhi-
bition of the process. Moreover, Chen et al. demonstrated 
that elevated level of miR-199a-5p impaired cell motility 

and invasiveness as well as inhibited tumour growth in vivo 
(Chen et al. 2016).

MiR-9 represents a group of microRNAs upregulated 
in TNBC (Table 1). MiR-9-mediated downregulation of 
E-cadherin leads to activation of β-catenin signalling path-
way and upregulation of VEGF expression. In TNBC, miR-9 
was shown to be associated with MYC amplification, tumour 
grade and metastatic status (Ma et al. 2010; Jang et al. 2017). 
High level of miR-9 correlated with poor disease-free sur-
vival (DFS) and distant metastasis-free survival (DMSF) 
(Ma et al. 2010). D’Ippolito et al. observed higher expres-
sion of miR-9 in TNBC in comparison to the luminal and 

Fig. 1   Schematic presentation of microRNAs involvement in regula-
tion of epithelial-to mesenchymal transition (EMT) and acquisition of 
stem cell-like properties (CSC) in triple-negative breast carcinoma. 

Red/green arrows—upregulated/downregulated microRNAs; black 
arrows/truncated lines—activation (upregulation)/repression (inhibi-
tion) of signalling pathways
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HER2-enriched BCa subtypes. Moreover, upon ligand acti-
vation of PDGFRβ signalling, miR-9 promoted formation 
of vascular-like structures by TNBC cells both in vitro and 
in vivo, whereas inhibition of miR-9 expression strongly 
decreased the number of vascular lacunae (D’Ippolito et al. 
2016). Interestingly, miR-9 may also act as an important 
player in the cross-talk between tumour and its stroma, as 
exosome-mediated delivery of miR-9 was shown to induce 
cancer-associated fibroblast properties in normal human 
mammary fibroblasts (Baroni et al. 2016).

MiR-221/222, reported to be overexpressed in TNBC, 
is involved in yet another mechanism of EMT regulation 
(Table 1) (Stinson et al. 2011). As demonstrated by Stin-
son et al., miR-221 and its direct target, TRSP1, repress 
ZEB2 expression leading to E-cadherin downregulation 
(Stinson et al. 2011). Depletion of adiponectin receptor 1 
(ADIPOR1), another miR-221’s target, induced EMT in 
MCF10A cells, activated NFκB and JAK2/STAT3 signal-
ling pathways as well as increased cell migration and inva-
sion (Hwang et al. 2013). Knockdown of miR-221 blocked 
cell cycle progression, promoted cell apoptosis and inhibited 
in vitro proliferation and tumour in vivo growth. Silencing 
of miR-221 increased also expression of E-cadherin, and 
decreased SLUG and Snail level in TNBC cell lines, such 
as MDA-MB-231, BT-20, and MDA-MB-468 (Nassirpour 
et al. 2013).

Cancer stem cells (CSC)

Reactivation of the stem cell programme is a phenomenon 
closely associated with sustained cancer progression as well 
as failure of eradicating therapies. By generating pools of 
self-renewing cancer stem cells (CSCs), primary and meta-
static tumours, especially of the most aggressive type as 
TNBC, become more resistant to chemo- and radiotherapy 
(Scheel and Weinberg 2012; Hollier et al. 2013; Lim et al. 
2013; Wang et al. 2015). The interdependence between EMT 
and breast cancer CSCs (BCSCs) was shown in various 
in vitro and animal models, confirming a well-documented 
direct link between the EMT and acquisition of stem cell-
like properties (Shostak and Chariot 2011; Yamamoto et al. 
2013; D’Angelo et al. 2015; Jang et al. 2015). Many signal-
ling pathways implied in the induction of EMT, such as Wnt, 
Notch, TNFα, NFκB or TGFβ, control also CSCs functions 
(Shostak and Chariot 2011; Yamamoto et al. 2013; D’Angelo 
et al. 2015; Jang et al. 2015). Similarly, microRNAs involved 
in regulation of EMT, contribute to induction and mainte-
nance of stemness as well as influence CSCs response to the 
EMT-related signals (Fig. 1).

MiR-203 is one of the well described microRNAs, which 
are involved in both stemness and EMT in TNBC. In normal 
breast epithelial cells, miR-203 is correlated with cell dif-
ferentiation by targeting ΔNp63α, the predominant TP63 

isoform in mammary epithelia, vital to the maintenance of 
epithelial stemness. Overexpression of miR-203 induced 
reversal of EMT, the mesenchymal-to-epithelial transition 
(MET), and led to decreased proliferation and colony forma-
tion of MDA-MB-231 cells (DeCastro et al. 2013). Moreo-
ver, Wang et al. observed that upregulation of miR-203 in 
TNBC cell lines (MDA-MB-468, MDA-MB-231) resulted in 
growth and invasion inhibition, enhancement of cell differ-
entiation and reduction of cell metastatic capacity (DeCastro 
et al. 2013; Zhao et al. 2015). Taube et al. showed that miR-
203 was repressed via epigenetic modification (DNA meth-
ylation) to a greater degree in TNBC cells (MDA-MB-231, 
SUM-159) than in more differentiated luminal BCa cell lines 
(MCF7, T47D) (Zhao et al. 2015; Fite and Gomez-Cam-
bronero 2016). Studies by Wellner and colleagues showed 
that miR-203 is under control of ZEB1, which acts as both 
an inducer of the TGFβ-related EMT as well as a mediator 
of differentiation and self-renewal of CSC. Thus, by repress-
ing stemness-inhibiting microRNAs, i.e. miR-200, miR-203 
and miR-183, ZEB1 promotes tumorigenicity of the cells 
(Wellner et al. 2009).

MiR-205 is one of the critical regulator of stemness, also 
in breast cancer cells. Its physiological role is to supress 
ZEB1/2 expression, preventing EMT processes and main-
taining differentiated state of cells. MiR-205 is repressed 
by the ligand Jagged1, a stroma-derived factor, promot-
ing cancer stem cell-like phenotype (Lu et al. 2013; Chao 
et al. 2014). Silencing of miR-205 in mammary epithelial 
cells stimulated EMT, disrupted epithelial cell polarity and 
expanded stem cell population (Lu et al. 2013; Chao et al. 
2014). Interestingly, in vivo studies indicated that miR-
205-deficient mice spontaneously developed mammary 
lesions, while activation of miR-205 markedly diminished 
breast cancer cell stemness (Bojmar et al. 2013; Chao et al. 
2014). In TNBC, downregulation of miR-205 resulted in 
chemoresistance, mainly due to induction of EMT and 
stemness (Sempere et al. 2007).

MiR-21 overexpression, identified in many solid 
tumours, is best characterised in TNBC (Table 1). Exist-
ing evidence demonstrates that TGFβ stimulation increases 
miR-21 expression in cancer cells, which in turn upregu-
lates EMT process. This is associated with induction of 
BCSC-like phenotype and increase of hypoxia-inducible 
factor (HIF1α) levels. MiR-21 targets many different gene 
transcripts, such as PDCD4, PTEN, HIF1α, TIMP3 or 
TM1 mRNAs (Table 1) (Lu et al. 2008; Qi et al. 2009; 
Huang et al. 2009; Han et al. 2012; Mattos-Arruda et al. 
2015). Han et al. observed that breast cancer stem cells 
undergone EMT express higher miR-21 levels than BCa 
cells not subjected to EMT. Interestingly, downregulation 
of miR-21 in BCSCs leads to MET, decrease of HIF1α 
and suppression of cell migration and invasion (Han et al. 
2012). Although a direct association between miR-21 and 
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EMT requires more thorough investigation, this micro-
RNA seems to be of particular importance for BCa patho-
physiology and may serve as a good indicator of treatment 
efficacy. Interestingly, in addition to its presumptive func-
tion in TNBC cells, high miR-21 level in tumour stroma 
was found to be also associated with poor disease outcome 
of the patients (MacKenzie et al. 2014).

Migration, invasion and metastasis

MiR-145 is representative of microRNAs that regulate 
cells migration, invasion, and metastasis (Table 1). In BCa 
cells, it targets mucin-1 (MUC1) and c-MYC—mRNA, 
both associated with cell invasiveness (Sachdeva and Mo 
2010). MiR-145 downregulation is detected in approxi-
mately 10% of invasive breast carcinomas. MiR-145 was 
also shown to regulate invasion in TNBC by regulating 
ARF6 protein (Eades et al. 2015). Recent studies indi-
cate that upregulation of miR-145 significantly reduces 
cell motility in MDA-MB-231 cells via targeting junc-
tional adhesion molecule A (JAMA-A) and fascin as well 
as through effect on expression pattern of several motil-
ity-related proteins such as ROCK1, FSCN1 or TRMP3 
involved in regulation of actin stress fibres or formation 
of filopodia (Sachdeva and Mo 2010; Götte et al. 2010).

MiR-373 is frequently upregulated in TNBC tissue 
and blood serum. In contrast to miR-145, its downregu-
lation was found to impair cell migration and invasive-
ness (Table 1) (Huang et al. 2008; Eichelser et al. 2013; 
Chen et al. 2015). MiR-373 targets transcripts of CD44 
and TXNIP, and activates two important EMT-inducers, 
HIF1α and Twist (mainly by targeting TXINP, identified 
as a metastasis suppressor), which in turn, in a positive 
feedback loop, upregulates miR-373 expression. Chen 
et al. showed that upregulation of miR-373-TXINP-HIF1α-
Twist axis correlated with poor outcome of breast cancer 
patients. This suggests that activation of this signalling 
pathway may serve as both a potential biomarker and a 
new therapeutic target (Chen et al. 2015).

MiR-10b is highly expressed in TNBC cell lines (MDA-
MB-231 and SUM1315), when compared to normal mam-
mary epithelial (HMECS, MCF10A) or tumourigenic, but 
non-metastatic cells (SUM149 or SUM159), and enhances 
metastatic potential of cells grown in xenografts (Ma et al. 
2007; Edmonds et al. 2009). MiR-10b positively regulates 
cell migration and invasion as well as influences expres-
sion of miR-9 (Table 1). High level of TGFβ was associ-
ated with upregulation of miR-10b in TNBC cell lines, 
whereas inhibition of miR-10b partially reversed EMT, 
and suppressed cell motility and proliferation (Han et al. 
2014). MiR-10b was also reported to be positively cor-
related with Twist and was considered as an important 

mediator of twist-induced motility and invasiveness (Ma 
et al. 2007).

Prognostic value of miRNAs in TNBC

Despite many attempts in development of personalized ther-
apy among molecular subtypes of TNBC, no breakthrough 
has been achieved yet. The guidelines for treatment of TNBC 
patients still encompass conventional surgery, radiotherapy, 
and chemotherapy (individually or in combination) (Costa 
and Gradishar 2017). Although some reports suggest that 
early response to specific chemotherapeutic regimens of 
TNBC is better than other BCa subtypes, TNBC patients 
are doomed to poor prognosis and chemoresistance (Pareja 
et al. 2016). The pattern of several microRNAs is substan-
tially altered in TNBC suggesting they are likely to serve as 
useful prognostic factors in the disease (Dong et al. 2014; 
Sahlberg et al. 2015; Liu et al. 2017; Lü et al. 2017). For 
instance, decreased expression of miR-155 predicted poor 
overall survival in TNBC patients, while elevated levels of 
miR-21, miR-27a/b, miR-210, and miR-454 were associ-
ated with shorter overall survival (Medimegh et al. 2014; 
Sahlberg et al. 2015; Thakur et al. 2016; Lü et al. 2017). 
Similarly, decreased expression of miR-374a/b and increased 
level of miR-454 correlated with shorter disease-free sur-
vival (Radojicic et al. 2011).

Other panels of miRNAs was identified to be associated 
with chemoresistance (Gasparini et al. 2014; Ouyang et al. 
2014; Shen et al. 2014; Sahlberg et al. 2015). For exam-
ple, expression of miR-181a was elevated in TNBC tissue 
samples from patients who did not respond to neo-adjuvant 
chemotherapy and was significantly inversely correlated 
with chemo-sensitivity (Ouyang et al. 2014). In vitro stud-
ies by Ouyang et al. demonstrated that in the MDA-MB-231 
cell line as well as in TNBC tissue samples, upregulation 
of miR-155-5p, miR-21-3p, miR-181a-5p, miR-181b-5p, 
miR-183-5p and downregulation of miR-10b-5p, miR-
451a, miR-125b-5p, miR-31-5p, miR-195-5p were asso-
ciated with chemoresistance to doxorubicin (Korpal et al. 
2008; Chen et al. 2012; Kong et al. 2014; Liu et al. 2015; 
Fkih et al. 2017). Low level of miR-200c was shown to be 
connected with resistance to doxorubicin, poor response to 
radiotherapy and elevated expression of multidrug resistance 
gene (Korpal et al. 2008). Identification of miRNA clusters, 
whose deregulated levels accompany resistance to chemo-
therapy, may open new avenues in development of more 
efficient therapies.
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Conclusions

This review focused on several microRNAs shown to be spe-
cific to triple-negative breast carcinoma. Their role in TNBC 
biology was discussed in relation to molecular processes 
underlying disease progression, with particular emphasis on 
the epithelial-to-mesenchymal transition. Although, for the 
most part, the degree of involvement in TNBC pathophysiol-
ogy remains to be established, increasing evidence suggests 
that specific microRNA clusters might be of clinical utility 
as both predictive markers and potential therapeutic targets 
in this highly aggressive form of breast cancer.
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