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Abstract

Managing trade-offs through gene regulation is believed to confer
resilience to a microbial community in a fluctuating resource envi-
ronment. To investigate this hypothesis, we imposed a fluctuating
environment that required the sulfate-reducer Desulfovibrio vulgaris
to undergo repeated ecologically relevant shifts between retaining
metabolic independence (active capacity for sulfate respiration) and
becoming metabolically specialized to a mutualistic association with
the hydrogen-consuming Methanococcus maripaludis. Strikingly, the
microbial community became progressively less proficient at restor-
ing the environmentally relevant physiological state after each
perturbation and most cultures collapsed within 3–7 shifts. Counter-
intuitively, the collapse phenomenon was prevented by a single
regulatory mutation. We have characterized the mechanism for
collapse by conducting RNA-seq analysis, proteomics, microcalorime-
try, and single-cell transcriptome analysis. We demonstrate that the
collapse was caused by conditional gene regulation, which drove
precipitous decline in intracellular abundance of essential tran-
scripts and proteins, imposing greater energetic burden of regulation
to restore function in a fluctuating environment.
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Introduction

Generalist organisms can adapt to many environments by up- and

downregulating genes to tailor their physiology to each environment

(Futuyma & Moreno, 1988). Not surprisingly, experimental evolu-

tion of a generalist with a single resource improves growth charac-

teristics in that environment but at the cost of diminished capability

to adapt to other resources; that is, they become more specialized

(Cooper & Lenski, 2000; Blount et al, 2008; Lee et al, 2009;

Hillesland et al, 2014). Many of these studies have also made the

observation that improved growth characteristics correlate with

appearance of mutations in regulatory elements (Kurlandzka et al,

1991; Cooper et al, 2003; Barrick et al, 2009; Yang et al, 2011;

Hindré et al, 2012; Hottes et al, 2013). The mechanism by which

mutations in a gene regulatory network (GRN) might positively

impact the fitness of a species in fluctuating environments is,

however, unclear. Modeling and analysis of microbial genomes

suggests fluctuating environments select for greater independence of

regulatory networks for individual functions (Kashtan & Alon, 2005;

Parter et al, 2007). Mutations that disrupt precise regulation of these

modular GRNs could impede efficient acclimation with each envi-

ronmental fluctuation. Thus, generalism may evolve through the

fine-tuning of regulation of modules. On the other hand, specializa-

tion seems to evolve through loss-of-function mutations in the GRN,

which may remove unnecessary functions and optimize others

(Hottes et al, 2013). In this context, resilience can be defined as the

property of a generalist to dynamically adapt to changing environ-

mental conditions by appropriately fine-tuning relevant physiologi-

cal capabilities to optimally use resources in its environment.

In this study, we have applied a systems approach to character-

ize the resilience of a generalist in a fluctuating resource environ-

ment in which it is required to dynamically switch between living

independently or in a mutualistic interaction with a second organ-

ism. This two-organism model community was previously estab-

lished under sulfate-deplete conditions that prevented independent

growth of Desulfovibrio vulgaris (Dv) by sulfate respiration (SR),

and required its syntrophic interaction with Methanococcus mari-

paludis (Mm) to support growth of both organisms (Hillesland &

Stahl, 2010). “Syntrophy” (ST) is an obligate mutualism in which
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the oxidation of the organic substrate (lactate) by Dv is energeti-

cally feasible only if its fermentation products (primarily hydrogen

(H2) and formate) are consumed by Mm. Hillesland and Stahl

(2010) further subjected twelve replicate cultures of this model

community to 1,000 generations of experimental evolution and

observed significantly improved growth characteristics across all

12 lines around 300 generations (Hillesland & Stahl, 2010). Whole-

genome sequencing revealed that many mutations had accumu-

lated in the genomes of both organisms across all 12 replicate

cultures (Table EV1). Analysis of mutations showed that special-

ization for ST across nearly all lines came at the expense (tradeoff)

of erosion of SR (Hillesland et al, 2014). Thus, the work of

(Hillesland & Stahl, 2010; Hillesland et al, 2014) investigated physio-

logical and genomic changes across Dv and Mm when the two

organisms were required to co-evolve in an obligately interdepen-

dent syntrophic association. The major finding from this prior

work was that the obligate association with Mm resulted in

erosion of sulfate respiration functions, thereby compromising the

capability of Dv to live independently if excess sulfate were to

become available in the future.

Here, we have conducted further analysis of the mutational data

from the prior study to discover that in addition to erosion of SR,

mutations had also accumulated at high frequency in components

of the regulatory network—a finding that raised interesting ques-

tions regarding the role of regulation in evolution. We have investi-

gated this question in great depth through inference of the gene

regulatory network to identify regulators of SR, construction of regu-

latory mutants; laboratory evolution of wild-type and regulatory

mutant co-cultures in fluctuating environmental conditions, and

extensive molecular, transcriptomic, proteomic, and single-cell char-

acterization. Through this work, we have uncovered the importance

of regulation and regulatory mutations on resilience of a microbial

community in a fluctuating resource environment.

Results and Discussion

Regulatory functions accumulate mutations during laboratory
evolution of obligate ST

We expanded analysis of sequencing data from the Hillesland et al

(2014) study to examine frequencies, genomic locations, and

functional categories of mutations that had accumulated during

experimental evolution of obligate ST between a Dv and Mm

two-member microbial community. We observed a significant

enrichment of mutations in coding regions of regulatory genes and

also within intergenic regions in Dv (Fig 1A and B), potentially

affecting both trans- and cis-regulation of downstream genes. The

functional categories for all mutated genes were enriched for regula-

tion of transcription (GO:0045449, P-value: 0.00632), transcription

regulator activity (GO:0030528, P-value: 0.05570), and two-compo-

nent sensor activity (GO:0000155, P-value: 0.00608; Table EV2).

Specifically, across the 12 lines, we found 112 mutations within

coding regions of 33 regulatory genes (Biological regulation,

GO:0065007, P-value: 0.01018) and 365 mutations mapping to 108

unique intergenic loci (P-value < 10�4). It is tempting to speculate

from these results that some aspects of gene regulation in Dv must

have been dispensable because of the limited physiological

adjustments required for sustaining obligate ST. For instance, some

of the intergenic mutations were proximal to genes such as

two lactate permeases, and Ech hydrogenase—functions associated

with SR, which was ultimately lost across most lines. Based

on this result, we speculated that disruptive mutations in the GRN

for SR would be detrimental in a variable environment with

fluctuating availability of sulfate, which should favor an intact GRN

that can optimize sulfate utilization by appropriately up- or

downregulating SR.

GRN model identifies regulators that enable adaptation to an
upshift in sulfate availability

Since regulators of SR were unknown, we used a systems biology

approach to discover them by deciphering the GRN of Dv. Using a

large compendium of Dv transcriptional response to diverse envi-

ronmental factors (684 microarrays interrogating transcriptional

responses to 25 unique perturbations) along with genomic sequence

data (Dehal et al, 2009), we reconstructed the first global and

predictive model of the GRN governing environmental responses of

Dv (Table 1, Materials and Methods, Table EV3 and Table EV11;

Reiss et al, 2006; Bonneau et al, 2007). The Environment and Gene

Regulatory Influence Network (EGRIN) model organized 2,984 of

3491 (~85%) genes in the Dv genome into 170 regulatory modules

and modeled their regulation by 122 transcription factors and 12

environmental factors. The EGRIN model made accurate predictions

of transcriptional responses to new environments. The root-mean-

square deviation (RMSD) of predicted transcriptional changes for all

modules was similar over the training data set (RMSD = 0.42) and a

new dataset that was not used in model construction (RMSD = 0.41;

Bonneau et al, 2006). We further verified the EGRIN model by

demonstrating that 38 gene modules within EGRIN had accurately

recapitulated 31 out of 77 evolutionarily conserved Dv regulons

curated in RegPrecise v4 (Novichkov et al, 2013) covering 17 tran-

scription factor families and 1 RNA regulator (BH-corrected

P-value < 0.005, Table EV4). In addition to reconstructing regulon

memberships, EGRIN predicted the cognate transcription factor for

each regulon and its binding location within individual gene

promoters (Table EV3, Model EV1, the EGRIN model for Dv can be

explored at http://networks.systemsbiology.net/syntrophy).

Transcription factors in the EGRIN model were rank ordered by

the predicted weight of their influence on regulatory modules that

were enriched for SR genes. Altogether three transcription factors

were predicted to regulate key SR genes across four modules,

including two sigma-54 family transcription factors: DVU0744 (a

repressor of 128 target genes across nine modules, of which two

contained SR genes) and DVU2275 (an activator of 119 target genes

across eight modules, of which three contained SR genes), and a

GntR family transcription factor: DVU2802 (a repressor of 240 target

genes across 16 modules, of which three contained SR genes; Fig 2A

and Table EV3). We characterized the predicted roles of these three

transcription factors by assaying SR-relevant fitness effects of trans-

poson-insertions in each of the three genes. Surprisingly, none of

the three transcription factor mutants had a phenotype (measured

as growth rate) under SR conditions with excess sulfate in the

growth medium. By contrast, fitness of all three Dv mutants was

significantly reduced when they were transitioned from a sulfate-

depleted condition to a growth medium with excess sulfate,
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supporting the hypothesis that regulation of SR is important only in

response to a change in sulfate availability (Fig 2B and C; Alon,

2007).

Dv regulatory mutants establish stable co-cultures with Mm
during repetitive shifts between SR and ST, by contrast wild-type
lines reproducibly collapse

We examined growth characteristics of the wild-type strain and the

three mutants when growing with Mm in dynamically changing

resource environments that support SR or ST at different times. Six

replicate co-cultures with Mm were established for each of the four

strains in a sulfate-depleted growth medium. The co-cultures were

then subjected to transitions between a medium containing lactate

and sulfate or just lactate, requiring Dv to repeatedly switch

between SR and Mm-dependent ST, respectively—physiological

adjustments that are ecologically relevant. Based on results in

Fig 2B and C, we expected that the regulatory mutants would be

ineffective at driving environment-responsive transitions between

ST and SR physiological states. Contrary to our expectation, the

wild-type co-cultures rapidly and reproducibly collapsed within

seven transfers, across all replicate lines. Strikingly, two of the three

mutants sustained facultative ST over a longer time frame, with

DVU0744::Tn5 never collapsing over 24 transitions (Fig 3). In

contrast, only two of 24 replicate co-cultures collapsed over a simi-

lar time scale in the obligate ST evolution experiment (Hillesland &

Stahl, 2010).

Collapse of wild-type co-culture lines results from unsustainable
conditional regulation in a fluctuating environment

We explored two potential mechanisms that might have led to popu-

lation collapse of the wild-type co-cultures, but sustained the

DVU0744::Tn5 synthetic community.

Fast-growing wild-type Dv outgrew Mm

The rapid adaptation of the wild-type strain to each shift (Fig 3)

might have progressively resulted in serial dilution of Mm cells to a

point that ST was unsustainable. The slower growth of DVU0744::

Tn5 post-transition to SR conditions might have maintained higher

numbers of Mm cells and, therefore, circumvented collapse.

However, collapse across most lines occurred under SR conditions

that should have favored the wild type. Notwithstanding this obser-

vation, we counted the number of Dv and Mm cells through the

course of the experiment using two independent techniques: micro-

scopy and flow cytometry. There was no significant difference in

Table 1. Summary of EGRIN model.

cMonkey model Inferelator model

Genes 2,984 of 3,491 total
genes in the genome

Transcription factors 128

Conditions 684 Environmental factors 16

Regulatory
modules

170a/349

Motifs 148b/662

Networkc

Nodes 306d Upregulation 573

Edges 919 Downregulation 346

Environment and Gene Regulatory Influence Network (EGRIN) model was
constructed as described in Materials and Methods. This model includes both
cMonkey and Inferelator algorithm input data and results together with
different filtering parameters as defined below.
a Number of modules filtered for residual ≤ 0.5.
bNumber of motifs filtered for e-value < 10.
cNetwork is filtered to only include influences with influence weight < �0.1
or > +0.1 and module residual < 0.5.
dNodes include regulators and their targets regulatory modules.
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Figure 1. Mutations accumulate in the gene regulatory network during laboratory evolution of syntrophy.

A Functional enrichment of mutations accumulated during experimental evolution of Dv-Mm syntrophic community. Fold-enrichment for enriched ontology terms
(P-values < 0.05) is shown in functionally related clusters.

B Number, type, and SnpEff-predicted effects of mutations (Cingolani et al, 2012) accumulated over 1,000 generations during evolution of obligate ST between Dv and
Mm. Enrichment of intergenic mutations was determined by a permutation test.
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relative ratios of Dv:Mm cells throughout the experiment, across

both the wild-type and DVU0744::Tn5 lines. Thus, we could rule

out that population collapse in the co-culture with wild-type Dv

might have resulted from dilution of Mm cells (Figs 4 and EV1).

Conditional regulation in a continually fluctuating environment

is unsustainable

Gene regulation minimizes the cost of cellular operations by turning

up or down physiological processes in an as-needed manner

depending on resource availability (Nagarajan et al, 2013). While

this justifies adaptive value of gene regulation in a variable resource

environment, regulatory systems can become burdensome and even

a bane in an environment that seldom changes or one that changes

too frequently (Alon, 2007). We analyzed global transcriptome

changes in wild-type Dv and DVU0744::Tn5 during ST and SR

growth modes, and following transitions between the two

(Fig EV2). Over 1,300 genes were differentially regulated in the wild

type demonstrating extensive gene regulation during various phases

of the experiment, especially upon transitioning between SR and ST

conditions (Fig 5A, upper panel). This result is comparable to the

reported differential expression of 1,202 genes upon switching from

ST to sulfidogenic lifestyles of Dv co-cultured with Methanosarcina

barkeri (Plugge et al, 2010). A significant fraction of the differen-

tially regulated genes were determined to be essential (essentiality is

determined based on Rapid Transposon Liquid Enrichment Sequenc-

ing and an associated model for essentiality (Fels et al, 2013) for

growth by SR (Fig 5A, lower panel; 264/1,300; P-value: 8.1 × 10�8,

Table EV5; Fels et al, 2013).

Regulation of more than 80% of the genes (1,148 genes) that

changed in the wild type was disrupted or altered in DVU0744::Tn5,

demonstrating an important role for DVU0744 in globally coordinat-

ing transcription during transitions between SR and ST (Table EV5).

The system-wide consequences of knocking out DVU0744 could be

attributed to its predicted regulation of five signal transduction

genes and seven transcriptional regulators; expression of four of

these regulatory genes was perturbed in DVU0744::Tn5. Affected
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Figure 2. Sulfate respiration regulators identified using systems approach are necessary for transitioning to conditions with increased sulfate availability.

A Three transcriptional regulators were predicted by the EGRIN model to influence the expression of SR genes. Influence of each regulator on its predicted targets is
shown with color-coded lines, with total number of gene targets above each regulator.

B Maximum growth rates for all Dv strains in excess sulfate condition.
C Maximum growth rates for wild type and the three regulatory mutants of Dv subsequent to transfer from a sulfate-depleted condition to a growth medium with

excess sulfate. Significant growth rate differences relative to wild type are indicated with an asterisk.

Data information: (B and C) The lower and upper ends of the boxes (“hinges”) correspond to the first and third quartiles (the 25th and 75th percentiles). Horizontal lines
correspond to median values. Error bars extend from the upper or lower hinges to the highest or lowest values that are within 1.5× IQR (interquartile range) of the
hinge, respectively. Measurements are from three replicates.
Source data are available online for this figure.
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genes in DVU0744::Tn5 were enriched for functions in two-

component signal transduction (52; P-value:1.1 × 10�6), regulation

of transcription (64; P-value: 1.8 × 10�5), and bacterial chemotaxis

(11; P-value: 1.9 × 10�5; Table EV6) –functions that have been

demonstrated to be important for ST in other species (Kosaka et al,

2008; Kato et al, 2009; Shimoyama et al, 2009). Twenty-seven

affected genes were predicted targets of DVU0744 in the EGRIN

model, 141 were deemed essential for SR (Fels et al, 2013), 70 accu-

mulated mutations (including missense, nonsense, and frameshift

mutations) during experimental evolution of obligate ST (Hillesland

et al, 2014), and 93 have been previously shown to be important for

ST (Walker et al, 2009).

Model predicts that conditional repression drives dilution of
essential proteins within individual cells

To understand the consequence(s) of disrupted regulation of SR

and elucidate the mechanism for population collapse, we adapted

the model for the lac system developed by Cai et al (2006). We

selected this model because like the lactose-dependent repressor

LacI, DVU0744 is a transcriptional repressor that is sensitive to

sulfate concentration, which is evidenced by the growth impair-

ment during transitions from sulfate-deplete to sulfate-replete

conditions (Fig 2C). We used the model to investigate how

disrupted regulation would affect the cellular protein copy number

distribution in a rapidly fluctuating environment. More specifically,

we were interested in understanding how loss of condition-specific

repression of essential genes during ST growth affected their

protein copy number.

Analogous to the lac system, the model is developed on the

assumption that presence or absence of sulfate can lead to an all-or-

none type induction of SR-essential genes. Applying this model to

the experimental evolution regime predicted that conditionally

repressed genes are dramatically diluted due to iterative transition-

ing between SR and ST conditions. Specifically, with DVU0744

present in the wild-type strain, all-or-none type induction is proba-

ble for many essential genes and thus most cells will transition to a

state that is appropriate for the environmental condition—a prop-

erty termed “relational resilience” (Song et al, 2015). Conversely,

with repetitive shifting of the environmental condition, most wild-

type cells lose conditionally essential proteins due to complete

repression of genes relevant for the opposite growth condition. With

the absence of DVU0744 in the mutant strain, complete repression

is not achieved, and leaky expression of normally repressed genes

confers a hybrid state that is tolerant of repetitive transition between

SR and ST, albeit with a fitness cost associated with a single transi-

tion (Fig 2C). We found with this model that the population of

wild-type cells rapidly loses essential proteins that are repressed in

ST, but not fully restored during SR (Fig 5B). The mutant strain also

experiences a decline in the fraction of cells with nonzero copies of

the protein, but it is not as dramatic. Thus, loss of repression in the
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mutant strain maintains a higher proportion of cells (relative to the

wild type) with at least one copy of the regulated protein. This

supports the notion that conditionally repressed, essential proteins

are progressively lost causing population collapse of the wild-type

co-culture. We can now posit that this phenomenon is generalizable

to other systems including the lac system and adaptive evolution of

E. coli to fluctuations in lactose concentration, a set up on which

the Cai et al model was based.

Predicted dilution due to conditional regulation is confirmed at
the level of transcripts, proteins, and metabolic activity

We looked for evidence of the model-predicted dilution effect at the

level of transcripts, proteins, and metabolites.

Evidence for dilution at the transcript level

We used RNA-sequencing to globally track changes in transcript

abundances in wild type and DVU0744::Tn5 during repeated tran-

sitions of their respective co-cultures between ST and SR condi-

tions, up until (wild type) and beyond (DVU0744::Tn5) the point

of collapse. First, we performed principal component analysis

(PCA) of the top 500 most variant genes across the entire experi-

ment, in order to assess overall similarity and differences between

samples. The PCA showed that transcriptomes of the wild type

and mutant could be distinctly attributed to the genotype (PC1)

and ST/SR physiological states (PC2; Fig 5C). Interestingly, the

regulatory mutant reproducibly restored its original ST or SR state

subsequent to each transition, whereas the wild type was unable

to do so, with each transition pushing it farther from the original

ST and SR states. The transcriptome of the wild type appeared

dramatically different than the appropriate state for the growth

condition just prior to the population collapse, suggesting that

inability to adopt the appropriate (SR or ST) attractor state (i.e.

loss of relational resilience (Song et al, 2015) is an early warning

sign for population collapse. Furthermore, consistent with the

model prediction, we observed progressive dilution of transcripts

in wild type relative to the mutant. Approximately, 146 transcripts,

including eight essential genes, suffered steady decline in abun-

dance over progressive transitions in wild type but not in the regu-

latory mutant (Fig 5D and Appendix Fig S1). A significant number

(118 genes) of affected genes were plasmid-encoded—while this

observation warrants further investigation that is outside the scope

of this study, it is noteworthy that many of these plasmid-encoded

genes are essential. Taken together all affected transcripts were

enriched for bacterial type III secretion and flagella-related path-

ways and also included many energy production pathway-related

genes, including hydrogenase.

Evidence for dilution at the protein level

We performed quantitative, shotgun proteomics to track abundance

changes in 728 proteins during transitions of Mm co-cultures with

wild type and DVU0744::Tn5 between SR and ST (Table EV10,

Materials and Methods). Using linear regression, we discovered that

at least 52 proteins were progressively diluted in the wild-type back-

ground, but not in the regulatory mutant (Fig 5E and Appendix Fig

S2). The likelihood of this trend was determined to be statistically

very significant (P-value: 0.0025). Functional roles for these proteins

included signaling, transport, and amino acid metabolism, and eight

had been previously determined to be essential for survival in SR

conditions. Notably, there were only three proteins with a reverse

trend; that is, they were diluted in the mutant but not in the wild

type—demonstrating unequivocally that regulation by DVU0744 in

response to frequent transitions between SR and ST leads to

progressive dilution of both transcripts and proteins.

Evidence for dilution at the metabolite level

Finally, we monitored metabolic activity of Dv across transfers

between ST and SR in a new set of laboratory evolution experi-

ments. Through successive transfers, rapid decline in lactate

consumption and H2 evolution (proxies for metabolic activity of Dv)

supported the model-predicted dilution of proteins performing

essential biochemical functions. Consistent with the model predic-

tion, DVU0744::Tn5 achieved steady-state levels of H2 evolution

(Fig 6A) and consumption of lactate (Fig EV3).

Disrupted regulation lowers energetic burden for adaptation to a
fluctuating environment

The drift in the transcriptional state of the wild type from the origi-

nal state for SR and ST suggested that it would have to expend

greater energy than the regulatory mutant to restore its physiologi-

cal state for the new growth condition. The energetic cost of regula-

tion in the wild-type and regulatory mutant co-cultures was

determined using microcalorimetry to measure heat production

◀ Figure 5. Disruption of conditional regulation in mutant prevents dilution of transcripts and proteins in fluctuating environments.

A Global transcriptomes were profiled and compared between early and mid-log phase within each condition, denoted ST1 (first iteration of ST), SR, and ST2 (second
iteration of ST); and after transition between ST and SR. Upward barplot shows all differentially expressed genes, and the downward barplot shows only essential
genes.

B We simulated the protein copy number distribution in each phase of growth (ST and SR), assuming that a hypothetical gene was repressed in ST, but essential for SR.
The fraction of cells with nonzero copies of an essential protein for sulfate respiration is plotted over several transfers (upper panel). Lower panel shows histogram of
protein copy numbers per cell for selected early (ST1 and SR1) and later (ST4 and SR4) transitions.

C PCA plot created by DESeq2 R package for visualizing clustering of experimental covariates based on the normalized read counts.
D Change in abundance of selected Dv transcripts during experimental evolution of wild-type and mutant co-cultures. Normalized RNA-seq read counts for each gene

across two replicates for wild type (green) and mutant (red) are plotted on a log10 scale. Essential gene names are indicated in red. See Appendix Fig S1 for the
complete list of transcripts.

E Log2-fold change of protein abundance in ST1, SR1, ST3, and SR3 conditions, in the wild-type and mutant co-cultures (* indicates P-value < 0.05, or ** indicates
P-value < 0.01). Essential gene names are indicated in red. See Table EV10 for the complete list of proteins. The lower and upper ends of the boxes (“hinges”)
correspond to the first and third quartiles (the 25th and 75th percentiles). Horizontal lines correspond to median values. Error bars extend from the upper or lower
hinges to the highest or lowest values that are within 1.5× IQR (interquartile range) of the hinge, respectively.

Source data are available online for this figure.
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following transitions into SR in the beginning and at a later stage of

the laboratory evolution experiment (von Stockar & Liu, 1999;

Chardin et al, 2003; von Stockar et al, 2006). We used total amount

of heat released as a proxy for total energy expenditure of cells in

each culture, and attributed the difference in heat produced by wild

type versus mutant to lack of regulation in the latter. Our rationale

was that both strains would have comparable energy terms for

growth, maintenance, etc., and that the only difference would be in
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Figure 6. Evidence supporting the mechanism for microbial population collapse in a fluctuating environment.

A Boxplots for H2 levels in replicate wild-type (lower panel) and mutant (upper panel) co-cultures.
B Microcalorimetry measurement of heat released (nj) per cell upon transition of wild-type and mutant co-cultures into SR conditions. Inset plots report total heat

released by wild-type (green) and mutant (red) co-cultures in SR1, SR3, and SR5 conditions, in two replicate experiments. Gray bar plots represent difference between
average heat production per cell of wild-type and mutant strains, across the three successive SR conditions.

C Growth rates for > 24 replicate co-cultures of Mm with either wild-type Dv (lower panel) or DVU0744::Tn5 (upper panel).
D Significantly fewer essential genes are expressed across most single cells of the wild-type population that is unable to grow in the subsequent transition. Here, the

number of essential genes expressed above background genomic DNA are plotted for each analyzed single cell and cells are ordered by rank abundance for WT SR1-
initial transfer versus SR3 transfer prior to collapse (left); and mutant SR1- initial transfer versus SR3 where growth continues in contrast to the WT population (right).
Insets are boxplots of the same data with P-values calculated from the equivalent of Mann–Whitney test (n = 80 single cells).

E Number of essential genes per cell in wild type is compared to mutant during SR1 (left) and SR3 (right). See Materials and Methods. Insets are boxplots of the same
data with P-values calculated from the equivalent of Mann–Whitney test (n = 80 single cells).

Data information: (A, D and E) The lower and upper ends of the boxes (“hinges”) correspond to the first and third quartiles (the 25th and 75th percentiles). Horizontal lines
correspond to median values. Error bars extend from the upper or lower hinges to the highest or lowest values that are within 1.5× IQR (interquartile range) of the
hinge, respectively. (D and E) The notches extend to �1.58 IQR/sqrt.
Source data are available online for this figure.
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the energy term for regulation since their genotypes differ by a

single regulator (DVU0744). Hence, we reasoned that the difference

in amount of heat released by the two strains can be attributed to

the energy expended toward direct and indirect regulation of genes

by DVU0744. We found significantly higher amount of heat per cell

released by the wild type across both the early and late transition,

relative to the regulatory mutant. This result was consistent with

the prediction that conditional regulation in a rapidly fluctuating

environment may present an energetic burden for maintaining rela-

tional resilience (Fig 6B; Table EV7).

Replicates of wild-type co-cultures diverge and collapse at
different times as a result of model-predicted dilution effect

The complete conditional repression of SR-essential genes in most

cells, during ST conditions, would be expected to cause large “parti-

tioning errors” at cell division in the wild type (Huh & Paulsson,

2011). The bottlenecking step when a small aliquot was transferred

to a new growth condition could amplify this effect further and intro-

duce greater variation across replicates of the wild-type co-culture.

Indeed, variability in lactate consumption profiles of wild-type repli-

cate co-cultures increased near the point of collapse (Fig EV3). The

actual collapse potentially occurs when a critical fraction of the cells

(it need not be all cells) in the transferred aliquot does not express

at least one copy of one or more proteins essential for growth in a

specific condition. If so, then the point of collapse would be

predicted to emerge at variable times depending on the history of

each replicate (Chen et al, 2014). Consistent with this predicted

heterogeneity across replicates, collapse in wild-type lines occurred

at variable times, mostly between the 3rd and 7th and a few at later

transitions between SR and ST (Fig 6C). Notably, collapse events in

four lines occurred under ST conditions (albeit significantly fewer

than the number (16) that collapsed in SR conditions), demonstrat-

ing that this phenomenon is not restricted to just SR-associated

functions and also affects ST-relevant proteins. Since DVU0744

targets seven transcription factors, indirect effects on global gene

expression are expected and supported by the dysregulation of at

least 93 ST-relevant genes in DVU0744::Tn5 (Fig 5A).

Significantly fewer wild-type cells express essential transcripts
prior to collapse

To obtain evidence for the mechanism for collapse, we quantified

transcript abundance of 88 essential genes in samples of 80 single

cells from wild-type and mutant cultures harvested from an early

stage of experimental evolution (SR1) and a later stage (SR3) just

prior to collapse of the wild-type line (Fig 6D and E; Tables EV8 and

EV9). The fraction of single cells expressing essential transcripts

dropped significantly in wild-type SR3 (before collapse), while the

mutant cell population remained unchanged. It was also notable

that, relative to the mutant, a larger fraction of wild-type single cells

expressed a greater number of essential transcripts during SR1, and

this profile was reversed in SR3—which explains the reversal of fit-

ness (f) relationship between wild type and mutant in single

(fWT > fmutant; Fig 2C) and multiple (fmutant > fWT; Fig 3) transi-

tions (Fig 6E). These results provide definitive evidence for the

mechanism of collapse and why it was rescued by a regulatory

mutation. Expansion of the single-cell data and in-depth analysis

that is beyond the scope of this work is included as part of another

manuscript (A.W. Thompson, S. Turkarslan, C.E. Arens, A. López

Garcı́a de Lomana, A.V. Raman, D.A. Stahl & N.S. Baliga, unpub-

lished data).

Discussion

During long-term experimental evolution and even in anaerobic

digesters, a microbial culture or community experiences frequent,

iterative changes and bottlenecks due to growth and successive

transfers to new media (Demirel & Yenigün, 2002; Chen et al,

2008). We have shown that the conditional gene regulation

required for adapting to such fluctuating environments can lead to

population collapse. Although the modeling and experimentation

demonstrates that the collapse was rescued by disruption of condi-

tional regulation of essential transcripts and proteins in DVU0744::

Tn5, it does not rule out that it could have resulted from rescue of

a similar dilution effect on other essential cellular components,

such as ATP. In either case, the underlying mechanism for popula-

tion collapse traces back to Tn5-insertion mediated disruption of

DVU0744, a transcription regulator. The highly interconnected

architecture of a GRN allows for a large number of disruptive

mutations in regulators and noncoding regions to abolish condi-

tional regulation and delay or even prevent this catastrophic

phenomenon. Furthermore, validation of model predictions at an

emergent phenotypic level (i.e. metabolic activity of Dv) accounts

for the net consequence of dilution of one or as many as all essen-

tial components. While a previous study has shown how a single

regulatory mutation can restore social independence (Fiegna et al,

2006), we have demonstrated how disrupted regulation stabilizes

frequent transitions of a generalist between metabolic indepen-

dence and mutualism, fostering its longer-term adaptive evolution

in a fluctuating resource environment. In this study, availability of

sulfate played a critical role in driving the wild-type co-culture to

collapse as it determined the physiological mode of growth by

driving large scale changes in gene expression. When sulfate is

available, Dv preferentially grows via sulfate respiration by

producing energy using sulfate as the final electron acceptor.

However, in the absence of sulfate, the ability of Dv to ferment

lactate is thermodynamically feasible only if the resulting hydrogen

is consumed by its syntrophy partner, the methanogen. Our results

demonstrate that when sulfate availability fluctuates too frequently

in an environment where there is excess lactate and methanogen,

the resulting gene regulation to shift repeatedly between SR and

ST physiologies counterintuitively drives the community toward

collapse.

Implications of this work extend to natural environments where

organisms often experience fluctuating conditions and display rela-

tional resilience to establish stable interactions with the environ-

ment. The sensitivity of the regulatory network has presumably

evolved to effectively maintain relational resilience of the commu-

nity within a certain regularity and frequency of environmental

change. Our results demonstrate that if conditional regulation in

fluctuating resource environment interferes with intrinsic dynamics

of restoring function in a microbial community (which is often

driven by regulation), it may create conditions that lead to popula-

tion collapse. Further, we provide evidence that the population
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collapse occurs due to loss of relational resilience, that is, progres-

sive drift from the environmentally relevant physiological state

(Fuhrman et al, 2015). There are two interrelated reasons why this

happens—first, conditional regulation drives dilution of key cellular

components making the population ill-prepared to adapt to the next

environmental change, and second, the energetic cost of restoring

function becomes progressively more burdensome to a point that is

unsustainable. This study also underscores how a systems biology

approach for network identification and analysis can enable discov-

ery of mechanisms that modulate the resilience of biological

systems. Knowledge of such mechanistic underpinnings of microbial

community resilience will be critical to understand ecosystem

dynamics and engineer stable biotechnological processes (Song

et al, 2015).

Materials and Methods

Strains and culture conditions

Desulfovibrio vulgaris Hildenborough wild type and mutants were

obtained from Dr. Judy Wall (University of Missouri, Columbia,

MO). All regulator mutants were obtained by transposon mutagene-

sis as described elsewhere (Fels et al, 2013). Methanococcus mari-

paludis S2 wild-type strain for co-culture experiments were obtained

from Dr. John Leigh (University of Washington, Seattle, WA;

Table EV12). Both mono- and co-culture strains were grown at

37°C. Co-cultures were established with wild-type Mm and either

wild-type or regulatory mutants of Dv as described by Stolyar et al

(2007). Media used in these studies were formulated based on

CCMA medium as described previously (Walker et al, 2009). Lactate

medium for ST growth contains 40 mM of lactate and no sulfate.

Lactate–sulfate medium for SR growth contains 40 mM of lactate

and 15 mM of sulfate. The latter formulation provided conditions

such that Dv was entering into stationary phase when electron

acceptor was depleted but electron and carbon source was still

available (i.e. the fermentation state). Mono- and co-cultures were

either grown in Balch tubes in 10-ml culture volume or in 200-ml

serum bottles with 50-ml culture volume (for transcriptomic analy-

sis). The headspace for tubes or cultures was filled with 80% N2

and 20% CO2 gas to create an anoxic environment. All media pHs

were adjusted to 7.2 with bicarbonate.

Variant discovery

Biomass sample collection for sequencing, DNA extraction, sequenc-

ing library preparation, and sequencing was performed as described

before (Hillesland et al, 2014). To determine the mutations within

each line, the resulting raw Illumina sequences were first quality

controlled by using FastQC software (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/). Sequences were then aligned to

the reference D. vulgaris (NC_002937, NC_005863) and M. mari-

paludis (NC_005791) published genomes using breseq pipeline

(Deatherage & Barrick, 2014). In addition, Genome Analysis Toolkit

(GATK) pipeline (DePristo et al, 2011) for variation discovery was

used as an additional validation. Briefly, first reads were aligned to

reference genome by using bwa (Li & Durbin, 2009; -M -t 4 –R).

Resulting alignment SAM files were converted to BAM files and

sorted. BAM files were marked for duplicates by using Picard Tools

(http://picard.sourceforge.net/), and local realignment around

indels was performed in order to identify most consistent placement

of reads relative to the indels. Variant calling was performed by

using either GATK UnifiedGenotyper or Varscan (Koboldt et al,

2012). Default parameters were used for UnifiedGenotyper while for

Varscan parameters were –min-coverage 20 –min-var-freq 0.2.

Resulting variants were annotated by using SnpEff tools (Cingolani

et al, 2012).

Growth assays

Growth of mono- and co-cultures was followed in replicate Balch

tubes with 10 ml of culture volume under anaerobic conditions.

Culture density was measured by tracking changes in optical density

with a Thermo Scientific Spectronic 200 spectrophotometer at

600 nm wavelength. Maximum growth rate was determined as

previously described (Turkarslan et al, 2011). Monocultures of Dv

wild-type and regulatory mutants were cultivated in sulfate respira-

tion growth medium until late stationary phase when sulfate was

exhausted (lactate fermentation) for SR state transition experiments.

This ensured depletion of electron acceptor but not carbon source

due to medium formulation with limiting sulfate concentrations. At

this stage, 0.5 ml of inoculum was transferred to 10 ml of fresh SR

medium and growth was tracked. For state transition experiments

with co-cultures alternating between ST and SR conditions, co-

cultures were initially grown in ST growth medium until mid-log

phase (OD600 ~0.15) and 0.5 ml of inoculum was transferred into

10 ml of fresh SR growth medium. Cells were grown to early log

density (OD600 ~0.2), and 0.5 ml was transferred back into fresh ST

growth condition medium. Alternating shifts between ST and SR

conditions were continued as long as growth was observed.

Dv custom tiling array construction

Whole-genome tiling arrays for D. vulgaris Hildenborough were

designed with e-Array (Agilent Technologies), with strand-specific

60-mer probes and 149-bp spacing between adjacent probes for

the main chromosome (NC_002937) and the Mega plasmid

(NC_005863). Altogether the array contained a total of 60 K probes,

including the manufacturer’s controls. The microarrays were

printed by Agilent Technologies. Labeling with Cyanine 3 (Cy3)

and Cyanine 5 (Cy5) dyes (Molecular Probes and Kreatech BV),

hybridization, and washing were performed as described earlier

(Baliga et al, 2004). Arrays were scanned in ScanArray (Perkin-

Elmer), and spot finding was done by Feature Extraction (Agilent

Technologies). Normalization and statistical analysis were

performed as described (Koide et al, 2009).

The microarray data reported in this paper have been deposited

in the National Center for Biotechnology Information Gene Expres-

sion Omnibus (GEO) database (GEO accession no. GSE73105).

Global gene expression profiling

Replicate co-cultures of wild-type and DVU0744::Tn5 mutant strains

were grown anaerobically in 200-ml bottles with 50 ml culture

media. The anoxic environment was created by filling the head-

space with 80% N2 and 20% CO2 gas mixtures. Cells were grown in
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ST medium to early log phase (OD600 ~0.15), and 5 ml of culture

was withdrawn into anaerobic Balch tubes. Another 0.5 ml of

culture was transferred into SR medium, and another sample was

harvested at mid-log phase (OD600 ~0.3). The sampling schedule

was repeated during SR growth and, subsequently, after transition

back into ST.

Biomass was harvested anaerobically by centrifugation at

1,455 g for 10 min; the cell pellet was immediately flash-frozen in

liquid nitrogen and stored at �80°C. Total RNA was extracted with

MasterPure Complete DNA and RNA Purification kit (Epicentre

Technologies, Madison, WI), and DNA was removed using Ambion

DNA-free kit (Life Technologies, Grand island, NY). Quality and

purity of RNA samples was determined with Bioanalyzer, gel elec-

trophoresis, and PCR. Sample preparation and hybridization was

performed as described previously (Baliga et al, 2004).

Transcript abundance determination with RNA-sequencing

Transitions, sample collection, RNA extraction, and DNA-cleanup

were performed as described above. Illumina RiboZero rRNA

removal kit (Illumina, San Diego, CA) was used for rRNA depletion.

Samples were prepared with TrueSeq Stranded mRNA HT library

preparation kit (Illumina, San Diego, CA) and sequenced on the

NextSeq Sequencing machine in mid-output 150 v2 flow cell.

Paired-end 75-bp reads were checked for technical artifacts using

FastQC (Andrews, 2010) following Illumina default quality filtering

steps. Reads were further trimmed for quality scores and cleaned

up for adapter contamination with Trimmomatic (Bolger et al,

2014). Alignment of reads to reference was performed using STAR

(Dobin et al, 2013) with modification of recommended parameters

where appropriate. Read counts were collected by using HTSeq

(Anders et al, 2015) followed by normalization and analysis with

DESeq2 R package (Love et al, 2014). The analysis workflow,

implemented as custom python and R scripts, is available at GitHub

repository (https://github.com/sturkarslan/MSB-16-7058). All fastq

files used in this study are deposited into SRA (accession number:

GSE79022).

Protein abundance determination with MS analysis

Cells were resuspended in 50 mM Tris, pH 8.0, 250 mM NaCl and

subject to three rounds of freeze–thaw lysis. Extracted protein

concentrations were measured using the BCA assay (Thermo

Fisher Scientific). Equal protein amounts were denatured with 6 M

urea, reduced with 5 mM dithiothreitol, alkylated with 25 mM

iodoacetamide, and digested with Lys-C (1:200 w:w, 3 h, 37°C;

Thermo Fisher Scientific). Urea was diluted to 1.5 M, and samples

were further digested with trypsin overnight (1:25 w:w, 37°C;

Thermo Fisher Scientific). Peptides were acidified with formic acid

to stop digestion and purified using C18 reversed-phase chro-

matography (Nest Group). Purified peptides were separated by

online nanoscale HPLC (EASY-nLC II; Proxeon) with a C18

reversed-phase column packed 25 cm (Magic C18 AQ 5 lm 100 A)

over an increasing 120 min gradient of 5–35% Buffer B (100%

acetonitrile, 0.1% formic acid) at a flow rate of 300 nl/min. Eluted

peptides were analyzed with an Orbitrap Elite mass spectrometer

(Thermo Fisher Scientific) operated in data dependent mode, with

the Top20 most intense peptides per MS1 survey scan selected for

MS2 fragmentation by rapid collision-induced dissociation (rCID;

Michalski et al, 2012). MS1 survey scans were performed in the

Orbitrap at a resolution of 240,000 at m/z 400 with charge state

rejection enabled, while rCID MS2 was performed in the dual-

linear ion trap with a minimum signal of 1,000. Dynamic exclusion

was set to 15 s.

Raw output data files were analyzed using Maxquant (v1.5.5.1;

Cox & Mann, 2008). Protein sequences of Desulfovibrio vulgaris

(strain Hildenborough) and Methanococcus maripaludis (strain S2)

were downloaded from UniProt (07-2016 release) and merged to

create a single database. A reverse sequence database was used to

impose a strict 1% FDR cutoff. Label-free quantification was

performed using the MaxLFQ algorithm (Cox et al, 2014). Data

processing was performed in Microsoft Excel and Perseus (v1.5.3.1;

Tyanova et al, 2016). Contaminants, decoys, and single peptide

identifications were removed. We required intensity values in two

out of three replicates for at least one strain in the ST1+ST3 shifts,

and the SR1SR3 shifts. Zero values in the remaining data were

subsequently replaced by imputation.

We assessed the general trend for all 728 proteins by performing

linear regression on protein quantification values along transition

conditions. Linear regression was computed on MaxLFQ-normalized,

transformed log2 intensity values. We searched for proteins that

were consistently and specifically downregulated in WT. We exam-

ined the following four constraints: (i) significant differences

between ST1 and SR3 conditions (Student’s t-test or Mann–Whitney

U-test depending on normality of observed values; normality

assessed by Shapiro–Wilk normality test), (ii) slope > twofold

change decrease for WT profile, (iii) slope < twofold change

decrease for DVU0744::Tn5 profile, and (iv) larger median for

DVU0744::Tn5 than WT at SR3 conditions. We found 52 proteins

that accommodated all four constraints. We performed a permuta-

tion test to confirm significance of this observation, that is, specific

downregulation of proteins in DVU0744::Tn5 (P-value = 0.0025,

Appendix Fig S2). Finally, we found 23 cases of proteins upregulated

in WT but not in DVU0744::Tn5, a pattern far from expected by

chance (permutation test, P-value < 1e-4) and only three cases of

proteins downregulated specifically in DVU0744::Tn5 but not WT

(permutation test, P-value < 1e-4). Code implementation is available

at Github repository: https://github.com/sturkarslan/MSB-16-7058.

EGRIN model

The EGRIN model was constructed from a compendium of transcrip-

tome profiles for 3491 genes from 684 microarray experiments span-

ning 25 unique perturbations [MicrobesOnline (Dehal et al, 2009)].

Genomic data including annotations, sequences, and operon predic-

tions were also downloaded from MicrobesOnline. The cMonkey

algorithm was used to bicluster genes into conditionally co-regu-

lated modules as described previously (Reiss et al, 2006; Bonneau

et al, 2007). cMonkey identified 349 regulatory modules and 662

cis-regulatory motifs. 170 of 349 modules further passed our resid-

ual quality filter of 0.5 and 94 of 662 motifs passed e-value cut-off

filter of 10. We applied the Inferelator (Bonneau et al, 2006) algo-

rithm to infer 919 regulatory influences from 122 transcription

factors and 12 environmental factors on 165 modules. Influence

weight threshold of < �0.1 or > +0.1 was used to filter high confi-

dence influences.
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Predictive power of the EGRIN model was tested using an expres-

sion data set that was not used in model construction (Bonneau

et al, 2006), and by comparison with manually curated regulon

members in the RegPrecise (Novichkov et al, 2013). Significance of

overlap between composition of EGRIN modules and RegPrecise

regulons was calculated using a hypergeometric test followed by

multiple hypothesis correction. The EGRIN model for Dv can be

explored at http://networks.systemsbiology.net/syntrophy. R data

file for EGRIN model and cytoscape session file are also available in

Github repository: https://github.com/sturkarslan/MSB-16-7058.

Gene/function enrichment analysis

Functional enrichment of GO terms within EGRIN modules was

done with the TopGO R package (Alexa & Rahnenführer, 2009),

using the hypergeometric test and multiple hypothesis testing

(Benjamini & Hochberg, 1995). For each functional annotation, we

surveyed functional assignments for the gene members of the regu-

latory modules. We identified enrichment of a specific functional

class by calculating a hypergeometric P-value for each module and

functional category pairs.

Genes that accumulated mutations during evolution experiments

with co-cultures were investigated for functional enrichment by

using DAVID Functional Annotation Tool (Huang et al, 2009). List

of genes with mutations were analyzed against DAVID provided

Desulfovibrio vulgaris Hildenborough background to highlight the

most relevant functional annotation terms associated with these

genes. This tool uses Fisher’s exact test to determine gene enrich-

ment in annotation terms and reports modified Fisher’s exact

P-values as described (Huang et al, 2009). Only terms with P-values

smaller than 0.05 were included in the final analysis. Similar anno-

tations were further clustered together by using Functional Annota-

tion Clustering Tool from DAVID where appropriate. Degree of

similarity between terms is measured by using the same techniques

of Kappa Statistics, and clustering is performed by using fuzzy

heuristic clustering as described (Huang et al, 2009). Cluster Enrich-

ment Score is the geometric mean of member’s P-values in a given

Enrichment Cluster. Higher values are better. Only clusters with

score bigger than 1.0 were included in the analysis.

Relative changes in gene expression were normalized to refer-

ence RNA from a mid-log phase co-culture of wild-type Dv with

Mm. Differentially expressed genes were determined using Statisti-

cal Analysis of Microarrays (SAM) method with median false

discovery set to zero genes. Differentially expressed genes for

state transitions were identified by comparing early log phase

expression ratios of first syntrophic state (ST1) to sulfate respira-

tion state (SR) and sulfate respiration to second syntrophic state

(ST2). For a given ST or SR growth condition, early log phase

expression ratios were compared to mid-log phase expression

ratios in order to determine differential expression changes during

batch growth.

Analytical methods

Hydrogen and methane were quantified with gas chromatography,

organic acids, and alcohols by HPLC, and sulfate by ion chromato-

graphy, all as described previously (Stolyar et al, 2007; Walker

et al, 2009).

Cell counts

Determination of cell numbers for Dv and Mm was performed by

flow cytometer and manual counts. Samples were collected at early

log phase (OD600 0.15–0.20) before the transfer into the next growth

conditions. Cultures were diluted proportionally by OD (1:1.5 for

OD600 0.15, 1:2 for OD600 0.20) in lactate media and fixed in 0.37%

formaldehyde for 5 min before flash-freezing in liquid nitrogen.

Samples were thawed prior to time of counting, and relative ratios

of Dv and Mm were obtained in disposable hemocytometers (InCyto

C-Chip DHC-N01) under a Leica DM2000 microscope with a 40×

objective. Total cell number was obtained by averaging the sum of

both counts of Dv and Mm from five 0.004-mm3 squares, in which

100–200 particles maximum were deposited.

For flow cytometric cell counts, fixed frozen cultures were

thawed and diluted 1:20 in filtered lactate media. Flow cytometric

cell counts were obtained with a BD Influx cell sorter (Becton Dick-

inson, Franklin Lakes, NJ) equipped with a small particle detector

and 488-nm laser (Coherent, Santa Clara, CA). Sheath fluid was

prepared from concentrated BioSure 8× Sheath fluid (BioSure, Grass

Valley, CA) diluted to 1× concentration with DI water and filtered

through a 0.2-lm pore size Sterivex filter (Millipore, Billerica, MA).

Data collection was triggered on forward scatter (FSC). Dv and Mm

cell populations were distinguished based on perpendicular and

parallel FSC and side scatter (SSC) relative to standard 1-lm-

diameter beads (Polysciences Inc., Warrington, PA) and referenced

to pure monocultures. Volumes sampled were determined by weigh-

ing sample tubes before and after sampling on an analytical balance.

Cell concentrations were calculated by dividing the number of

events counted for each cell population by the volume sampled and

providing the data as cell number per ml.

Microcalorimetry

The microcalorimetric measurements were performed on a TAM

III Nanocalorimeter (TA instruments, New Castle, USA), which

measures the heat flow between a reaction cell and reference cell

(Johansson & Wadsö, 1999; Wadso & Goldberg, 2001). Prior to

each experiment, the heat flow response by the calorimeter was

calibrated by electrical heating at 37°C with 4 ml Hastelloy reac-

tion and reference cells containing 3 ml of the sterile lactate–

sulfate medium described above. This electrical heating procedure

was verified by measuring the heat of protonation of trishydrox-

ymethylaminomethane (TRIS/THAM) at 25°C (Grenthe et al,

1970). After calibration, experimental cultures (wild-type and

mutant DVU0744::Tn5) were inoculated as described above in

Balch tubes containing lactate–sulfate medium. After a quick

mixing, 3 ml of this culture was immediately dispensed into an

autoclaved reaction cell in an anaerobic glovebox. The reaction

cell was then transferred into the calibrated microcalorimeter.

After the heat flow reached baseline, the reaction cell was

removed and sampled for cell counts as described below. Heats of

culture growth were derived by integration of the heat flow curves

(Table EV7).

The calculated total heat was normalized to the total cell number

in the vial. For normalizing the total heat released during batch

growth in the microcalorimeter, the cell density was determined at

the end of the experiment. 10 ll of 10% glutaraldehyde (Toumisis,
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Rockville USA, stored at 4°C protected from light) was put into a

sterile 1.2-ml cryovial (ThermoFisher Scientific, Waltham, USA).

The reaction vials were manually shaken before taking 1 ml of

culture and adding to the prepared cryovial. The cells were subse-

quently fixed for 10 min at room temperature in the dark. After

shock-freezing, the samples were stored at �80°C until quan-

tification by flow cytometry as described above.

Single-cell transcript measurements

Single-cell transcriptional changes for 94 Dv genes (Table EV8) were

tracked across SR/ST transitions using protocols developed for the

Fluidigm 96.96 Dynamic Array (Fluidigm Inc., South San Francisco,

CA). Assays were chosen to include 88 SR-essential genes, 2 of

which are highly expressed control genes. Transitions and sample

collection were performed as described above. Assays were exam-

ined for the production of nonspecific products or cross-reactivity

with other assays using melting curve analysis, resulting in the 94

high-quality assays used in the experiment. For each sample, we

measured transcription of these 88 Dv genes in single cells with

reverse transcription (RT single cells, n = 80), single cells without

RT (noRT single cells, n = 6), positive internal controls of 10.6 pg

extracted Dv RNA with (n = 4) and without (n = 2) RT treatment,

and no template controls (n = 4). For cell sorting, Dv cells were

distinguished from coexisting Mmp on the basis of side and

forward scatter properties using a BD Biosciences Influx high-

speed sorter with small particle detector as previously published

(Thompson et al, 2015). Cells were sorted directly into a lysis/RT

buffer solution consisting of 1× VILO Reaction Mix (Life Technolo-

gies), 6U SUPERase-In (Life Technologies), 0.5% NP-40 (Thermo

Scientific), and nuclease-free water (TEKnova) in a 96-well plate

format centrifuged, vortexed for 15 s, then frozen on dry ice, and

stored at �80°C. Following cell lysis and RNA denaturation (90 s

at 65°C), RT was carried out with 1× SuperScript Enzyme Mix

(Life Technologies) and T4 Gene 32 Protein (New England

BioLabs, Beverly, MA) by the following program: 25°C for 5 min,

50°C for 30 min, 55°C for 25 min, 60°C for 5 min, and 70°C for

10 min in a standard 96-well thermal cycler. Resulting cDNA was

then amplified in a multiplexed specific target amplification (STA)

reaction with all 94 Dv gene primer pairs (Table EV9) using

TaqMan� PreAmp Master Mix (Applied Biosystems) and EDTA pH

8.0 by the following program; 95°C for 10 min, 25 cycles of 96°C

for 5 s and 60°C for 4 min. STA-cDNA was then cleaned up by an

Exonuclease I treatment (New England Biolabs, Beverly, MA). The

resulting cDNA product was diluted fivefold in DNA Suspension

Buffer (TEKnova), loaded into the Fluidigm 96.96 Dynamic Array

following Fluidigm protocols (https://www.fluidigm.com/docume

nts), and assayed against the 94 Dv assays by quantitative PCR

using Sso Fast EvaGreen Supermix (Bio-Rad Laboratories) with

ROX passive reference dye by the following program: 95°C for

60 s, 40 cycles of 96°C for 5 s and 60°C for 20 s, and melting

curve from 60 to 95°C. Results were then analyzed with Fludigm

BioMark real-time qPCR Analysis software (Table EV9). Quality

filtering and statistical tests to determine successful assays were

performed as described in “Single cell transcription analysis”

section (A.W. Thompson, S. Turkarslan, C.E. Arens, A. López

Garcı́a de Lomana, A.V. Raman, D.A. Stahl and N.S. Baliga,

unpublished data).

Single-cell transcription analysis

BioMark Real-Time PCR Analysis software (Fludigm Inc. South San

Francisco, CA) was used to view and analyze amplification and

melting curves for each single cell and control for each of the 94

assays. Cycle of quantification (Cq) thresholds were set using the

AutoGlobal method, and the baseline correction method used was

Linear Derivative. Assays from cells or controls with atypical ampli-

fication curves were omitted from the analysis.

Additional quality control and analysis of single-cell data was

performed in R. Assays from cells or controls with melting curve

peaks (Tm) that were significantly different in a Student’s t-test than

the Tm of the same assay applied to the positive internal controls

were also omitted from analysis. No RT positive controls and no

template controls were used to confirm that reactions were not

contaminated, not producing nonspecific amplification products,

and not cross-reacting with other assays. Relative quantity of mole-

cules (RQ) was calculated from each Cq value for more intuitive

analysis (Ståhlberg et al, 2013). RQ = 2(Cqcutoff – Cq), with Cqcutoff

set to the median of noRT single-cell controls (n = 6) across all

assays so that the Cq of a single cell with RT equal to the Cq of a

noRT single cell would yield an RQ of 1, or 1 molecule present in

the reaction, which is what we expect for each single copy gene

assayed in Dv and amplified from the noRT single-cell controls,

where genomic DNA will be present. Assays from single cells that

did not amplify (Cq = NA) were set at RQ = 0.5, thus below the

detection limit which is RQ = 1. Finally, RQ values for each assay

and each RT single cell were compared to the distribution of RQs

obtained from the noRT single cells using a Student’s t-test. Assays

from single cells with positive RQ values and P-value < 0.01 were

concluded to express the target gene above the level of background

genomic DNA. These data are represented in Fig 6D and E. RQ and

Cq values for each RT single cell and noRT single cell are presented

in Table EV9.

Phenomenological models of relative transcript and protein
concentration changes per cell

It has been suggested that in a given cell population, the distribution

of protein abundance in single cells will follow the generalized

gamma distribution, with the shape parameter corresponding to

burst frequency, and the scale parameter corresponding to the

amount of proteins produced per burst (Friedman et al, 2006).

The probability distribution function for protein copy number

per cell is:

pðxÞ ¼ xa�1 � e�x=b
� �

= ba � CðaÞð Þ

where x is the protein copy number in a cell, a is the transcriptional

burst frequency per cell division, b is the amount of proteins

produced per burst, which is related to translational efficiency, and

Γ is the gamma function. This statistical model has been experimen-

tally verified using the LacI repressor system (Cai et al, 2006). We

simulated the protein copy number distribution in each phase of

growth (ST and SR) for a gene that was conditionally repressed in

ST, but essential for SR. This model was implemented by varying

the starting parameters for burst frequency and size across ST and

SR growth, as well as between the wild-type and mutant strains. To
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account for the iterative transitions between SR and ST, the burst

frequency was progressively modified by scaling it to the fraction of

cells containing nonzero protein. We made this assumption on the

basis that at least one copy of an essential protein would be neces-

sary in order to initiate the transition to a new state. This is an anal-

ogy to the lac system, in which some lactose permease (the LacY

gene product) is required in order to sense the presence of lactose,

and begin the process of de-repression of the operon (Choi et al,

2008).

A relevant feature of this model is that it predicts that transcrip-

tional repression of a gene by an environmental stimulus can shift a

cell population from one in which most cells contain at least one

copy of the regulated protein to one in which most cells contain no

copies. Therefore, for our purposes, if the mutant strain has relaxed

transcriptional repression of sulfate-essential genes due to deletion

of DVU0744, then we may be observing an increase in cells that

contain at least one copy of the regulated protein(s).

We simulated the protein copy number distribution in each

phase of growth (ST and SR), assuming that a hypothetical gene

was repressed in ST, but essential for SR. Counterintuitively, we

also observed repression of some essential genes during SR, but not

during ST. In either case, cycling of the regulation would lead to

dilution of the protein abundance in a cell population during growth

under repressing conditions and increase in protein when the

repression was relieved in the other growth condition.

This model was implemented by varying the starting parameters

for burst frequency and size across ST and SR growth, as well as

between the wild-type and mutant strains. To account for the itera-

tive transitions between the two growth conditions, the burst

frequency was progressively modified by scaling it to the fraction of

cells containing nonzero protein. We made this assumption on the

basis that at least one copy of an essential protein would be necessary

in order to initiate the transition to a new state. This is an analogy to

the lac system, in which some lactose permease (the LacY gene

product) is required in order to sense the presence of lactose, and

begin the process of de-repression of the operon (Choi et al, 2008).

We observed large fluctuations in population-level repression

depending on the gene, ranging from <20% to >60% repression in

wild-type cells as compared to ST conditions. At the single-cell level,

this can be equated to a reduction in transcriptional bursting

frequency by a proportional amount. Loss of repression in the

mutant was variable depending on the gene, but often times were

nearly complete. In other words, we observed very little conditional

repression in the mutant DVU0744::Tn5 strain for many sulfate-

essential genes. Taken together, we simulated a range of increases

in transcriptional bursting when repression was relieved. As starting

conditions, we assumed the burst frequency under repression to be

in the range of 0.2, based on the empirical fitting of Cai et al (2006).

Under de-repression, the bursting frequency would increase to 2

bursts per cell cycle to simulate a 10-fold increase. In the mutant

strain, the starting frequency during repression was set at 0.5 and

the de-repressed frequency at 1.5, which simulates only a threefold

difference to account for the observed loss of repression. We have

simulated bursting frequencies in the range of 0.2 to 2, based on the

assumption that most transcripts, including those for high abun-

dance proteins, are often transcribed on the order of once per cell

cycle, due to a limiting number of RNA polymerase enzymes (Bon

et al, 2006).

We found with this set of parameters that the population of wild-

type cells rapidly loses sulfate-essential proteins during repression

in ST that is not fully restored during SR (Fig EV4A). The mutant

strain, on the other hand, also experiences a decline in the fraction

of cells with nonzero copies of the protein, but it is not as dramatic.

To explore the range of this model, we varied the starting burst

frequency, the amount of dysregulation, and the proteins per burst.

When the starting burst frequency in the wild-type strain is

increased to 0.4, indicating a fivefold repression instead of 10, the

trajectories are similar but still show separation between genotypes

(Fig EV4B). When the mutant burst frequency is adjusted to model

less separation between ST and SR, the separation is even more

dramatic, with the mutant strain showing a high proportion of cells

with robust protein expression (Fig EV4C). With complete absence

of conditional regulation, the trajectory follows a simple exponential

decay with a stable baseline (Fig EV4D). Conversely, when the

amount of protein produced per burst is increased, the effect is miti-

gated, and the wild-type strain can partially or completely rescue

the dilution due to conditional repression (Fig EV4E and F). See fig-

ure legend for exact parameter values.

In sum, this model supports our hypothesis that differential

conditional regulation may lead to a dominating effect of protein

dilution in the wild-type cells that is not completely compensated

for by de-repression when synthesis is permissive. This appears to

be particularly true for low-abundance proteins with low output of

proteins produced per burst and can be exaggerated given a more

extreme loss of repression.

Data availability

The microarray data reported in this paper have been deposited in

the NCBI GEO database (accession: GSE73105). RNA-sequencing

data have been deposited in the NCBI GEO database (accession:

GSE79022). Genome sequence data have been deposited into NCBI

SRA (BioProject: PRJNA248017). Mass spectrometry data have been

deposited in ProteomeXchange via MassIVE under the identifier

PXD005456. Computational codes and EGRIN model are available at

github (https://github.com/sturkarslan/MSB-16-7058) and Zenodo

with identifier DOI: 10.5281/zenodo.197353.

Expanded View for this article is available online.
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