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Abstract: The radiant floor system market is growing rapidly because Europe is moving toward a low-
carbon economy and increased awareness about environmental sustainability and energy efficiency,
stimulated by the ambitious EU Energy Efficient Directive and nZEB challenge. The high growth
rate of the market share is due to the involvement of homeowners in the specifications of their living
commodities, so they are thus willing to invest more at the initial stage to obtain long-term benefits
and lower energy exploration costs. We performed an experimental campaign over three slabs with a
hydronic radiant floor system of equal dimensions, shape, and pipe pitch with different screed mortar
formulations to assess their performance throughout a heating/cooling cycle. The temperature at
different heights within the interior of the screed mortars and at the surface were monitored. The
results revealed that an improved screed mortar has a relevant impact on the efficiency of the system.
Moreover, a three-dimensional transient heat transfer model was validated using the experimental
data. The model was used to evaluate the impact of different finishing materials, namely wood, cork,
ceramic, and linoleum, on the floor surface temperatures. The results showed differences of 15% in
the surface temperature when using different floor finishing solutions.

Keywords: radiant floor; heat transfer; screed mortar; thermal analysis; finite element method;
floor finishing

1. Introduction

The ambitious energy efficiency standards driven by European Union (EU) Energy
Efficient Directive have impacted the national regulations leading to the challenge of nearly
zero energy buildings (nZEB) [1–5]. As indoor heating and cooling are the major sources of
buildings’ energy consumption [6], when it comes to indoor heating and cooling, radiant
floor systems (RFSs) comprise specific characteristics that play a key role in attaining the
EU energy efficiency goals. Considering indoor environment quality, radiant heat transfer
improves thermal comfort by preventing cold draughts while mitigating the air-borne noise
related to system operation. Additionally, the use of radiant systems result in the reduced
transportation of pollutants and allergens compared to convective systems, contributing
to healthier indoor environments. In combination with the ability to ensure high thermal
comfort, reduced energy consumption, and quiet operation, RFSs became increasingly
popular, currently being installed in 30–50% of EU new buildings [7,8]. Additionally, RFSs
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ensure uniform temperature distribution [9] with low distribution losses [10], and therefore
highly efficient heating systems, able to deliver improved thermal comfort with minimal
vertical temperature gradient compared to air systems solutions [11].

The RFS market in the EU is experiencing rapid growth as Europe is moving toward
a low-carbon economy and an increased awareness about environmental sustainability
and energy efficiency. In this sense, radiant heating systems are particularly suitable to
be used in combination with heat pumps or solar panels, since RFSs can increase the
coefficient of performance of heat pumps while ensuring lower energy consumption and
CO2 emissions [11–14]. RFSs are appropriate for both heavyweight and lightweight systems.
Both have strengths and weaknesses when indoor heating and cooling is performed through
RFSs. Regarding conventional construction, the piping system is usually embedded into
a screed layer on a layer of thermal insulation. If indoor temperature requires a fast
adjustment, due to the high thermal inertia of wet heavyweight construction, RFSs may
experience added difficulties in adequately regulating the indoor temperature in a short
period of time [15]. Dry, lightweight construction, on the other hand, due to its reduced
thermal inertia, may be able to overcome this limitation, enhancing the performance of the
RFS. Zhao et al. [16] studied concrete core radiant floors and light radiant floors in terms
of dynamic behaviour under intermittent operation, observing that dry systems present
up to six times shorter time of heating and cooling compared to wet systems. Yu et al. [17]
developed an experimental study evaluating the steady-state and dynamic performance of
lightweight radiant floor panels under heating and cooling conditions, achieving steady-
state conditions for dry floor heating in under 30 min. Numerous authors referred to the
lack of thermal inertia as a key parameter for achieving thermal comfort in lightweight
construction [18–21].

RFSs have been the subject of numerous studies focusing on the system configuration,
material layers, thermal behaviour, numerical simulation methods, and operation strategies.
Recent research has been conducted on RFSs and important aspects have been pointed out
by the scientific community: system configuration and material layers/components [22–26];
thermal analysis (energy transfer, heating/cooling capacity) and, indirectly, thermal com-
fort [9,27]; numerical thermal and energy simulation (floor- and building-scale) [28–30];
and smarter energy control/operating strategies [31]. Regarding system configuration and
material layers, the use of functionalized materials with highly conductive matrices and
phase change materials (PCMs) acting as thermal energy storage systems is proving to be
a promising strategy toward efficiency and RFS performance. Thus, since RFS perform
heating and cooling through large surfaces, incorporating PCM into RFS is stimulating: it
increases thermal storage, and the phase change allows the RFS to discharge energy for
longer periods [22,32]. Additionally, the PCM latent heat storage properties can contribute
to shifting the building’s peak electricity load to off-peak periods [33]. Zhou and He [25]
investigated, through experimental research, the performance of a low-temperature radiant
floor heating system with different heat storage materials (sand and PCM) and heating
pipes. The results indicated the advantages of using a PCM–capillary mat combination for
low-temperature floors with hot water heating systems. In this subject an increasing trend
was observed in recent years, focusing on thermal conductivity, temperature distribution,
heat flux analysis, water system temperatures, setpoint optimization, and energy consump-
tion reduction [9,34–40]. Concerning the use of innovative materials for enhancing the
thermophysical properties of RFS, a current line of research involves the incorporation of
industrial by-products into screed mortar [41,42].

With respect to RFS control strategies for improving indoor comfort and energy
efficiency, Ren et al. [43] investigated the operational control of radiant floor cooling,
considering several factors (including condensation risk [44,45], achieving dynamic optimal
control of the radiant cooling system.

The thermal conductivity of the system layers, with special importance concerning the
screed mortar layer, plays a significant role in RFS performance since its overall behaviour
is highly dependent on the heat transfer within the constituent layers of the system [8].
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Depending on the heat exchange between the RFS surface layer (finishing material) and
the environment, the heat conduction between the surface and the piping system (screed
mortar) and the heat transport by the water [8], the RFS must be able to quickly attain
suitable surface temperature distribution to enable thermal comfort. Wu et al. [46] evaluated
the thermal conductivity of graphite-based cement concrete. Different graphite contents
were used to replace an equivalent mass of fine aggregate. The authors found a thermal
conductivity increase of 20% to 50%. Compressive strength was reduced up to 90%. Ding
et al. [47] observed that when the layer embedding the piping system in an RFS comprises
high thermal conductivity, the heating capacity through the upper floor surface increases,
diminishing the influence of pipe spacing on heat flux. Regarding the influence of the
thermal conductivity of the finishing material and the pipe spacing on the heating capacity
of RFSs, heat flux increases with higher thermal conductivity values and decreases with
higher values of pipe spacing. Additionally, the higher thermal conductivity of the finishing
material implies a greater influence of pipe spacing on heat flux. Lee et al. [48] analysed
the life cycle energy for two different finishing materials, finding that a thin flooring panel
resulted in a 7.2% reduction in energy consumption compared to a conventional wooden
floor panel for residential buildings. Cholewa et al. [49] studied the effect on the thermal
comfort of a room with RFS considering seven finishing material solutions. The results
revealed that the use of finishing materials with lower thermal conductivity contributes to
a reduction of 40% in the energy efficiency of the RFS.

From the literature, two important observations can be highlighted: the overall effi-
ciency of the RFS can still be improved by enhancing the thermal properties of the screed
mortar, and the influence of the finishing materials on the RFS performance is relevant.
Thus, the results of an experimental campaign comparing the performance of different
screed mortars are herein presented and discussed for reducing the literature gap identified
on the topic of screed mortars. Additionally, a sensitivity analysis concerning the impact of
different finishing materials in the thermal performance of the RFS was performed using a
three-dimensional finite element (FE) model to optimize the performance of an RFS.

2. Methodology

This work was developed following a methodology divided into two approaches:
(i) experimental work and (ii) numerical simulation. The thermophysical and mechanical
properties of the screed mortars were characterized following EN 12664:2001 [50]; ISO
8302:1991 [51] and EN 1015-11 [52]. Once characterized, the experimental work involved
two setups focusing on the experimental evaluation of three slabs with a hydronic RFS
and different mortar screeds (M_01: innovative formulation; M_02: self-compacting; M_03:
traditional screed as reference mortar) with the objective of improving thermal performance
and energy efficiency. Setup one concerned the thermal performance, and setup two
enabled the evaluation of the energy behaviour of the RFS solutions with the three different
mortar screeds. Additionally, the results attained from the experimental campaign were
used to calibrate a numerical model developed to perform a sensitivity analysis regarding
the effect of different finishing materials applied in a hydronic RFS.

The testing procedures of the two mentioned setups that compose the experimental
campaign were as follows:

• Setup 1 (continuous heating): Thermal behaviour analysis of the three slabs when the
hot water system was working (turned on) for 5 h and then turned off;

• Setup 2 (intermittent heating): Working period was evaluated by the accumulated
hours with the hot water system working (turned on) while subjected to a trigger
(on/off) with a setpoint range between 26 and 29 ◦C.

Regarding the numerical analysis, the reference mortar (M_03: traditional screed
mortar) properties were used to assess the impact of applying different finishing layer
materials over the screed mortar in terms of the surface temperatures’ distribution. Four
common materials were selected to be numerically evaluated: ceramic, linoleum, wood,
and cork.
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Our workflow for assessing the RFS performance followed the methodology depicted
in Figure 1.
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Figure 1. Methodology followed: thermal behaviour improvement of radiant floor systems.

3. Experimental Setup

An experimental setup was built that included three rectangular slabs with a hydronic
RFS of the same size, shape, and pitch. The dimensions of the slabs were 1.20 × 1.50 m,
with a thickness of 0.095 m. Hot water piping was applied upon an insulation board
and embedded within a screed mortar. Each slab was executed with a different screed
mortar formulation (as mentioned in Section 2) and their performance was monitored
under heating cycle and free-floating conditions (system turned off).

The temperature at different heights in the interior of the slab (in the screed mortar)
and the superficial temperature were continuously monitored during the test using T-type
thermocouples. Figure 2 presents the experimental setup, including the details of the
positions of the thermocouples.
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Figure 2. Experimental test setup: (a) full layout; (b) cross-section with thermocouples’ detailed
position; (c) full view of the test setup real installation (dimensions in metres).

3.1. Materials Characterization

Three screed mortars were used: M_01 was an innovative formulation designed pur-
posefully for higher thermal conductivity; M_02 was a self-compacting mortar; and M_03
was a traditional screed mortar considered as the reference solution. The most relevant
properties of the three screed mortars were determined in laboratory conditions: hard-
ened density, thermal conductivity, and mechanical strength for flexural and compressive
performance. The values presented in Table 1 are the average taken from four specimen
measurements for each property listed. The low standard deviation values corroborate the
reliable values attained.

Table 1. Thermal and mechanical properties of the screed mortars: average values (standard devia-
tion).

Mortar Density (kg m−3) Thermal Conductivity (Wm−1 ◦C−1)
Strength (MPa)

Flexural Compressive

M_01 2130 (20.01) 0.817 (0.077) 4.42 (0.15) 16.09 (1.63)
M_02 2110 (16.40) 0.805 (0.073) 6.05 (0.25) 27.53 (1.22)
M_03 2170 (17.10) 0.537 (0.043) 5.54 (0.33) 22.77 (0.36)

3.2. Setup 1: Continuous Heating

For setup 1 of the experimental tests, the system was turned on for 5 h and then turned
off. During heating, the hot supply water temperature increased from 30 to 45 ◦C. The
surface temperature was also assessed by infrared thermography. Figure 3 presents three
examples of thermal images acquired during the heating period.

Materials 2022, 15, x FOR PEER REVIEW 5 of 14 
 

 

  

(b) (c) 

Figure 2. Experimental test setup: (a) full layout; (b) cross-section with thermocouples’ detailed po-
sition; (c) full view of the test setup real installation (dimensions in metres). 

3.1. Materials Characterization 
Three screed mortars were used: M_01 was an innovative formulation designed pur-

posefully for higher thermal conductivity; M_02 was a self-compacting mortar; and M_03 
was a traditional screed mortar considered as the reference solution. The most relevant 
properties of the three screed mortars were determined in laboratory conditions: hard-
ened density, thermal conductivity, and mechanical strength for flexural and compressive 
performance. The values presented in Table 1 are the average taken from four specimen 
measurements for each property listed. The low standard deviation values corroborate 
the reliable values attained.  

Table 1. Thermal and mechanical properties of the screed mortars: average values (standard devi-
ation). 

Mortar Density 
(kgm−3) 

Thermal 
Conductivity 
(Wm−1 °C−1) 

Strength (MPa) 

Flexural Compressive 

M_01 2130 (20.01) 0.817 (0.077) 4.42 (0.15) 16.09 (1.63) 
M_02 2110 (16.40) 0.805 (0.073) 6.05 (0.25) 27.53 (1.22) 
M_03 2170 (17.10) 0.537 (0.043) 5.54 (0.33) 22.77 (0.36) 

3.2. Setup 1: Continuous Heating 
for setup 1 of the experimental tests, the system was turned on for 5 h and then turned 

off. During heating, the hot supply water temperature increased from 30 to 45 °C. The 
surface temperature was also assessed by infrared thermography. Figure 3 presents three 
examples of thermal images acquired during the heating period. 

Figure 3. Thermal images taken throughout the heating period (m, minutes). 

As observed in Figure 3, a uniform surface temperature distribution was achieved 
after 240 min regarding the three test slabs. The temperature distribution within the screed 
mortar was monitored in five positions (A to E). The temperature values over the pipe (D) 

A

B

C

E

D0.
02

0.
02

5

0.
05

5

0.
01

0.
07

5

CROSS SECTION - AA'

Figure 3. Thermal images taken throughout the heating period (m, minutes).

As observed in Figure 3, a uniform surface temperature distribution was achieved
after 240 min regarding the three test slabs. The temperature distribution within the
screed mortar was monitored in five positions (A to E). The temperature values over
the pipe (D) and close to the surface (E) are presented in Figure 2b. The temperature
variation throughout the test is presented in Figure 4a, and the differences in the maximum
temperature attained in each slab are highlighted in Figure 4b.
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Figure 4a depicts to the temperature profile evolution of two monitoring points of the
screed mortar (D, over the pipe in which water circulates at 45 ◦C; E, near the slab surface).
The temperature profiles highlight that a more rapid temperature rise was recorded for all
screed mortar solutions within the first 20 min of heating, indicating a significant energy
transfer to the screed mortars that then continued to increase at a slower rate.

During heating, the temperature values of the sensor located in (D) were identical
for all three specimens, indicating that the system was working correctly and that the
results were comparable. Regarding the effect of thermal conductivity of the screed mortar
and analysing the variation in the surface temperature, it was possible to observe the
importance of the screed mortar on the heating rate of the mortar layer and the efficiency
of the radiant system. As expected, the traditional mortar screed (M_03) revealed lower
performance and the mortar screed, with improved thermal conductivity (M_01), managed
to reach higher temperatures on the slab surface, thus revealing higher performance. At
the end of the heating period, the observed difference in surface temperature between the
two slabs was 3.1 ◦C. Comparing the temperature between the sensor (D) (over the pipe)
and the slab surface (sensor (E)), a small difference was observed for the slab with the
optimized mortar (M_01), with a value of 2.96 ◦C, while for the slab with traditional mortar
screed (M_03), the observed temperature difference was 5.50 ◦C.

3.3. Setup 2: Intermittent Heating

For setup 2, the test methodology consisted of evaluating energy behaviour as a
function of the accumulated working hours with the hot water system working (turned
on) for a complete heating and cooling cycle (charge and discharge), taking the RFS with
mortar M_03 as the reference.

This setup was of paramount importance since one of the major issues was to fully
explore the possibility of significant energy savings without compromising the surface
temperatures to ensure internal comfort conditions. Another aspect that is highly linked
to the importance of an intermittent heating strategy is the possibility of controlling RFS
operation to optimize water supply temperatures and shift working periods to off-peak
electricity loads (periods in which the system is turned off).

The three RFS comprising the different screed mortars under study (M_01, M_02,
and M_03) were tested for a temperature setpoint between 26 ◦C and 29 ◦C, as shown in
Figure 5.
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Figure 5. Temperature profile and representative time of system turned on and off for heating (system
charge) and discharge (passive behaviour).

For a complete cycle of the reference mortar (M_03) to be performed, screed mortars
M_01 and M_02 performed two complete charge and discharge cycles, requiring reduced
working times for the RFS to guarantee an equivalent range of surface temperature (as
defined by the setpoint interval of 26 to 29 ◦C). The RFS with the reference screed mortar
M_03 worked for a total accumulated time of 5.13 h. Concerning the RFSs with screed
mortar M_01 and M_02, we observed a reduction in the accumulated hours with hot water
supply on of 49.3% and 40.2%, corresponding to 2.60 and 3.07 h, respectively. Additionally,
a quicker response was observed for M_01 in achieving the maximum setpoint temperature
(29 ◦C), due to the higher thermal conductivity of this specific screed mortar.

Extrapolating the attained results to a monthly basis analysis, the energy consumption
expressed by the accumulated hours of the system when turned on experienced an expected
reduction of about 284 and 231 h month−1 for M_01 and M_02, respectively, both in
comparison with the expected operating time of the reference solution for M_03.

4. Thermal Simulation

In the numerical analysis, the M_01 slab, executed with the traditional mortar screed,
was simulated to evaluate the impact of applying different materials on the slab surface
as a finishing layer, by analysing the surface temperatures’ distribution. The numerical
simulation of the hydronic RFS was performed using FEMIX computer software [53]. A
general thermal model to simulate the heat transfer in structures built with materials whose
mechanical behaviour can be considered linear or nonlinear is available in FEMIX, including
heat development due to the hydration process of cement-based materials [54]. Thus, this
general thermal model is specified for steady-state and transient thermal analysis as well as
for nonlinear thermal analysis. This thermal model can be coupled with a mechanical model
to simulate specific thermophysical and mechanical aspects such as crack initiation and
propagation in structures discretized with solid finite elements [55]. Since the mechanical
analysis was beyond of the scope of this research, only the thermal behaviour of the slab
system was analysed and compared to the obtained experimental data.



Materials 2022, 15, 1015 8 of 14

The general three-dimensional heat conduction equation in Cartesian coordinates can
be presented as follows:

∂

∂x

(
λx

∂T
∂x

)
+

∂

∂y

(
λy

∂T
∂y

)
+

∂

∂z

(
λz

∂T
∂z

)
+

.
Q = ρc

∂T
∂t

(1)

For the case of isotropic materials, the thermal conductivity is the same in all directions,
i.e., λx = λy = λz = λ.

.
Q is the internal heat generation rate per unit volume of the

infinitesimal control volume, ρ is the mass per unit volume, and c is the specific heat of
the material.

To obtain the temperature distribution in a body, the heat conduction equation must
be solved considering appropriate boundary conditions such as prescribed temperature
in the boundary, constant heat flux in the boundary, insulated or adiabatic boundary,
and convection and/or radiation condition on the boundary surface. For the case of
time-dependent temperature phenomena, the initial conditions must also be known. In
the present simulation, prescribed temperatures to simulate the water temperature and
convection condition on the top surface of the slab were used.

Solid hexahedra finite elements (FEs) of 8 nodes were used to simulate the slab. The
adopted mesh comprised 31,200 elements and 35,139 nodes (Figure 6a). To simulate the test
conditions, the ambient air temperature was defined according to the measurements carried
out in situ and the water temperature was imposed as presented in Figure 6b. Figure 7 is a
schematic representation of the cross-section of the slabs used in the modelling, and Table 2
presents the material properties introduced in the model.
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Table 2. Properties of the materials in the FE model.

Material Density (kg m−3) Thermal Conductivity (Wm−1 ◦C−1) Specific Heat (J kg−1 ◦C−1)

Mortar 2170 0.537 800
Insulation 70.5 0.037 1000
Concrete 2500 2.0 1000

The FE model was initially validated. To this end, the simulated temperature values
over the tube and near the surface were compared to the results recorded during the test at
monitoring points (D) and (E). Figure 8a presents the results of the temperature distribution
at the end of the test in the sections corresponding to monitoring points positioned in (D)
and (E), and Figure 8b compares the measured and simulated temperature values. The
slight differences between the simulation results and the measured temperature values
can partly be explained by the unavoidable uncertainty associated with the positioning
of the thermocouples and, consequently, with the choice of the closest node in the FE
model. In future work, the model will be further improved through an increase in the
level of discretization of the mesh, especially in the areas surrounding the tube where the
highest temperature gradients occur. Nevertheless, the accuracy found in the FE model
was compatible with the purpose of our research.
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Figure 8. (a) Temperature distribution in two sections (point (D) and point (E)); (b) comparison
between recorded and simulated data.

After validation, the model was used for a sensitivity analysis to assess the impact
of using different finishing materials in the distribution of surface temperatures. As such,
four typical materials applied in RFS were selected: ceramic, linoleum, wood, and cork.
The properties of the materials used in the simulation are detailed in Table 3 as well as the
obtained temperatures regarding the maximum (Tmax) and the average temperature of the
surface (Tsurf). Figure 9 shows the temperature distribution on the surface of the slab for
the different finishing materials.

Table 3. Properties of the finishing materials and simulation results.

Material Density (kg m−3) Thermal Conductivity (Wm−1 ◦C−1) Specific Heat (J kg−1 ◦C−1) Tmax (◦C) Tsurf (◦C)

Ceramic 2300 1.300 840 29.76 26.11
Linoleum 1390 0.170 900 27.54 24.75

Wood 500 0.130 1600 26.88 24.32
Cork 400 0.065 1500 24.56 22.60
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(results in degrees Celsius).

The results confirmed the importance of the finishing material in terms of the tem-
perature reached on the surface and, consequently, the efficiency of radiant floor heating
systems. The maximum temperature reached on the surface varied between 24.56 and
29.76 ◦C. The thermal properties of the coating material led to differences of 15% in the
average surface temperature of the slab.

A central point of the FE mesh was selected for a detailed analysis of the surface tem-
perature evolution profile considering the application of the different finishing materials,
as presented in Figure 10.
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As observed in Figure 10, the use of ceramic as the finishing material of an RFS
provides the advantage of higher thermal conductivity, resulting in higher temperatures
and reduced operation time. Ceramic finishing reached the same temperature value
approximately two hours before the cork finishing. Additionally, after 6 h of operation, the
temperature difference between these two finishing materials was 4 ◦C. Due to the lower
thermal conductivity, cork resulted in the finishing material requiring a longer operating
period of the system with a lower surface temperature achieved. Linoleum and wood
produced similar results in terms of surface temperatures profile.

5. Conclusions

This paper presented the results of an experimental campaign and a calibrated numer-
ical model to assess the impact of different floor slab finishing materials.

From the results of the first setup, the importance of the thermal properties of the
screed mortar on the heating and cooling rate of the RFS was evidenced. In the conditions
under which the test was performed, in terms of thermal conductivity, a difference of more
than 3 ◦C in the maximum temperature was reached for all three screed mortar used in
the slabs.

Concerning the intermittent heating setup, the better performance of the screed mortar
M_01 led to the fewest working hours when subjected to setpoint range between 26 and
29 ◦C, corresponding to a reduction of 49.3% in comparison to the reference mortar (M_03).
Concerning the screed mortar M_02, a reduction of 40.2% was observed compared to M_03.
This enhanced performance, extrapolated to a monthly analysis, can lead to a significant
reduction in operating time for M_01 and M_02 in comparison to M_03.

Once the numerical model was calibrated, a sensitivity analysis was carried out refer-
encing o the thermal simulation of the performance of the slabs with a three-dimensional
FE model to assess the importance of the finishing material in the overall efficiency of the
RFS. From the simulation results, the surface temperature difference between the cork and
ceramic finishing materials after 6 h of operation was approximately 4 ◦C. Considering
a surface temperature value of 22 ◦C, the use of a ceramic finishing allows reaching this
surface temperature approximately two hours earlier than when cork finishing is used.

The chosen thermal conductivity of the screed mortar and the finishing material to
be applied in RFS were found to play a significant role in the overall performance of these
systems, strongly affecting surface temperatures and operating hours, thus affecting overall
energy consumption. Moreover, to achieve the high-end performance of an RFS, other
variables in addition to the ones explored herein should also be assessed in future work,
such as water supply temperature and flow rate, and the energy storage capability that
could be given to some of the system layers with the use of phase change materials.
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