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Objectives: The examination was sighted to study the preventive effects of rosinidin against rotenone-
activated Parkinson‘s disease in rats.
Methods: Animals were randamoized into five groups: I-saline, II-rotenone (0.5 mg/kg/b.wt.), III- IV-10
and 20 mg/kg rosinidin after rotenone and V-20 mg/kg rosinidin per se for 28 days and were assigned
for behavioral analysis., Biochemical parameters i.e. lipid peroxidation, endogenous antioxidants, nitrite
level, neurotransmitter levels, proinflammatory biomarkers such as interleukin- 6 (IL-6), tumor necrosis
factor-a, IL-1b, nuclear factor kappa B, nuclear factor erythroid 2–related factor 2, and caspase-3 were
assessed on the 29th day of the research.
Results: Rosinidin augmented the effectiveness of rotenone on akinesia, catalepsy, forced-swim test,
rotarod, and open-field test. Biochemical findings indicated that treatment of rosinidin showed restoring
neuroinflammatory cytokines, antioxidants, and neurotransmitter levels in rotenone-injected rats.
Conclusion: As a result of rosinidin treatment, the brain was protected from oxidative stress-induced neu-
ronal damage and inhibited neuroinflammatory cytokines.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Parkinson’s disease (PD) is a hypokinetic neuro- cumulative dis-
order that primarily influences the nigrostriatal pathway and
causes a disparity in the neurotransmitters acetylcholine and
dopamine levels (Poewe et al., 2017, Balestrino and Schapira
2020). Over 6 million (2–2.5 %) elderly age population are been
affected by the loss of dopaminergic signaling (Anandhan et al.,
2017). The predominating symptoms occurring due to loss of
neuronal circuits are tremors, bradykinesia, the rigidity of muscle,
postural infirmity, and lack of gait (Jellinger 2015,
Sveinbjornsdottir 2016). Abnormal protein accumulation in the
brain is called ‘Lewy bodies’, usually alpha-synuclein deposits
which are generally observed in people affected by PD
(Wakabayashi et al., 2013, Friedman 2018). The factors that drive
dopaminergic nigrostriatal degeneration are oxidative stress, dis-
turbance in the homeostasis of cellular calcium, environmental,
mitochondrial dysfunction, overproduction of glutamate through
NMDA receptors causing excitotoxicity of neurons (Henchcliffe
and Beal 2008, Hwang 2013).

Rotenone, a hydrophobic pesticide is used as an inducing agent
for PD. Investigations presented that pesticide usage leads to mito-
chondrial dysfunction and causes destruction of dopaminergic
neurons (Xiong et al., 2012, von Wrangel et al., 2015). Rotenone
is a blood–brain barrier (BBB) penetrator, generate oxidative stress,
neuroinflammation, insufficiency of neurotransmitters, and neu-
ronal degeneration. Previous findings suggest that the manage-
ment of PD with drugs possessing antioxidant and anti-
inflammatory properties can be beneficial (Zhang et al., 2016,
Pan et al., 2020, Siracusa et al., 2020).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sjbs.2023.103656&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sjbs.2023.103656
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Amaalghamdi1@kau.edu.sa
mailto:fabbasi@kau.edu.sa
mailto:fabbasi@kau.edu.sa
mailto:saaalghamdi1@kau.edu.sa
mailto:f.soherwardi@psau.edu.sa
mailto:f.soherwardi@psau.edu.sa
mailto:samisz@ju.edu.sa
mailto:ikazmi@kau.edu.sa
https://doi.org/10.1016/j.sjbs.2023.103656
http://www.sciencedirect.com/science/journal/1319562X
http://www.sciencedirect.com


A.M. Alghamdi, F.A. Al-Abbasi, S.A. AlGhamdi et al. Saudi Journal of Biological Sciences 30 (2023) 103656
L-dopa is a classic therapy treating Parkinson but long-term
exposure to L-dopa is linked with motor-related dysfunctions like
dyskinesia which affects the normal motor functioning of PD
patients (Jaunarajs et al., 2011). Dopamine agonists,
catecholamine-O-methyl transferase (COMT), monoamine oxidase
inhibitors (MAO) and surgical treatment are second-line manage-
ment options for PD (Malar et al., 2020). The current treatment
only aims to correct the symptoms of Parkinson’s, none of them
reverse the pathology of the disorder and are related with Various
undesirable effects (Thanvi and Lo 2004).

Natural sources include a variety of plant-derived phytocon-
stituents which have a promising role in chronic disorders and
are considered as safe alternatives to current synthetic drugs
(Hussain et al., 2018). Rosinidin, an anthocyanin is found in the
flowers of Catharanthus roseus Linn belonging to the Apocynaceae
family (Vikaskurhekar 2020). Rosinidin is known to have a strong
antioxidant activity that protects against free radicals generated
from cell damage (Alshehri and Imam 2021). The anthocyanin pig-
ment has wide medicinal applications like wound healing, anti-
inflammatory, anti-cancer, tuberculosis, flatulence, memory
enhancer, and hypoglycemic property (Ksouri et al., 2012). Antho-
cyanidins activate the proinflammatory cytokine pathway by mod-
ulating the mitochondrial dysfunction thus targeting to reduction
the growth of PD (Ksouri et al., 2012, Winter and Bickford 2019).
Previously rosinidin reported as an anti-nephrotoxic, reduced dia-
betic complexity, minimize lipopolysaccharide and streptozotocin-
activated neurotoxicity via its antioxidant, flavonoids property and
anti-Inflammatory (Monteiro et al., 2018, Alshehri and Imam 2021,
Alharbi et al., 2022, Gilani et al., 2022). In our study, we chose the
benefit of rosinidin, which has not been demonstrated to support
neurotoxicity caused by rotenone in experimental rats in PD para-
digms. In this study, efficacy of rosinidin was tested in animals for
the ability to inhibit rotenone-induced PD.
2. Methods

2.1. Chemicals

A source of Rotenone was Sigma Aldrich (USA). Rosinidin was
given away as a sample by SRL, India. Interleukins- (IL-1b), IL-6,
Fig. 1. Schematic presentation of experimental plan.MDA (Malonaldehyde), SOD (Supe
(Hydroxy tryptamine), DOPAC(3,4-dihydroxyphenylacetic acid), HVA (homovanillic acid
1b), TNF-a (Tumor necrosis factor), NF- ƙB (Nuclear factor kappa factor), Nrf2 (Nuclear
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tumor necrosis factor alpha (TNF-a), nuclear factor-jB (NF-jB),
nuclear factor erythroid 2–related factor 2 (Nrf2) and caspase-3
(Casp3) were analysed by rat enzyme-linked immunosorbent assay
(ELISA) kit (MyBio Source, USA).

2.2. Animals

Male Wistar rats (10–12-week-old; 180 cm/220 g) were kept in
propylene cages with a 12hr light/dark cycle at ambient tempera-
ture (23 �C), humidity (50–65%), and free allowance to tap water
and pellet diet. The behavioural tests were assessed during the
active phase between 19.00 and 24.00 hr. The proposal was per-
mitted by institutional ethics committee for animals and work
directed as per the ARRIVE guidelines.

2.3. Experimental

After being adapted for at least 7 days 30 rats into five groups
were randomly divided (n = 6):

Group I (Control): received 5 ml/kg i.p. (saline) throughout the
study.

Group II (Disease control): received rotenone -injected for
28 days 0.5 mg/kg/b.wt. s.c. (Teerapattarakan et al., 2018, Sharma
et al., 2020).

Group III-IV: For 28 days, received rotenone 0.5 mg/kg/b.wt. s.c
with subsequent given of rosinidin (10 and 20 mg/kg).

Group V: Rosinidin (20 mg/kg/day) per se for 28 days.
The behavioural quantification was executed on 29th day. After

that biochemical parameters were performed. (Fig. 1).

2.4. Motor functional parameters

2.4.1. Akinesia
The time in which the rats move all the paws from their posi-

tion was noted and should not exceed more than 180 s. The ani-
mals were positioned on a raised wooden platform (40 cm
D � 40cmH � 30 cm W) and acclimatized for at least 5–10 mins.
The time when all the paws were displaced from its place was
observed. Six times a day, the test was conducted and the mean
was calculated (Anandhan et al., 2013).
roxide), GSH (Glutathione-S transferase), CAT (Catalase), NE (Norepinephrine), 5-HT
), and 5-HIAA (5-hydroxyindoleacetic acid), IL-6 (Interleukin-6), IL-1b (Interleukin-
factor erythroid 2–related factor 2), Casp3 ( caspase-3).
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2.4.2. Catalepsy
The catalepsy is constructed on the lack of posture correction by

rats. In this test, rats were aligned in such a way that their hind
limbs were placed on the 10 cm wooden bar above the base level.
Rats were positioned such that their front paws were on the woo-
den floor The period of time that the rats used their two hindlimbs
to support the situation on the wooden bar was recorded. The test
was taken repeatedly 6 times to calculate the mean value (Costall
and Naylor 1974, Balakrishnan et al., 2018).
2.4.3. Forced swim
This test is depends on the despair or immobility of the animal

after placing in water. According to the conventional method, an
acrylic transparent cylinder (10cmD � 25 cm H � 9 cm W) was
filled with water (22 ± 2�C). The rats were placed for 2–6 mins
and the immobility time was noted. The treatment groups received
drug 1 hr (p.o) and 30mins (i.p. /s.c)prior starting the test (Yamada
et al., 2013, Unal and Canbeyli 2019).
2.4.4. Rotarod
The rotarod activity was conducted to measure the motor and

grip control in rodents. The rats were acclimatized to a training
duration before starting the main exercise. The rats were kept
one by one on the rotating rod (7 cm D) having set the speed at
25 rpm. The time taken for the animal to fall was noted with an
average cut-off time of 180 sec. The drug was administered 1 hr
(p.o.) and 30mins (i.p./s.c) prior starting the test and evaluated
for motor functionality (Sheibani et al., 2017, Zhang et al., 2017,
Singh et al., 2021).
2.4.5. Open field
Spontaneous motor activity was estimated using plexiglass

wooden base equipment (100 cm W, 100 cm D, 40 cm H) was
divided into 25 (595) squares. Rats were sited on the immovable
situation every time and their behavior change were recorded for
5–10 mins by a video camera. The crossing of the animal was con-
sidered only when all the paws were positioned on another square.
Succeeding monitoring were recorded (a) Number of square-box
travelled; The number of centers (9 squares) and squares (16
squares) moved by the rat was noted. (b) Grooming; i.e., licking
the paw and fur, (c) Rearing; i.e., sniffing, standing upright on hind
limbs, bending on the wall with forelimbs (Kuniishi et al., 2017,
Sun et al., 2019).
2.5. Biochemical estimation

The brains were collected and homogenized using phosphate
buffer (0.1 M) at last day. The homogenate is then centrifuged at
15,000–20,000 rpm for at least 20mins. The supernatant was accu-
mulated for biochemical examination.
2.6. Malondialdehyde estimation (MDA)

Lipid peroxidation is the oxidative degeneration of lipid mole-
cules causing cell death. Equal quantity (2 ml) of the brain homo-
genate and trichloroacetic acid (10% w/v) were cooled and
subjected to centrifugation. To the 0.5 ml of supernatant, thiobar-
bituric acid was added, and kept in hot water for 15 mins. The
absorbance was recorded at 535 nm on ultraviolet (UV) spec-
trophotometer. The amount of MDA was presented as nmol of
MDA/mg of wet tissue (Chonpathompikunlert et al., 2018,
Zahedi-Amiri et al., 2019).
3

2.7. Reduced glutathione estimation (GSH)

GSH measurement was done using the DTNB method. The
homogenate was reacted with trichloroacetic acid centrifugated
for 10 mins. To 1 ml of supernatant, 0.2 M 3 ml phosphate buffer
(pH 8) and 0.5 ml DTNB reagent (5-50-Dithio-Bis (2 Nitro-benzoic
acid)) was added. The reaction mixture was spectrophotometri-
cally estimated at 412 nm. The values were indicated as nmol
GSH/mg of wet weight tissue (Pan et al., 2020).

2.8. Superoxide dismutase (SOD)

SOD was estimated by the following technique using brain
homogenate and NADH incubated for 90 sec. To the mixture, acetic
acid and butanol was mixed and the extracted butanol layer were
measured spectrophotometrically at 520 nm. The activity of SOD
was presented in units/mg protein (Weydert and Cullen 2010,
Deveci and Karapehlivan 2018).

2.9. Catalase (CAT) estimation

The assay procedure includes brain homogenate which is mixed
with H2O2 (30 mM) and phosphate buffer(0.05 M) which is then
analyzed spectrophotometrically at 212 nm and the expressed
activity was calculated in units of catalase/ mg of wet tissue weight
(Ghaffari et al., 2018).

2.10. Nitrite level

Nitric oxide level is measured by using Griess reagent by col-
orimetry assay. The supernatant was reacted with Griess reagent
(mixture of naphthyl ethylene diamine and sulphanilamide in
H3PO4). The reaction mixture was measured at 540 nm spectro-
metrically (Parkhe et al., 2020, Koppula et al., 2021).

2.11. Neurotransmitter levels

HPLC was used to determine the concentrations of dopamine
(DA), serotonin (5-HT), norepinephrine (NE), and their metabolites,
3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA),
and 5-hydroxyindoleacetic acid (5-HIAA). The brain tissue samples
were homogenized in 0.17 M perchloric acid. Using a reversed-
phase liquid chromatography system with electrochemical detec-
tion, supernatants from tissue homogenates were injected directly
into the chromatography system in a 20 ll volume (Kim et al.,
1987, Garabadu et al., 2011, Ghaffari et al., 2018, Garabadu and
Agrawal 2020).

2.12. Neuroinflammatory markers

The commercial ELISA kits were employed for the determina-
tion of inflammatory biomarkers such as IL-1b, IL-6, TNF-a, and
NF-jB (Singh and Kumar 2016).

2.13. Nrf2 and Casp3 estimation

Using an ELISA kit and performing the assay in conformance
with the protocol, determine the concentrations of Nrf2 and Casp3.
Casp3 concentration was expressed in pg/g, and Nrf2 concentra-
tions were displayed in ng/mL.

2.14. Statistical investigation

The outcomes generated were presented as mean ± SEM.
Employing the Prism software (Version 8.0.1), the analysis of vari-
ance one way (ANOVA) was used to compare between group in
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order to define the level of significance. In statistical analysis, the
level of significance with<0.05 was indicated as a significant value.
3. Results

3.1. Behavioural parameters

3.1.1. Rosinidin ameliorates rotenone-induced movement disabilities
Fig. 2(A-B) displayed the motor coordination in disease control

and treatment groups. The rotenone-induced group revealed a
sharp rise in the akinesia time and catalepsy time when correlated
to the rotenone injected rats. The treatment group when correlated
with the rotenone group revealed a noticeable decrease with 10
and 20 mg/ kg respectively akinesia time [F (4, 25) = 52.12,
(P < 0.0001)] and catalepsy time [F (4, 25) = 53.68, (P < 0.0001)].

The daily administration of rotenone substantially improved
the immovability time in the rotenone injected rats in contrast to
the controls. On administration of 10 and 20 mg/kg rosinidin were
reduced in immovability time [F (4, 25) = 30.70, (P < 0.0001)] when
compared with rotenone-injected rats (Fig. 2C).

On evaluation of rotarod test, the rotenone group presented a
marked decline in the motor control activity (rotarod test) when
correlated to the controls. During treatment, at both doses of
Fig. 2. A-F. Alteration in Behavioural parameters by A. akinesia, B. catalepsy, C. for
value < 0.05, 0.01,0.001 were presented as *, **, *** respectively when compared with dise
group when correlated with control group.
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rosinidin revealed a pronounced rise in the performance time in
comparison with the rotenone-injected group [F (4, 25) = 56.16,
(P < 0.0001)] (Fig. 2D).

Number of squares travelled decreased markedly in rotenone
induced groups when correlated with controls. While treatment
with rosinidin at both doses revealed a significant rise in the dis-
tance travelled than the rotenone-injected rats [F (4, 25) = 68.74,
(P < 0.0001)] (Fig. 2E).

A noticeable decline in the rearing frequency was examined in
the rotenone- prompted animals while a substantial rise in the
rearing frequency when treated with rosinidin at both doses when
correlated to the rotenone-injected group [F (4, 25) = 29.92,
(P < 0.0001)] (Fig. 2F).

The above behavioral test did not reveal any significant effects
related to rosinidin per se.
3.2. Effect of rosinidin on biochemical parameters

3.2.1. MDA determination
MDA level was raised (p < 0.001) in rotenone-injected cluster as

correlated to control. Dose of rosinidin showed significant reduc-
tion in MDA when correlated to rotenone-injected rats [F (4,
25) = 24.43, (P < 0.0001)]. (Fig. 3A).
ced swim test, D. rotarod test, E. Number of squares and F. Number of rears. P
ase control group. P value < 0.001 was presented as # which signifies disease control



Fig. 3. A-E. The neuroprotective effect of rosinidin on antioxidant parameters. A. MDA, B. GSH, C. SOD, D. CAT, E. P value < 0.05, 0.01,0.001 were presented as *, **, ***
respectively when compared with disease control group P value < 0.001 was presented as # which signifies disease control group when correlated with control group.
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3.2.2. Gsh determination
An increase in the GSH activity in rotenone-injected rats

(p < 0.001) when correlated to the control. A pronounced reduction
in GSH [F (4, 25) = 26.97, (P < 0.0001)] and noticeable rise in both
lower, higher dose (10 mg/kg & 20 mg/kg) of rosinidin as corre-
lated to disease control (Fig. 3B).

3.2.3. Sod determination
In the rotenone-induced rats, the SOD level was remarkably

decreased (p < 0.001) when correlated to the controls. The SOD
level in the treatment with 10 and 20 mg/kg rosinidin was elevated
considerably [F (4, 25) = 24.45 (P < 0.0001)] when correlated to
rotenone-injected rats. (Fig. 3C).

3.2.4. Cat determination
The rotenone injected rats revealed a marked drop in the cata-

lase activity when corelated to the controls. When compared to the
rats who had received rotenone injections, rosinidin administra-
tion at both doses resulted in an impressive rise [F (4,
25) = 25.35, (P < 0.0001)] (Fig. 3D).

3.2.5. Nitrite content
The rotenone group revealed a noticeable uprise in the nitrite

level when correlated with the controls. A noticeable decline in
5

the nitrite content was noted with both dose of rosinidin when
allied with the rotenone-injected rats [F (4, 25) = 61.12,
(P < 0.0001)] (Fig. 3E).

3.2.6. Effect of rosinidin on neurotransmitter level
A marked downfall in the dopamine, NE, 5-HT, and 5-HIAA

intensities were noted in the rotenone injected rats when corre-
lated with the normal group. An increase in dopamine [F (4,
25) = 271.2, (P < 0.0001)] and 5-HIAA levels [F (4, 25) = 32.16,
(P < 0.0001)] was marked when 10 mg/kg (p < 0.05), 20 mg/kg
was administered. Also, a marked elevation in NE [F (4,
25) = 58.14, (P < 0.0001)] and 5-HT [F (4, 25) = 98.13,
(P < 0.0001)] when rosinidin at both doses was administered.
While a remarkable upsurge in the DOPAC and HVA intensities in
the rotenone group was observed. When both dosages of rosinidin
were given, a considerable decline was remarked in the DOPAC [F
(4, 25) = 22.19, (P < 0.0001)] and HVA levels [F (4, 25) = 68.35,
(P < 0.0001)] (Fig. 4A-F). When both dosages of rosinidin were
given, there was a significant drop in the DOPAC (p0.001).

3.2.7. Effect of rosinidin on neuroinflammatory cytokine level
It showed that the disease control rotenone group exhibited

elevated levels in proinflammatory markers like IL-6, IL-1ß, TNF-
a. Treatment with rosinidin at both doses exhibited a downregula-



Fig. 4. A-F. The neuroprotective effect of rosinidin on neurotransmitter level. A. Dopamine, B. NE, C. 5-NT, D. DOPAC, E. HVA, F. 5-HIAA. P value < 0.05, 0.01,0.001 were
presented as *, **, *** respectively when compared with disease control group. P value < 0.001 was presented as # which signifies disease control group when correlated to
control group.
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tion in cytokines IL-1ß [F (4, 25) = 51.59, (P < 0.0001)], TNF-a [F (4,
25) = 23.92, (P < 0.0001)], IL-6 [F (4, 25) = 75.93, (P < 0.0001)], NFƙB
[F (4, 25) = 24.41, (P < 0.0001)] when associated to rotenone
injected rats (Fig. 5A-D).
3.2.8. Effect of rosinidin on Nrf2 and Casp3
It revealed that neuroinflammatory indicators shown downreg-

ulation of Nrf2 and upregulation of Casp3 in the rotenone-injected
rats as associated with normal cluster. Tukey’s post-hoc test exhib-
ited that rosinidin at both doses a pronounced upregulation in Nrf2
[F (4, 25) = 27.96, (P < 0.0001)] and downregulation in Casp3
expression [F (4, 25) = 67.88, (P < 0.0001)] when correlated to rote-
none group (Fig. 6A-B).
4. Discussion

PD is a slow neuro-depressive disorder marked with neuronal
degeneration causing postural imbalance, stiffness, tremor(Russo
and Tyler 2015, Ball et al., 2019).The disease progression starts
from the autonomic nervous system to the olfactory lobe and then
spread through the nervous system (Katzenschlager et al., 2008,
6

Del Tredici and Braak 2016). The dopamine insufficiency interrupts
the normal motor functions like tremor, stiffness, and posture
imbalance and also non-motor signs with mood, thinking, behavior
(Truong et al., 2008, Asakawa et al., 2016, Jagadeesan et al., 2017).
The use of standard pharmacotherapy for PD focuses on symp-
tomatic relief for PD symptoms and is cause for developing adverse
events which lead to other conditions (Savitt et al., 2006, Oertel
and Schulz 2016, Baxi et al., 2018, Jankovic and Tan 2020).The pre-
sent study showed that rosinidin possesses potent antioxidant
activity which alleviates motor impairments and improved beha-
vioural attributes.

Rotenone, a potent lipophilic pesticide targeting the mitochon-
drial complex thus damaging neuronal growth causing beha-
vioural, neurochemical pathological changes (Betarbet et al.,
2000, Ramkumar et al., 2018, Lawana and Cannon 2020, Ibarra-
Gutiérrez et al., 2023). In the recent study, rotenone impaired the
behavioural parameters with a gradual increase in the akinesia
and catalepsy and decline in the locomotor functions as mentioned
in previous researches (Ramkumar et al., 2019, El-Shamarka et al.,
2023, Ibarra-Gutiérrez et al., 2023). Rosinidin decreased the akine-
sia and catalepsy time while an increase in the locomotor func-
tional test like rotarod and forced swim test. Dopaminergic loss



Fig. 5. A-D. The neuroprotective effect of rosinidin on neuroinflammatory parameters. A. IL-6, B. IL-1ß, C. TNF-a, D. NFƙB. P value < 0.05, 0.01,0.001 were presented as
*, **, *** respectively when compared with disease control group. P value < 0.001 was presented as # which signifies disease control group when correlated with control group.
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may be associated with behavioural parameters (Samantaray et al.,
2007, Sharma et al., 2020, Alharthy et al., 2023). The results exhib-
ited that rosinidin improved that motor performance which is cor-
related with the increased dopamine level.

Reactive oxygen species formed by oxidative damage is the
main contributor to the pathogenesis of PD (Grootveld 2022).
Mitochondrial dysfunction cause generation of ROS which nega-
tively affects the cellular structure like lipids, DNA and protein
(Elfawy and Das 2019, Trist et al., 2019, Juan et al., 2021). Increased
MDA and nitrite content and decline in GSH, SOD, CAT levels were
detected in rotenone- prompted rats as correlated in previous
investigations (Javed et al., 2020, Alikatte et al., 2021, Afzal et al.,
2022, Alharthy et al., 2023). Rosinidin significantly reduces the
MDA and nitrite content and marked elevation in GSH, SOD, CAT
7

levels. Results suggested that both dose of rosinidin showed favor-
able effects may have been caused by its anti-oxidant properties.

Neurotransmitter level in the PD patients depends upon the
neuronal damage or degeneration especially downfall in the dopa-
mine level (Alharthy et al., 2023). The present study displayed sig-
nificant loss in dopaminergic activity and decreased dopamine
level in rotenone-lesioned rats similar to previous observation
(Monti et al., 2010, Barbiero et al., 2022). Rosinidin ameliorated
rotenone-induced PD by increasing dopamine, NE, 5-HT, 5-HIAA
and decrease DOPAC and HVA levels.. Thus, rosinidin showed
improvement in the dopaminergic damage by moderating the
enzymatic pathway of dopamine. In addition to other neurotrans-
mitters, studies have shown that rosinidin may alter the levels of
dopamine, a neurotransmitter that is reduced in PD. Additionally,



Fig. 6. (A-B). The neuroprotective effect of rosinidin on neuroinflammatory biomarkers. A. Nrf2 B. Casp3. P value < 0.05, 0.01,0.001 were presented as *, **, ***
respectively when compared with disease control group. P value < 0.001 was presented as # which signifies disease control group when correlated with control group.
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according to some studies, rosinidin may have neuroprotective
properties by lowering oxidative stress and neuroinflammation,
which are related to the onset of PD (Ebrahimi and Schluesener
2012, Calis et al., 2020, López-Pedrouso et al., 2020, Gilani et al.,
2022).

Neuroinflammatory pathway is a pivotal factor causing rise in
the disease progression as cytokines activate the degeneration
pathway (Hirsch and Hunot 2009, Maes et al., 2011, Shabab
et al., 2017, Yang et al., 2020, Saha et al., 2022, Tiwari and Pal
2022). The administration of rotenone showed a profound rise in
the inflammatory markers like IL-6, IL-1ß, TNF-a, NFƙB same as
other investigations (Ojha et al., 2016, Zhang et al., 2017). Whereas
cure with rosinidin (10 and 20 mg/kg) prevented any alterations in
the cytokine level resulting in neuronal protection against the pro-
duced damage. Several preclinical research have looked into how
rosinidin affects levels of neuroinflammatory cytokines in PD.
Results from these studies suggest that rosinidin may have a
potential anti-inflammatory effect and can modulate the intensi-
ties of various cytokines involved in neuroinflammation, such as
TNF-a and IL-1b (Alshehri and Imam 2021, Alharbi et al., 2022).
These outcomes recommended that rosinidin may have a thera-
peutic potential in the management of neuro inflammation in PD.

The Nrf2 pathway has been demonstrated to be activated by the
small molecule rosinidin. This route controls the fight against free
radicals and the cellular reaction to stress. Neuroinflammation and
oxidative stress both substantially support to the growth of neu-
rodegeneration in PD (Mosley et al., 2006, Yan et al., 2022). Rosini-
din may therefore have neuroprotective benefits in PD by lowering
oxidative stress and neuroinflammation done by upregulation of
the Nrf2 expression.

By lowering oxidative stress and neuroinflammation, rosinidin
is a substance that has been demonstrated to have neuroprotective
benefits in PD. However, it is unclear how it affects casp 3, an
enzyme involved in the procedure of apoptosis or cell death.
Rosinidin may prevent cell death in PD by inhibiting casp 3 activ-
ity, according to some research, although others find no apprecia-
8

ble difference (Calis et al., 2020, López-Pedrouso et al., 2020). To
fully comprehend how rosinidin affects casp 3 in Parkinson’s, more
study is required. The precise mechanism of rosinidin by which it
affects the levels of endogenous antioxidant, neurotransmitters,
neuroinflammatory cytokine, Nrf2 and Casp3 in PD is unclear. To
confirm the effects of rosinidin on neurotransmitter levels in PD
and identify whether it has therapeutic potential, more study is
required including other genetic models, estimation of immuno-
histochemical analysis, histopathology and western blotting. Limi-
tation of study, used small number of animals with short duration.
5. Conclusion

Our finding suggests that rosinidin possesses antioxidant and
anti-inflammatory activity, decreased neuroinflammation by
inhibiting inflammatory cytokines, regulated neurotransmitter
level, and ameliorated locomotor function. Rosadinidin has been
shown to protect against neuro-inflammatory markers, neuro-
transmitters and behavioral tests in animals, suggesting that it
may be useful for treating Parkinson’s disease. However, further
research are needed to establish its reliability and efficacy in treat-
ing the condition.
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