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Introduction
Phenotype switching – or, more generally, continuous  
phenotype-determined cell plasticity – is an essential process  
originally observed during development but now is also rec-
ognised as an important phenomenon upon injury and disease.  
In the context of anti-cancer therapies, cell plasticity enables  
tumour cells to change to a cell phenotypic identity that may 
be dependent (or not) on the drug target but without additional  
secondary genetic mutations. Indeed, the discovery of oncogenic- 
driven mutations favoured the development of diverse targeted 
therapies and showed unprecedented clinical response. Unfor-
tunately, responses in general are incomplete and transient 
as resistances develop upon continuous treatment exposure.  
Along with well-known genetic alterations, cell plasticity has 
recently emerged as an unavoidable contributor to therapy  
evasion. Studying the underlying biological mechanisms of cell  
plasticity should not only enable a better understanding of cancer  
cell phenotypic and functional heterogeneity but also present 
novel opportunities to prevent the emergence of drug-refractory  
resistance. In this mini-review of recent research (focused 
on the years 2017–2020), we discuss adaptive behavioural  
phenomena in assumed genetically homogeneous  cancer cell  
populations.

1. Challenging facts and possible mechanisms
1.1. Epithelial-to-mesenchymal transition in cancer
In various cancers, tumour cells have been shown to hijack  
developmental processes to adapt to environmental stresses. 
One of the best described examples of phenotypic switching  
depends on the process of epithelial-to-mesenchymal transi-
tion (EMT). It consists of both morphological and molecular  
changes by loss of apical–basal polarity and epithelial cell 
junctions accompanied by down-regulation of E-cadherin  
expression and acquisition of mesenchymal properties, includ-
ing expression of vimentin and fibroblast-like morphology  
(Figure 1A, ‘EMT’). EMT is completely reversible insofar 
as carcinoma cells change their phenotypes without genetic  
mutations. In particular, tumour cells can occupy a hybrid 
phenotypic state characterised by a mix of epithelial and  
mesenchymal features (partial EMT) and can revert to an  
epithelial state through the process of mesenchymal-to- 
epithelial transition (MET) as soon as they encounter a new  
environment. Indeed, coupled feedback loops of engineered 
network motifs by synthetic biology were shown to be able to  
generate intermediate hybrid EMT states1. It seems that such a 
partial EMT phenotype is adopted by tumour cells to migrate  
as clusters2, which we will discuss in Section 1.4.

Apart from its well-known action in metastasis, EMT has been 
shown to be involved in drug resistance. A recent study showed 
that EMT was involved in resistance to the third-generation  
epithelial growth factor receptor tyrosine kinase inhibitors  
(EGFR-TKIs)3. The underlying biological mechanism by which 
EMT confers chemoresistance remains to be fully demon-
strated. Nevertheless, transforming growth factor beta (TGFβ), 
a well-known EMT inducer, has been shown to be involved 
in EMT-related chemoresistance in BRAFV600E-mutated  
melanoma4 and in a breast cancer model5. These recent  
observations raise questions about the nature of the molecular 

determinants of EMT and of the associated local phenomena. 
Is EMT always totally reversible? To what extent is it related to  
the ‘plasticity’ of cancer cells?

1.2. Transient drug-induced tolerance
The biological mechanisms that induce cancer cell plasticity 
upon drug treatment remain to be fully established. Nonetheless,  
it seemingly involves a stepwise transition whereby tumour 
cells undergo a slow proliferating drug-tolerant state, called  
drug-tolerant persisters (DTPs), before further developing  
secondary mutational drug resistance (Figure 1A, ‘Drug-induced 
tolerance’). Persisters were firstly described in bacteria upon  
antibiotic challenges6. Similarly, a subpopulation of non-small 
cell lung cancer (NSCLC) cells engages in a reversible  
phenotypic change in which DTPs survive the initial onslaught 
of anti-cancer therapies7. Similar phenomena were observed in  
glioblastoma and melanoma8–10.

The observations of DTPs are complemented by in vivo studies 
in a basal cell carcinoma (BCC) model11. Drug removal led the  
BCC DTPs to switch to a proliferation state and sensitised  
them to vismodegib, a standard care of BCC12. More recently, a 
single-cell study in a BRAFV600E-mutated melanoma showed  
‘micro-heterogeneity’ amid DTPs13. Indeed, that study defined  
four cellular states in the melanoma DTPs: starvation-like 
melanoma cell state (SMC), neural crest stem cell-like state  
(NCSC), invasive state, and pigmented state13. Computational 
analysis suggested a transition from SMC to a bifurcation 
point at which DTPs can engage with diverse traits by  
transiting into either the NCSC or pigmented state. Peroxi-
some proliferator-activated receptor alpha (PPARα)-mediated 
fatty acid oxidation-related gene expression is likely the 
key transcriptional mechanism in the SMC state14, whereas  
retinoid X receptor gamma (RXRγ) and melanocyte-inducing 
transcription factor (MITF) are likely responsible for the  
NCSC and pigmented state, respectively13,15. Taken together, 
these observations are compatible with the fact that a stepwise  
transition through a slow cycling DTP state represents a  
non-genetic mechanism of therapy evasion that is independent  
of the tumour type or treatment.

It is still not clear whether the DTPs are a pre-existing cell  
subpopulation or arise stochastically from dynamical fluctuation.  
A recent finding may favour the latter concept; Shaffer  
et al. showed that a rare population of melanoma cells tran-
siently displayed high expression of tolerance-related genes, 
such as AXL, prior to drug exposure and is resistant to  
anti-BRAF treatment16. This population of cells could give 
rise to drug-sensitive cells in a stochastic manner16. These  
observations are reminiscent of gene expression noise due to 
randomness in transcription and translation. Fundamentally, 
the noisy expression of a gene originates from the discrete and  
inherently random biochemical reactions of low numbers of  
modules involved in the production of mRNAs and proteins, thus  
leading to non-genetic cell-to-cell variations. Cells rely on some 
combinations of variability in gene expression that could be  
beneficial in times of stress insults17. In terms of drug  
resistance, a recent study showed that high expression noise  
of a positive-feedback network favoured adaptation under high  
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Figure 1. Summary of cell plasticity models. (A) Four scenarios of cell plasticity represent the current models and challenges.  
(B–E) Potential mechanisms of cell plasticity on different levels. (B) On the chromatin level, epigenetic regulators and DNA elements are 
shown to be involved in tumour cell tolerance to chemotherapy. (C) On the cellular level, intracellular signalling pathways sensing diverse 
environmental cues reprogram the transcriptional landscape, leading to adaptation to drug exposures. (D) On the microenvironmental 
level, inter-cellular communications build up a ‘safe haven’ by direct cell-to-cell interactions and by ‘quorum sensing’ mechanisms.  
(E) Psychological distress remotely controls tumour cell adaptation by secreting systemic neurotrophic factors. Ac, ; BDNF, Brain-derived 
neurotrophic factor; BRAF, Proto-Oncogene B-Raf; CAF, Cancer-associated fibroblast; CBP, CREB Binding Protein; EMT, Epithelial-
to-Mesenchymal transition; FAK, Focal Adhesion Kinase; GR, Growth factor; HDAC, Histone deacetylases; HGF, Hepatocyte Growth  
Factor; IFNγ, Interferon gamma; KDM, Lysine demethylases; Me, Methylation; SETDB, SET Domain Bifurcated Histone Lysine Methyltransferase; 
SMAD, Mothers Against Decapentaplegic Homolog; TEAD, Transcriptional Enhancer Factor TEF; TGF-β, Transforming growth factor  
beta; TRPA1, Transient Receptor Potential Cation Channel Subfamily A Member 1; TSC22D3, Glucocorticoid-Induced Leucine Zipper 
Protein; YAP/TAZ, Yes Associated Protein/ Transcriptional Coactivator With PDZ-Binding Motif; ZEB1, Zinc Finger E-Box Binding  
Homeobox 1.

concentration of drug exposure but that a low-noise, negative- 
feedback network maintained resistance by acquiring mutations18.  
Note that such non-genetic mechanisms can also be represented  
in the non-stochastic, deterministic modelling framework of 
phenotype-structured differential equations by a diffusion  
term coding for non-genetic instability, standing for reversible  
epimutations19 (see also Section 3.5).

1.3. Dedifferentiation and transdifferentiation
Conversion of lineage has been extensively studied in the  
context of development. The well-known, mainly metaphoric,  
Waddington’s landscape has been proposed to illustrate 

the fact that a progenitor cell normally rolls down within  
epigenetic differentiation ‘valleys’ and, owing to phenotypic 
bifurcations, can develop into the various finally differentiated  
tissue types that constitute a coherent multicellular organism  
(see also Section 4). In the context of cancer, dedifferentiation  
and transdifferentiation were observed upon therapeutic  
challenges, which suggests a possible plasticity in ‘cancer’s  
Waddington landscape’, which has metaphorically flattened  
valleys and lowered epigenetic barriers.

In BCC, distinct compartments of the skin epithelium are  
maintained by different pools of residing stem cells, including  
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interfollicular epidermis (IFE), bulge, isthmus and sebaceous  
gland. Upon activation of the Hedgehog oncogenic pathway, 
basal cells in the IFE are reprogrammed to a bulge-like cell state  
and thus initiate BCC20. Upon inhibition of the Hedgehog  
pathway, some BCC cells can transdifferentiate towards a  
mixed isthmus and IFE cell feature11. Similar transdifferen-
tiation was observed in prostate cancer dependent on androgen  
receptor (AR)-mediated signalling. Histological analysis of  
castration-resistant prostate cancer showed a subtype of  
neuroendocrine transdifferentiation in an AR-independent  
manner21–23. Similarly, EGFR-driven NSCLC was observed to 
convert towards a small cell lung cancer (SCLC) phenotype  
upon EGFR inhibition, thus leading to therapy evasion24,25. In 
rare scenarios, EGFR-driven NSCLC can also transdifferentiate 
into neuroendocrine histology, including large cell neuroendo-
crine carcinoma and small or large cell carcinoma26. Interest-
ingly, even with a mixed SCLC and NSCLC phenotype, the  
transdifferentiated SCLC tumour retained their original EGFR 
mutation, indicating that they were not de novo tumours. The 
above observations support the idea that a tiny subpopulation,  
diverging from the predominant cell phenotype prior to targeted 
therapy, may be subjected to a combination of Lamarckian 
plasticity and Darwinian selection upon anti-cancer therapies  
(Figure 1A, ‘Transdifferentiation’).

Independent of transdifferentiation processes, simple blockade 
of differentiation is a characteristic of acute myeloblastic  
leukaemias (AMLs)27. In the case of AML3, blockade occurs 
at the promyelocytic stage, resulting in poorly differentiated  
myeloblasts invading the bone marrow and later the blood 
of patients. Such blockade is due to the chimeric protein  
PML-RARα, which can be inhibited by all-trans retinoic acid 
(ATRA)28. However, this success story in redifferentiation  
therapy is totally dependent on the existence of the fusion gene  
PML-RARα and the inhibition of the resulting chimeric protein 
by an adequate molecule, a situation that unfortunately has not  
been shown to be transposable to other cases of AML.

1.4. Transient spatial organisation
By functioning as an entity, collective migration provides the  
active and passive translocation of mobile and non-mobile 
cells. Such a collective cell migration may reveal worse clinical  
outcomes than single cells (Figure 1A, ‘Spatial organisation’).

A recent study showed that colorectal tumour dissemina-
tion contained large clusters of epithelial cells displaying 
a robust outward apical pole, termed ‘tumour spheres with 
inverted polarity’, which propagate through the collective apical  
budding of colorectal cancer downstream of TGFβ signalling29. 
This is in opposition to the traditional idea that the loss of  
apico-basolateral polarity is associated with the dissemination 
of carcinomas, suggesting that the collective tumour cell plastic-
ity may not require the EMT program. Collective cell plasticity 
was also observed in breast cancer cell dissemination. However,  
collective cell invasion is often limited because breast cancer 
cells can only move through the paths structured by fibroblasts.  
Therefore, tumour cells may hijack the stromal fibroblasts to 
be the leader cells by remodelling the extracellular matrix30.  

Similarly, during early stages of lung adenocarcinoma metastasis,  
these cancer cells experience an epithelial-like collective  
invasion and are surrounded by vimentin-positive cancer- 
associated fibroblasts31,32, which could also be adapted by an  
intermediate partial EMT program2, thus further strengthening the 
idea that cooperation between cancer cells and normal fibroblasts 
can contribute to tumour collective migration and worse clinical  
outcome.

2. What is plasticity in cancer?
2.1. Possible definitions of plasticity
Cell plasticity is the ability of cells to change their pheno-
types without genetic mutations in response to environmental  
cues. Pathological conditions, particularly neoplasms, have been  
associated with increased plasticity. For instance, Barrett’s  
oesophagus, a pre-malignant precursor of oesophageal adeno-
carcinoma, has been proposed to be such a manifestation of  
plasticity since it consists of the conversion of the normal  
squamous lining (multilayer) of the oesophagus into an intes-
tinal-like columnar (monolayer) epithelium. Stem cells have 
also displayed greater plasticity when they are not within their  
residing tissues, leading to the proposition that the origin of  
cancer resides in pluripotent stem cells. However, the exist-
ence of cancer stem cells (CSCs) may not be the only way that  
cancer cells acquire their known plasticity. Indeed, the atavis-
tic theory of cancer (see also Section 4.4) proposes another 
process through which they reach such plasticity. Epige-
netic instability followed by genetic instability33 in the tumour  
microenvironment may explain such plasticity without resorting  
to CSCs.

Open questions that arise are the following: Is plasticity a  
feature of cancer cell populations with binary phenotypic  
switch or with continuous changes (or both)? Is reversibility 
a common feature of cancer cell plasticity? It should be noted 
that from a continuous modelling point of view, the former  
concept allows us to deal with compartmental ordinary differen-
tial equations (ODEs) (Figure 2A), whereas the latter implies  
phenotype-structured partial differential equations (PDEs) yield-
ing completely continuous and reversible spectra of heterogene-
ity within the cell populations, which we will briefly develop 
in this review, about drug delivery optimisation in cancer cell  
populations. From a discrete and stochastic modelling point 
of view, agent-based models (ABMs) (Figure 2B) certainly 
may also be used and indeed they often offer a way to justify 
PDE models by passing to the limit in number (N ->∞) and size  
(ε ->0) of cells. We firstly examine biological observations 
of phenotypic plasticity at different levels of multicellular  
organisms.

2.2. Chromatin level
The reversible feature of the cell plasticity that is triggered upon 
drug exposure, points towards a key role for transcriptional  
regulation at both an epigenetic level and a transcription factor  
level (Figure 1B). One of the most studied epigenetic regula-
tions in cancer cell plasticity might be histone lysine demethy-
lase 5 (KDM5). KDM5A leads to reduced trimethylation of  
histone 3 lysine 4 (H3K4me3) and forms a physical interaction 
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Figure 2. Referenced mathematical models of cell populations take cell plasticity into account by making use of ordinary differential 
equations (A), agent-based models (B) and phenotype-structured partial differential equations (C–F). Here, we present only the 
dynamics, not the initial or the boundary conditions, of the models. These models are chosen to be simple on purpose since they are all 
meant to provide a theoretical framework for therapeutic control and its optimisation. In particular, we do not present large systems of ordinary 
differential equations or large molecular networks, which nonetheless are referenced in the text. DTEP, Drug tolerant expanded persister; DTP, 
Drug tolerant persister; HSC, Hematopoetic stem cell; LSC, Leukemic stem cell; R, Resistant cell; S, Sensitive cell.
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complex with histone deacetylase (HDAC). Sharma et al.7  
found that after treatment with an HDAC inhibitor or direct  
inhibition of KDM5A34, DTPs restored their sensitivity to  
EGFR inhibition. Another KDM5 family protein, KDM5B, 
may bind to the promoters of cyclin-dependent kinase inhibitors  
(that is, p16, p21 and p27 and so on) and inhibit the transcription 
of these factors through demethylating the promoter-associated  
H3K4me3, thus leading to residual melanoma DTPs entering 
into a quiescent state35. In addition, another histone demethylase  
family protein, KDM6A/B, plays a key role in glioblastoma 
stem cell (GSC) plasticity, in which tolerant GSCs up-regulate  
KDM6A/B and redistribute histone H3 lysine 27 trimethylation 
(H3K27me3) on repressive chromatins8.

The epigenetic repression via modification of histone meth-
ylations may have considerable consequences for the activ-
ity of transposable elements. A recent study showed that 
H3K9me3-mediated repression of long interspersed repeat ele-
ment 1 (LINE-1) was involved in the transient survival of NSCLC 
DTPs36. In keeping with this, the authors found an accompanying 
up-regulation of H3K9me3-specific histone methyltransferases 
SETDB1 and SETDB2 in the same population, enlarging the  
possible role of other epigenetic factors.

Given that SETDB1 and SETDB2 are known interferon  
(IFN)-stimulated genes, an enrichment of IFN pathway activa-
tion was observed in NSCLC and melanoma DTPs37,38, estab-
lishing a link between methyltransferase and IFN signalling 
for drug-induced cell plasticity. Nevertheless, this link likely  
extends to adaptive resistance to immune checkpoint blockade. 
Benci et al. recently reported that prolonged IFN signalling in 
melanoma promotes epigenetic remodelling via transcriptional 
regulation of multiple T-cell inhibitory receptors, thus leading  
to resistance to anti-PD1 immunotherapy39. An assay for  
transposase-accessible chromatin using sequencing (ATAC-seq)  
of melanoma cells showed about 50% of open chromatin  
regions with high STAT1 occupancy. This suggests that a  
consequence of this immunotherapy-induced epigenetic remod-
elling was to enrich IFN signalling that was also observed in  
NSCLC DTPs36.

Adaptive mutability has also been reported in cancer DTPs. 
An adaptive shift towards the induction of error-prone DNA  
polymerases, such as Polκ and Rev1, leads to base mispairings, 
incorporation of aberrant DNA primer ends and thus increased 
mutagenesis rate40. Of note, genome-wide 5-methylcytosine  
(5meC) hypomethylation frequently occurs in cancer genomes, 
leading to widespread genomic instability and de-repression 
of repetitive elements such as transposable elements. It is 
thought that hydrolytic deamination of 5meC to thymine  
results in T:G mismatch, which is more difficult to repair33,41. 
Therefore, it is plausible to hypothesise that DNA 5meC  
methyltransferase regulation and suppression of DNA repair 
gene expression cooperate to promote the development of drug 
resistance. However, whether a high 5meC level is associated 
with adaptive mutability observed in cancer DTPs still needs  
further exploration. Inasmuch as the regulations at the chroma-
tin level are of an enzymatic nature with continuous activity  
depending on the environmental substrates, it may leave  

completely open the question (in Section 2.1) of plasticity as a 
switch-like or a continuous change of phenotypes.

2.3. Cell level: intracellular regulatory pathways
Chromatin level changes are generally induced by intracellu-
lar signalling cues (Figure 1C), in which coordinated signalling  
networks define a specific cellular state42. In the context of  
EMT, TGFβ induces the transcription factors Snail, Slug and  
ZEB1, which are each implicated in mediating the effects of  
TGFβ at least in part through the repression of E-cadherin. A  
double-negative feedback loop was observed in the TGFβ- 
mediated signalling response. ZEB1 expression inhibits the  
induction of microRNA miR-200, whereas a high level of 
miR-200 can inhibit the transcriptional activity of ZEB1. The  
TGFβ-ZEB/miR-200 double-negative feedback loop has been  
postulated to explain both the stability and interchangeability of 
epithelial versus mesenchymal phenotypes, in which mathemati-
cal modelling and experimental validation demonstrated that  
hysteresis control of EMT is dependent on the miR-200/ZEB1 
double-negative feedback loop43. Although it may not be  
responding directly to TGFβ, another important factor, Twist, 
links EMT to the ability of breast cancer cells to enter the  
circulation and seed metastases44,45. The mutually repressing 
mechanism was also seen at the network level; for instance, the 
BACH1 network reveals the existence of an inverse relationship  
between BACH1 and Raf kinase inhibitory protein (RKIP)  
involving both monostable and bistable transitions that potentially 
give rise to non-genetic variability46.

The mesenchymal phenotype was also shown to be accompa-
nied by AXL up-regulation both in NSCLC and in melanoma  
DTPs16. Activation of AXL was associated with EMT features 
in erlotinib-resistant tumours and occurred either through its  
overexpression or via up-regulation of autocrine growth arrest-
specific gene 6 (GAS6). AXL was identified as part of a gene 
set regulated by the transcription cofactors YAP1 and TAZ.  
These factors interact with TEAD1–4 transcription factors and 
are recruited to the AXL gene promoter via four TEAD-binding  
elements. Interestingly, a recent study showed that alternative  
activation of the Hippo pathway upon treatment by EGFR  
inhibitors in NSCLC promoted a strong epigenetic alteration 
driven by YAP/TEAD47. Further dissection of the regulation of  
the YAP/TAZ/TEAD-AXL pathway will be needed at the  
single-cell level to examine the interactions with other signalling 
factors.

Apart from the well-defined EMT pathways, other intracel-
lular signalling pathways are involved in drug-induced cell 
plasticity. Moparthi et al. showed that a FOXB2–WNT7B sig-
nalling axis induced prostate cancer transdifferentiation into 
neuroendocrine cell types via increased TCF/LEF-dependent 
transcription without activating the WNT co-receptor LRP6 or 
β-catenin48. Intracellular signals can also be relayed through  
post-transcriptional modifications of mRNAs. A recent study 
showed that mRNA N6-methyladenosine (m6A) modification 
was involved in reversible resistance to BCR/ABL inhibitors in  
leukaemia49. This is consistent with another study in melanoma 
DTPs9. A subpopulation of m6A-associated mRNAs in their 5′ 
untranslated regions is up-regulated at the translational level  
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upon BRAF inhibitor exposure9. The m6A methylation is  
associated with mRNA stability or protein synthesis. Thus, the  
alternative m6A modification in DTPs may lead to a novel  
mRNA translation landscape. In keeping with this, Baskar et al. 
showed that mRNA translation was involved in non-heritable 
resistance to apoptosis induced by tumour necrosis factor alpha  
(TNFα)-related apoptosis-inducing ligand (TRAIL)50.

2.4. Microenvironmental level: tumour–stroma interactions
Solid tumours are comprised of tumour cells and stromal  
cells, including fibroblasts, endothelial cells and infiltrated  
immune cells. Together with embedded extracellular matrix 
and vascularisation, the tumour microenvironment is involved 
not only in tumour growth but also in therapy-induced plasticity  
(Figure 1D).

Cancer-associated fibroblasts (CAFs) are among the most  
well-documented cell populations in promoting therapy resist-
ance. In melanoma, BRAF inhibition induces a paradoxical 
activation of the MAPK/ERK pathway in BRAF wild-type  
melanoma-associated fibroblasts. These cells in turn lead to 
elevated integrin β1-FAK-Src activation in melanoma cells  
undergoing treatment, generating a drug-tolerant microenviron-
ment that provides a ‘safe haven’ for melanoma cells51. Apart  
from direct cell-to-cell contact, CAF-secreted hepatocyte growth 
factor (HGF) binds to c-MET receptor on breast cancer cells,  
leading to alternative activation of the PI3K/AKT signalling  
pathway and attenuation of HER2 inhibitor sensitivity in  
basal-like breast cancer cells52,53. HGF/c-MET signalling is 
likely also involved in adaptive tolerance to cancer immuno-
therapy. Glodde et al. showed that, in the presence of HGF, 
neutrophils were recruited to the T cell–inflamed tumour  
microenvironment in response to cytotoxic immunotherapies and 
subsequently restrained T-cell expansion and cytotoxic T-cell  
effector functions54.

As one of the largest stromal populations, tumour-associated  
macrophages (TAMs), co-evolving with tumour cells, are involved 
in tumour cell progression and impact on therapeutic responses. 
Prolonged interaction with M1-like TAMs can foster a chronic  
inflammation microenvironment, hence promoting cancer 
cell genomic instability55. In this context, cancer cells acquire 
the ability to re-educate TAMs towards an anti-inflammatory  
M2-like state, which releases growth factors, pro-angiogenic  
molecules and immunosuppressive factors56. Cancer cells 
and TAMs co-exist in the context of a complex, bidirectional 
metabolic relationship that not only is dictated by but also  
impinges on the tumour microenvironment57. The release of 
CSF1, interleukin 34 (IL34) and VEGFA from tumour cells 
is particularly sensitive to chemotherapeutic stress, which is  
relevant to the metabolic symbiosis between hypoxic and  
normoxic cancer cells58, and to the ability of lactate-producing  
cancer cells to repolarise TAMs towards an OXPHOS-depend-
ent M2-like state59. In melanoma, polarisation of M2-like TAMs 
is likely mediated by a mechanism involving a G protein– 
coupled receptor (GPCR) that senses microenvironmental 
acidosis60. Importantly, the influence of cancer cells on TAMs is 
not unidirectional. Polarised TAMs secrete multiple cytokines 

with metabolic functions, including IL6, TNF, C-C motif  
chemokine ligand 5 (CCL5) and CCL18. Released IL6  
favours tumour cell glycolysis by increasing the activity of  
3-phosphoinositide-dependent protein kinase 1 (PDPK1)61. It  
was shown that, along with cytokines, TAMs also release 
hypoxia-inducible factor 1 subunit-alpha (HIF1α)-stabilising long  
non-coding RNAs to promote the activity of HIF1α in neoplastic  
cells62. Moreover, TAMs secrete a spectrum of pyrimidine  
species, such as deoxycytidine, into the microenvironment,  
which is taken up by tumour cells. Owing to chemical  
similarity, deoxycytidine taken up by tumour cells competes with  
gemcitabine for deoxycytidine kinase (DCK), thereby reducing  
its therapeutic efficacy63.

2.5. Systemic level: neuronal factors
Among patients with cancer, emotional distress and psychi-
atric syndromes are prevalent during the whole period of the  
treatment, leading to system-level secretion of neuroendocrine 
hormones and neurotransmitters that could modify the tumour 
microenvironment and host macroenvironment64,65 (Figure 1E). 
Stress sensor TRPA1, a neuronal redox-sensing Ca2+-influx  
channel, was shown to mediate Ca2+-dependent anti-apoptotic  
pathways and protect cancer cells against chemotherapy,  
suggesting that cancer cells are capable of tolerating  
chemotherapy-induced oxidative stress by transmitting a pain  
signal66. This system-level control of tumour adaptive response to 
anti-cancer treatment has also been reported in targeted therapies.  
The crosstalk between β2-AR induced by catecholamines 
and mutant EGFR results in the expression of IL6, which 
can further activate STAT3 signalling to render NSCLC cells  
tolerant to EGFR inhibitors67. Other neurotrophic factors have 
also been shown to be involved in the survival and stemness of  
glioblastoma cells. For example, the brain-derived neuro-
trophic factor (BDNF) secreted by differentiated glioma 
cells activates the neurotrophic receptor kinase 2 (NTRK2) 
expressed on GSCs, which promotes the activation of AKT 
pathways in the process of survival of GSCs68. In addition to  
having an impact on drug treatment, psychological distress was 
recently shown to influence anti-tumour immunity. Yang et al. 
found that stress-elevated plasma corticosterone induced the  
expression of glucocorticoid-inducible factor TSC22D3 at the  
system level. TSC22D3 blocks type I IFN response in dendritic 
cells and thus abrogates IFNγ+ T-cell activation in the tumour 
microenvironment69. These results indicate that stress-induced  
glucocorticoid surge can subvert therapy-induced anti-cancer 
immunosurveillance.

3. Cancer cell plasticity in therapeutics
Given the emerging role of cancer cell plasticity in drug  
tolerance and resistance, the development of strategies  
targeting the underlying mechanisms of plasticity may lead to 
durable responses. Different strategies could be proposed by 
direct inhibition of cell plasticity, direct elimination of DTPs 
or reversing the differentiation process. Most of the strategies  
undergoing exploration are studied in in vitro models, which 
will necessitate a complementary in vivo investigation. In  
addition, given the toxic side effects of combination strategies, 
therapeutic timing and dosing issues need to be taken into serious 
consideration.

Page 8 of 16

F1000Research 2020, 9(F1000 Faculty Rev):635 Last updated: 22 JUN 2020



3.1. Direct inhibition of cell plasticity
Combination treatments that prevent phenotypic switching  
could result in a further decrease of the residual tolerant cells, 
thus representing an attractive strategy. At the chromatin level, 
given the de-repression of LINE-1 elements, the combination of  
erlotinib with trichostatin A or entinostat, specific inhibitors of 
HDAC, was shown to prevent phenotypic switching towards 
DTPs in subsequent studies36. In glioblastoma, the combination of  
dasatinib with KDM6 inhibitor (GSK-J4) was shown to impair 
a persister cell population8. Apart from epigenetic modulation,  
CDK7 inhibitor THZ1, which represses RNA polymerase  
II–mediated transcription, was shown to synergise with targeted 
therapies to prevent DTPs70.

At the intracellular pathway level, the combination of siltuxi-
mab (an IL6 monoclonal inhibitory antibody) and ruxolitinib 
(a JAK/STAT inhibitor) was reported to inhibit the emergence 
of a neuroendocrine phenotype in human prostate cancer  
cells71. In BCC, combination treatment of vismodegib and WNT 
inhibition with LGK-974 showed a reduced residual tumour cell 
population12.

In addition to direct inhibition of tumour cell proteins, targeting 
components at the microenvironmental level is likely also an  
alternative strategy to prevent cell plasticity. Given the impor-
tance of HGF in modulating cell plasticity, combination treat-
ment of crizotinib (c-MET inhibitor) and BRAF inhibitors  
suppressed CAF-mediated tolerance in melanoma72. In basal-
like breast tumours, treatment of PDGF-CC inhibitory antibody 
6B3 can suppress the crosstalk between CAF and breast tumour 
cells, thus preventing transdifferentiation induced by tamoxifen  
or letrozole73.

3.2. Direct elimination of drug-tolerant cells
Direct targeting DTPs in combination with chemotherapies can 
achieve the aim of killing sensitive and tolerant cells at the same 
time. Treatment with AXL antibody–drug conjugate has been  
shown to eliminate AXL-expressing melanoma DTPs, leading 
to inhibition of tumour growth in melanoma patient–derived 
xenografts74. Shen et al. also showed that targeting translation 
initiation factor eIF4A with silvestrol could specifically elimi-
nate melanoma DTPs9. Metabolic targeting of the phospholi-
pid glutathione peroxidase 4 (GPX4) with RSL3 was shown 
to induce ferroptosis of DTPs in multiple cancer models75–77.  
Rambow et al. showed that targeting RXRγ with HX531 could 
specifically eliminate NCSC DTPs13. However, this single-cell  
study raises the concern that targeting a specific component may 
not suffice to eliminate all DTPs because it is not possible to  
target multi-stage DTPs simultaneously.

3.3. Reversal to the differentiation process
The most straightforward strategy is the ‘drug holiday’ due to 
the reversibility of the DTPs. Intermittent on-and-off dosing  
schedules have been shown to double the time of response of 
melanoma cells to BRAF inhibition78. However, the length of 
the drug holidays is still difficult to determine from the clinical  
point of view, where patient care would be extremely com-
plicated because of the unexpected explosive proliferation of 
the tumour. In addition, this simple ‘drug holiday’ strategy is  

highly dependent on the underlying mechanism of cell  
plasticity. For example, if the new cell state is maintained via  
hysteresis, drug holidays will not be able to reverse the phenotype 
for a long period of time43.

In neuroendocrine transdifferentiation of prostate cancer,  
inhibition of EZH2 can actively reverse the lineage switch, thus  
restoring the sensitivity to enzalutamide treatment23. Given 
the importance of EMT in cancer cell plasticity, actively  
reverting EMT by blocking TGFβ with forskolin and cholera 
toxin has been shown to promote MET and to sensitise these  
cells to anti-cancer therapies79. In contrast, Ishay-Ronen et al.  
took advantage of EMT plasticity and treated mesenchymal-
like breast cancer cells with rosiglitazone (PPAR inhibitor)  
and bone morphogenic protein 2 (BMP2) to further differenti-
ate the tumour cells into adipocytes, thus impairing the drug  
tolerance80. Although different strategies could be applied to  
control cell plasticity, insufficient evidence of clinical activity and 
difficulties in the determination of maximal tolerated doses and 
treatment schedules are still major challenges in therapeutics.

3.4. Simple ordinary differential equation models of 
epithelial-to-mesenchymal transition including transient, 
hybrid cell subpopulations
EMT is a paradigm of reversible cell plasticity and has been 
the object of many studies, not only from the experimental  
biology viewpoint (as mentioned earlier) but also from a systems 
biology viewpoint. An ODE setting has been proposed in which 
the model relies on gene regulatory networks involving SNAIL,  
ZEB1, miR-200 and miR-34 with multidirectional negative  
feedbacks. These networks can be controlled by external inputs 
on SNAIL expression, such as by TGFβ, nuclear factor kappa B  
(NFκB) and HIF1α. In a series of articles81–86, this fundamental 
circuit was elicited and modelled as a tristable ODE system and 
numerically explored, showing that between the two epithelial 
and mesenchymal stable states, an intermediate hybrid semist-
able state exists. It may be represented by a stable asymptotic  
branch in a bifurcation diagram, in which the bifurcation  
parameter may be chosen as the control input. Furthermore, 
in a 3D diagram (Figure 2 of ref. 86), an EMT axis has been  
proposed to be completed with an orthogonal differentiation  
axis86, coding together for cell population heterogeneity in a  
cancer phenotype landscape whose definition remains to be 
made precise. Along this same line, also showing a tristable 
ODE system and using the same observed biological variables,  
another group of researchers obtained very comparable results87.

3.5. Combined drug delivery strategies relying on 
heterogeneous cell population mathematical models
The first mathematical models proposed to represent drug  
resistance in heterogeneous cancer cell populations were  
compartmental ODE systems in which two distinct homogene-
ous subpopulations, either sensitive or resistant to anti-cancer 
drugs, were described by variables evolving with time under the  
influence of a time-scheduled drug delivery. Since then it has 
become possible to design optimised drug delivery strategies 
by using optimal control88. In the 2017 study (by Carrère88), the  
model parameters were identified from biological experiments 
by co-culturing epothilone-sensitive and -resistant cells of  
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the same lineage (Figure 2A). The optimisation problem to 
be solved is then to deliver the drug according to a periodic 
time schedule that minimises the total cancer cell population  
within a given finite therapeutic time window. However, one 
can argue that such a simplified co-culture system study ignores 
the reversibility of the non-genetic resistance that may be  
observed in clinically relevant situations7,89,90, which raises 
major challenges for mathematical modelling: (1) drug resist-
ance in these observations is reversible, and (2) it is induced 
by epigenetic enzymes, and any enzymatic activity, even with  
switching behaviour, is continuous. These two features cannot 
be obtained by ODE models. On the contrary, continuous  
phenotype-structured PDE models (Figures 2C–F) capable of 
including any phenotype (that is, space, cell size, expression of 
drug resistance mechanisms, and so on), describing any relevant  
biological heterogeneity at stake in the cell population, can be 
applied91–98. Furthermore, drug delivery optimisation algorithms 
relying on optimal control can be designed on the basis of such 
models, leading to clinically transposable qualitative therapeutic 
strategies93,94. Other models that are often used in simulations  
of heterogeneous plastic cell populations are ABMs (also called  
individual-based models19; Figure 2B). Contrary to PDE  
models, that are deterministic, taking biological uncertainty 
into account by second-order terms (a Laplacian) or weighted  
population integrals, being nevertheless totally deterministic 
even in their numeric simulations, ABMs explicitly introduce  
stochasticity in simulations of biological processes by proba-
bilistic laws. Note that it is possible, as mentioned earlier, to  
integrate by averaging and passing to the limit (in particular  
towards infinity in number and towards 0 in size of cells)98 ABMs 
into PDEs, easier to analyse and control. Here, we focused on 
proposed models of plastic cancer cell populations (sampled  
on Figure 2) exposed (or to be exposed) to drugs and on drug  
delivery strategies and not on all possible models of plastic-
ity in cancer cell populations. However, nothing in principle  
opposes the utilisation of therapeutic control strategies to the 
dynamics of stochastic models (ABMs) of different forms of  
cell plasticity or on molecular and cellular networks99  
representing plasticity by molecular variations in very large  
systems of ODEs, stochastic differential equations or Boolean  
relations100–102 in the framework of endogenous network theory 
(ENT)103 and the adaptive genetic landscape104. Stochastic mod-
els could be called here, as they represent a relevant framework 
to capture the whole picture of plasticity in cancer. In particu-
lar, stochastic and ENT models101,103, as ODE models mentioned 
above about tristability in EMT models (that is, existence of an 
intermediate and transient state with intermediate characteris-
tics between E and M states), are amenable to show an important 
feature of plasticity, namely the possible existence of transition 
states of phenotypes (an open question about the nature of plas-
ticity mentioned in Section 2.1). Such transient states, as evi-
denced by EMT models, are of a qualitative nature and exist in a  
continuous range of parameters or system-determining variables, 
such as TGFβ or NFκB, which hopefully enable therapeutic  
control. In addition, so-called hybrid models (that is, both  
stochastic and continuous in their formulation), in which 
ABMs are used to represent the phenotypic behaviour of cell  
populations, with105 or without98 spatial cell growth, along with 
PDEs for the possible spatial diffusion of molecular species105, 

have been proposed. Nevertheless, large systems of equations, 
such as the ones proposed in ENT models101,103, are not easy to  
handle. Indeed, one should bear in mind that the larger the  
system of equations, the harder it is to analyse and theoretically 
control, hence the mostly deterministic and not large network-
like (thus here avowed as limited) point of view adopted in this  
mini-review, given that we aim at proposing simple models  
amenable to mathematical methods of optimal control to be  
used in the future in therapeutics.

4. Emergent and non-standard viewpoints on cancer 
biology and possible therapeutic implications
4.1. Tissue organisational field theory
Two main theories, representing reductionism and organicism, 
aim at understanding carcinogenesis. The reductionist single  
mutation theory (SMT) (the dominant theory) proposes that  
cancer is due to the genetic mutations of a single ‘renegade’ cell 
that begets all subsequent cancer cells. In contrast, the organicist  
tissue organisational field theory (TOFT)106,107 proposes that 
disorganised tissues favour the emergence of neoplastic trans-
formations. SMT and TOFT differ fundamentally from each 
other on the basis of aspects of the default cell state (quiescent 
or proliferative), reversibility (irreversible or reversible) and  
therapeutic strategy (killing cancer cells or exploiting tissue 
reversibility). Although cell plasticity is by no means central 
in SMT or in TOFT, it may be attached to both by a general  
‘principle of variation’108.

4.2. The Waddington epigenetic landscape revisited
Although the epigenetic landscape of Waddington was initially 
conceived as metaphoric ‘stemness potential’ valleys, Huang  
proposed the bifurcations between valleys of differentiation  
corresponding to stable asymptotic branches in bistable systems 
of ODEs109. Huang et al.110 (2007) proposed a detailed exam-
ple of the PU.1/GATA1 system of transcription factors which  
determines hematopoietic cell fates between the erythroid and 
myelomonocytic lineages. As mentioned in Section 1.3, this  
viewpoint allows us to illustrate plasticity in a population of  
cells endowed with the same genome by the instability of  
trajectories, in which appear ponds of non-differentiation,  
named ‘cancer attractors’ in which cells proliferate in a  
poorly differentiated state (this is illustrated on Figures 6 and 
7 of Ref. 109). In this perspective, plasticity may be seen 
as a disorganisation of the epigenetic landscape, in which  
both differentiation and proliferation are uncontrolled. Note  
that ‘epigenetic’ here clearly means related to non-genetic  
modifications of the genome, due to differentiation, but in a 
sense that is completely independent of the molecular level of  
modifications of the chromatin (the ‘independence of senses’  
refers to the opposition between the metaphoric representa-
tion of differentiations in the Waddington epigenetic landscape  
and the molecular determination of differentiations at the 
chromatin level). This point of view on plasticity in cancer is  
described by Pisco et al.89,90 and Huang et al.109,110.

4.3. The atavistic theory of cancer
In 2011, physicists Paul Davies and Charles Lineweaver and  
oncologist Mark Vincent independently advocated the idea 
that ‘cancer is a de-repression of a default survival program  
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common to all cells’111, which was expressed by Davies and 
Lineweaver as the ‘atavistic theory of cancer’112,113. According 
to this theory, cancer is a disease of the evolution of  
multicellular organisms in which a localised collection of 
cells organises itself and proliferates for its own benefit. This  
hypothesis has been assessed from phylostratigraphic analyses 
of the genomes of different species that allowed investigators 
to establish links between the genes that are essential to  
multicellularity and those that are altered in cancer114,115 and  
from more recent studies that elicit disrupted relationships  
between genes of multicellularity and genes that are disrupted 
in cancer116–119. Of course, this emerging field of research pre-
supposes that cancer is an evolutionary disease of multicellular 
organisms; ‘evolutionary’ here means related to the Darwinian  
evolution of living species. In this respect, plasticity is clearly 
related to loss of control of the differentiations that make a  
multicellular organism coherent and functional, and any dis-
ruption in this control may lead to cancer without necessarily  
resorting to so-called CSCs. Along the same lines, it has been 
proposed that cancer cells are potentially resistant to letal drug  
insults by using bet-hedging strategies to diversify epige-
netic programs. This point of view is developed in three review  
articles120–122. It is completely compatible with the representa-
tion of Waddington epigenetic landscape within which plastic-
ity may be seen as a ‘flattening’ of the landscape by insufficient 
immune control on differentiations. More generally, independ-
ently of this metaphoric representation, we advocate that loss  
of control on differentiations, which is most likely related to  
defective control by the immune system (a view compatible  
with the ENT104 framework), is actually the plasticity of cancer.

4.4. Philosophy of cancer: cancer and the definition of an 
organism
The non-standard points of view mentioned above all lead to  
fundamental questions: What is an organism? What does  
cancer have to do with the underlying conception of an organ-
ism? These questions call for the intervention of philosophy of  
biology and in this case for the emergent philosophy of cancer.

To make things clear, cancer being a disease of multicellular  
organisms (a cancerous bacterium simply does not make sense), 
the question of ‘what exactly is an organism?’ indeed arises 
quite naturally and this has been the case since Aristotle123. It has 
been proposed that this notion may be defined in terms of the  
opposition between self and non-self, naturally introducing the 
immune system in this process. However, Thomas Pradeu124,125,  
presenting this question in most of its biological aspects, 
refutes this opposition as a working definition of an organ-
ism, proposing that the outskirts of a territory where there is  
immune response, that is, harsh immune interactions, are the 
limits of an organism. Whereas immune tolerance in the con-
tinuity of mild interactions between its components, on the con-
trary, defines what constitutes the inland territory of an organism. 
This quasi-phenomenological view of a multicellular organism, 
which ignores the genetic/epigenetic design (metaphorically 

illustrated by the Waddington epigenetic landscape relative 
to a single genome), has the merit of proposing an essential 
role for the immune system in answer to the question ‘What 
exactly is an organism?’ It also clearly presents cancer as a 
‘deunification of an individual’125. Nevertheless, we contend  
that this role of the immune system should not be thought of 
as only a functional one that is limited to the defence against  
pathogens. We propose that the epigenetic processes that  
control differentiations and are impaired in cancer – precisely 
whose alteration is cancer plasticity – are defined according 
to an ‘immune code’, which might be related to the major  
histocompatibility complex of vertebrates or to its forerunners in  
evolution. We thus suggest that the major role of the immune 
system, at least as important as to fight against pathogens, is  
to keep the integrity of the organism – hence defining it – by 
controlling differentiations. This establishes a link (common 
to all cancers) between the plasticity of cancer cell populations 
and an impairment of the immune system. It is consistent with  
views expressed by Guler et al. (2017)36, who showed that 
DTPs escaped the IFN pathway, normally induced by repeat  
sequences, and with other views, expressed much earlier126,127, 
about ‘Urmetazoa’ that need a working immune system for their 
stability.

The importance of CSCs128 has been put forth as the main  
determinant of cancer. It is currently the leading view in  
cancer biology, according to SMT (see Section 4.1), that  
cancer may be explained by a single renegade cell, the behav-
iour of which must be understood to unravel the complex-
ity of cancer mechanisms. Unfortunately, the study of  
CSCs is often pursued per se and widely neglects that cancer 
is a disease of multicellular organisms with heterogeneous  
plasticity in cancer cell populations (that is, disrupted control 
of their differentiations).

A general view of ancient and recent conceptions of cancer 
– nevertheless without the immunological vision that we and  
Thomas Pradeu advocate – may be found in Marta Bertola-
so’s book129. She does not choose between SMT and TOFT; 
rather, she proposes that the two theories are not necessarily 
incompatible with each other, a view that is also present in the  
ENT104 framework. In fact, we also propose that the essen-
tial resides elsewhere, possibly through the involvement of the  
immune system, and that an understanding of heterogeneity 
and plasticity in cancer should involve genetics/epigenetics,  
mathematical modelling, evolutionary biology and immunology. 
This is still a long transdisciplinary way to go.

5. Concluding remarks
In this mini-review, we have tried to report striking observa-
tions and recent possible explanations of such facts, including  
less recent observations, that led us to explore the fields of  
cancer cell biology and medicine, systems biology, mathematical 
modelling and analysis, evolutionary biology, immunology, and 
philosophy of biology.
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