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Abstract

Background: HTLV-| infected CD4* T-cells lines usually progress towards a CD3- or CD3low
phenotype. In this paper, we studied expression, kinetics, chromatin remodeling of the CD3 gene
at different time-points post HTLV-I infection.

Results: The onset of this phenomenon coincided with a decrease of CD3y followed by the
subsequent progressive reduction in CD3§, then CD3e and CD3{ mRNA. Transient transfection
experiments showed that the CD3y promoter was still active in CD3- HTLV-l infected cells
demonstrating that adequate amounts of the required transcription factors were available. We
next looked at whether epigenetic mechanisms could be responsible for this progressive decrease
in CD3 expression using DNase | hypersensitivity (DHS) experiments examining the CD3y and
CD35 promoters and the CD35 enhancer. In uninfected and cells immediately post-infection all
three DHS sites were open, then the CD3y promoter became non accessible, and this was followed
by a sequential closure of all the DHS sites corresponding to all three transcriptional control
regions. Furthermore, a continuous decrease of in vivo bound transcription initiation factors to the
CD3y promoter was observed after silencing of the viral genome. Coincidently, cells with a lower
expression of CD3 grew more rapidly.

Conclusion: We conclude that HTLV-I infection initiates a process leading to a complete loss of
CD3 membrane expression by an epigenetic mechanism which continues along time, despite an
early silencing of the viral genome. Whether CD3 progressive loss is an epiphenomenon or a causal
event in the process of eventual malignant transformation remains to be investigated.
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Background

HTLV-I infection can lead to the development of adult T-
cell leukemia/lymphoma (ATLL) in 2-5% of infected
individuals depending upon geographic location and
exposure to etiologic factors. It is currently thought that
tumors develop from a persistently infected T-cell reser-
voir, which can be amplified by cytokine-induced activa-
tion leading to viral gene expression, cellular proliferation
and survival of some expanded cells. Viral gene expression
has been implicated in the disruption of various normal
cellular processes, including activation, growth, and
apoptosis, the latter allowing accumulation of abnormal-
ities leading to cellular transformation. Several viral pro-
teins have been shown to play an important role in tumor
progression by modulating transcription factors. The plei-
otropic viral protein Tax mediates the NF-kB activation
resulting in abnormal cytokine and cytokine receptor
expression|[1]. Sumoylation and ubiquitination of Tax are
critical for Tax mediated transcriptional activity[2,3]. The
viral protein p12! stimulates calcium release from the
endoplasmic reticulum, which induces NFAT transcrip-
tion factors leading to T-cell activation[4,5]. The viral pro-
tein HBZ represses c-Jun mediated transcription by
inhibiting its DNA binding activity[6].

A keystone of the antigen-specific immune response is the
T-cell receptor (TCR)/CD3 complex. Infected CD4+ lines
and T-cells from patients with ATLL are characterized by a
CD3- or CD3lovw phenotype [7-9]. In a previous work[10]
we have shown that HTLV-I infected cells acquired a pro-
found decrease of intracellular calcium levels in response
to ionomycin, timely correlated with decreased CD7 and
CD3 expression. This perturbation induced Akt and Bad
phosphorylation via activation of PI3K. The activation of
the Akt/Bad pathway generates a progressive resistance to
apoptosis, at a time HTLV-I genes expression is silenced.
Since dysregulation of calcium flux after T-cell activation
has been suggested as a possible consequence of absence
of CD3 expression[11]. We decided to investigate the
mechanisms responsible for the loss of CD3 expression,
its kinetics and its timely relationship with viral gene
expression.

Experimental infection of CD4+ T cells with HTLV-1 was
known to progressively downregulate CD3 genes tran-
scripts, eventually leading to a CD3- surface phenotype
after 200 days of in vitro infection [12,13]; however, the
sequence of CD3 genes loss of expression had not been
investigated. Previous data from our laboratory showed
that CD3 membrane expression was downmodulated
after experimental infection of CD4+ T cells with HIV-1
[14-17], HIV-2[18], as well as in patients with CD3- CD4+
T-cell lymphoma mediated hypereosinophilic syndrome
[19], all linked to a specific defect in CD3y gene tran-
scripts. All T-lymphotropic viruses induce CD3 downreg-
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ulation in the absence of a generalized suppression of host
protein synthesis.

The HTLV LTR responds to T cell-activation signals[20],
which suggests an important relationship between the
regulation of viral gene transcription and the TCR/CD3-
controlled antigen activation pathway. This study demon-
strates that HTLV-I associated loss of CD3 expression is
also linked to an initial loss of CD3y gene transcripts, ulti-
mately leading to a CD3- phenotype. However, we show
that the initial CD3y transcripts decrease is followed by a
subsequent progressive and sequential reduction in
CD33, CD3e and CD3( genes transcription, going on after
early viral genes silencing. Our experiments also demon-
strate that these phenomena occur through chromatin
remodeling and progressive closure of the CD3 genes pro-
moter sites and are not the results of transcription factors
depletion. Finally, this loss of CD3 expression is timely
associated with a growth advantage, but further experi-
ments will be needed to determine whether there is a
causal relationship between these two observations.

Methods

Cell culture conditions and reagents

The WE17/10 cell line is a human IL-2 dependent CD4+T
cell line[14] that was established and is maintained in
RPMI 1640 containing 20% fetal bovine serum, 1.25 mM
L-glutamine, 0.55 mM L-arginine, 0.24 mM L-asparagine,
and 100 units of recombinant human IL-2 per ml. The
MT-2 cell line was derived by co-culturing normal umbil-
ical cord leukocytes with donor leukemic T-cells from an
HTLV-I infected patient [21]. WE17/10 cells were co-cul-
tured with irradiated MT-2 cells at a ratio of 1:1 to gener-
ate HTLV-I infected WE17/10 cell lines. The human B
lymphocyte line, GM-607, was obtained from the Human
Genetic Cell Repository run by Coriell Institute, Camden
NJ). The HTLV-1-transformed T-cell lines (C91-PL, MT-2),
were obtained from MT-2, C91-PL and GM-607 cell lines
were maintained in RPMI 1640 supplemented with 10%
fetal bovine serum and ATL-derived culture (PaBe).

Southern blot

We used a standard southern blot protocol. The genomic
DNA was digested with EcoRI (no cut into the HTLV-I pro-
virus) or Sacl (cut once into the HTLV-I LTR) and electro-
phoresed in an agarose gel then transferred to nylon
membrane (Amersham International, Buckinghamshire,
UK). The filters were hybridized with radiolabeled probe :
a Kpnl fragment|22], corresponding to a 2.9 kb fragment
beginning in the pro gene and ending in the env gene, at
65°C for 12 hours, washed in buffers, and then exposed
to X-ray film at -80°C.
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Flow Cytometry

Cells were analyzed for CD3 surface expression by flow
cytometry as previously described|[17]. Briefly, cells were
labeled with the murine monoclonal antibody Leu4a (BD
Biosciences, Erembodegen, Belgium) in a two-step proc-
ess using 1 pg/ml of the primary antibody to ensure satu-
ration binding followed by the manufacturer's
recommended dilution of fluorescein-conjugated goat
anti-mouse immunoglobulin (BD Biosciences). The
labeled cells were fixed in 2% paraformaldehyde, and flu-
orescence was analyzed on a FACS Caliber (BD Bio-
sciences).

Transient transfection

WE17/10 cells (uninfected and HTLV-I infected) were
transiently transfected using standard DEAE-dextran pro-
tocols with wild-type (pHy3-wt) promoter construct as
previously described[17,23].

Identification of Dnase | hypersensitive sites

Isolation and DNase I digestion of nuclei was performed
using a method previously described [24]. Briefly, the cells
were washed in PBS and resuspended in cell lysis buffer
(60 mM KCl, 15 mM NaCl, 5 mM MgCl,, 10 mM Tris pH
7.4, 300 mM sucrose, 0.1 mM EGTA, and 0.1% NP-40) to
isolate the nuclei. The nuclei were then resuspended in 1
ml of nuclear digestion buffer (60 mM KCI, 15 mM NacCl,
5 mM MgCl,, 10 mM Tris pH 7.4, 300 mM sucrose, and
0.1 mM EGTA). Nuclei from 20 x 10° cells were digested
for 3 minutes at 22 ° C using increments of DNase I (Roche
Diagnostics) from 0 to 28 U/ml. The reaction was stopped
by adding nuclear lysis buffer (300 mM sodium acetate, 5
mM EDTA pH 7.4, 0.5% SDS) containing 0.1 mg/ml pro-
teinase K and incubating for 5 min at 55 ° C then overnight
at 37°C. Genomic DNA was subsequently isolated using
standard phenol chloroform extraction techniques.

Genomic DNA was digested with Bgll for the CD35 pro-
moter, BamHI for the CD38 enhancer and Sacl for the
CD3y promoter prior to standard Southern blot analysis.
Promoter probes were amplified by PCR using the follow-
ing primer pairs:

CD3y  promoter:  forward, 5'-CACCTGCTGAAACT-
GAGCTG-3', reverse, 5'-TCCCAGACAGTGGAGGAGTT-3};

CD3dpromoter: ~ forward, 5'-GTTCCTCTGACAGCCT-
GAGC-3' and reverse 5'-TTTTAGGCCTGATGGCCTCT-3'.

The probe used to detect the CD3 enhancer was a BamHI
digest of the human CD38 c¢cDNA (NCBI accession #
BC070321).
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RT-PCR

Total RNA was isolated from cells using the TriPure Isola-
tion Reagent (Roche Applied Science) in a single-step
extraction method. Standard reverse transcription was
performed using 1 pg of total RNA at 42° C for 45 minutes
and 50 ng of the resulting cDNA was used per PCR reac-
tion. The primer pairs used to amplify the individual CD3
genes have been previously described[25,26] and are as
follows:

CD3y: forward 5'-CATTGCTTTGATTCTGGGAACTGAAT-
AGGAGGA-3', reverse 5'-GGCTGCTCCACGCTTITGCCG-
GAGACAGAG-3';

CD36: forward 5'-TTCCGGTACCTGTGAGTCAGC-3',
reverse 5'-GGTACAGTTGGTAATGGCTGC-3'.

Quantitative real-time RT-PCR

Real-time RT-PCR was performed using a TagMan Gene
Expression Assay for each of the individual CD3 genes
(CD3¢ HS00609512, CD3e HS00167894, CD3y
HS00173941 and CD36 HS00174158; Applied Biosys-
tems, Lennik, Belgium). Eukaryotic translation elongation
factorl o(EF-1-a) and cancer susceptibility candidate 3
(MLN51) were used as CD4+ T cell specific endogenous
reference genes as described by Hamalainen et al[27]. Rel-
ative quantification was used to compare the changes in
CD3 mRNA levels using the endogenous genes (EF-1-a
and MLN51) as a normalizer and uninfected WE17/10
cells as a calibrator. The individual CD3 genes were nor-
malized to the endogenous controls and the values are
expressed as the quantity relative to the uninfected WE17/
10 cell line. Biological duplicates were performed for all
genes tested.

EMSA

Nuclear extracts were prepared from 2 x 107 cells, and
EMSA experiments were performed as described previ-
ously[17]. The radiolabeled oligonucleotide probe used
for nuclear protein binding was an oligonucleotide
encoding wild-type Spy,/CD3yInr binding site: Spy,/
CD3yInr,,, 5'-GTGATGGGTGGAGCCAGTCTAG-3'[23].
The oligonucleotide bound complexes were separated on
a 6% Tris-glycine-EDTA polyacrylamide gel migrated
overnight at 50 V, and the radiolabeled protein complexes
were detected by autoradiography.

Chromatin immunoprecipitation (ChlP) assay

The ChIP assay was performed as previously
described[28] using the kit purchased from Upstate Bio-
technology generally following the manufacturer's proto-
col. Uninfected and HTLV-I-infected WE17/10 cells were
fixed with 1.5% formaldehyde for 10 min at 37°C. Chro-
matin was isolated, sheared using a Bioruptor (Diagen-
ode), and immunoprecipitated with Abs directed to ac-
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H4, HDACI1, Sp1 (SC-59X), Sp3 (SC-644X), TFIID (SC-
204X) (all from Santa Cruz Biotechnology), or control
rabbit IgG (Upstate Biotechnology). Cross-linking was
reversed by heating, and the proteins were removed sub-
sequently by proteinase K digestion. The presence of
selected DNA sequences in the immunoprecipitated DNA
was assessed by PCR using the following primer pair Spy;,
CD3yy,» and Spy, (205-bp product), forward, 5'-GGGT-
TCTTGCCTTCTCTCTCAA-3', reverse, 5'-CCCCTAGTAG-
GCCCTTACCTT-3'.

The amplified 32P-labeled PCR product was separated on
a 6% acrylamide gel and detected by autoradiography.

Results

CD3 loss after HTLV-I infection is linked to a sequential
reduction in CD3 gene transcripts

The cell lines were derived from the IL-2 dependent CD4+
T cell line WE17/10 infected by the HTLV-I viruses pro-
duced by the MT-2 cell line. The latter, used as virus
source, contains 8 complete or defective proviral genomic
integrations some defective proviral genomes being able
to produce viral RNA transcripts. The most dominant spe-
cies of unintegrated viral DNA was 3.7 kb in size; it
hybridized to a full-length HTLV-1 DNA probe but not to
a Kpnl viral DNA fragment beginning in the pro gene and
ending in the env gene[29] that is absent from a defective
proviral genome that has been previously identified in
MT-2 cells.

At 2 months p.i. using EcoRI, which does not cut within
the 9 kb of the HTLV-I genome, the complete provirus
probe revealed a smear witnessing a polyclonal integra-
tion of the provirus in the WE17/10 infected cells (Figure
1A).

At 4 months p.i. the same experiment showed three bands
of 18, 14 and 11 kb. At 7 months p.i. Only the 18 an 14
kb bands were evident suggesting at that time a biclonal
proliferation of infected cells in the culture. Using the
Kpnl fragment as probe we detected a 9 kb band when the
genomic DNA was digested with Sacl, an enzyme cutting
once in each HTLV-I LTR (Figure 1B). The same Kpnl
probe revealed an 18 Kb fragment after EcoRI DNA diges-
tion (Figure 1C). Our data suggests that a WE17/10 clone,
harboring one complete and one incomplete HTLV-I pro-
virus, not detected by the Kpnl probe, has a significant
growth advantage. This is in accordance with the fast
growing cultures observed later on.

ATLL patients are routinely characterized as having a CD3-
or CD3low phenotype [7-9]. Experimental infection of
CD4+ T cells with HTLV-1 and HTLV-I1[12,13] has also
been associated with defects in TCR/CD3 expression and
function. We have tested the HTLV-I infected cell lines
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MT-2, C91, WE/HTLV and an ATLL derived cell line PaBe
for their TCR/CD3 surface expression. All the cells had a
CD3- or CD3low phenotype (Additional file 1).

For WE/HTLV we have studied the kinetics of the CD3 sur-
face expression loss. Initially, during the acute phase of
infection, cell growth was slowed down by virus produc-
tion and a significant cytopathic effect. At this time, assess-
ment of TCR/CD3 surface expression by flow cytometry
was difficult. Chronically infected cells, appearing around
3 weeks p.i., returned to a normal growth rate and
expressed CD3 levels similar to the mock-infected control
until 5 weeks p.i., the time when CD3!ow expressing cells
first emerged.

Cryopreserved cells from different stages of the primary
infection were thawed and CD3 surface density was quan-
tified in a parallel experiment to ensure that the detected
changes were not attributable to variation in antibody
labeling experiments (Figure 1D). A significant reduction
in CD3 density on the infected cell surface, corresponding
to the CD3low phenotype, was detected at 6 to 10 weeks
p-i. The cells remained CD3!ow until receptor negative cells
began to emerge around 7 months p.i. followed by the
complete loss of surface expression at approximately one
year p.i. Thus, CD3 expression on chronically HTLV-I
infected cells (WE/HTLV) decreased in a progression from
CD3hito CD3low to CD3-, similar albeit slower than that
previously described for HIV-infected cells[14,15,18]. The
mock-infected cells, carried in parallel passages, continu-
ously maintained CD3hi expression.

A previous study|13] found that all four CD3 chains tran-
scripts (CD3y, 8, € and ) were lost after HTLV-I infection
in vitro, but these experiments did not provide insight into
the order of their loss. Our previous experiments have
shown that TCR/CD3 surface receptors are down-modu-
lated after infection with HIV-1[14,17] and HIV-2[18]
linked to an initial reduction in CD3y gene transcripts. We
therefore asked whether the CD3y gene was also initially
targeted after HTLV-I infection and found that its specific
decrease of transcription precedes the progressive loss of
surface CD3 expression on HTLV-I infected cells.

A real time RT-PCR assay for quantification of all four
CD3 gene transcripts revealed that the loss of TCR/CD3
complex at the cell surface occurs quite later than the loss
of CD3y transcripts (Figure 1E). Initially, at 5 weeks p.i.
there is a 25% decrease in CD3y, CD3% and CD3e¢ tran-
scripts observed in infected cells, shown by flow cytome-
try to express ~95% TCR/CD3+* surface complexes (relative
to the uninfected controls). Subsequently, a precipitous
drop of about 80% in CD3y transcripts appears while the
density of the TCR/CD3 on the cell surface is ~70%. This
erosion in CD3y transcript numbers progresses until all of
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Proviral integration, CD3 surface expression and relative CD3 gene expression over time after HTLV-Il infec-
tion of WEI7/10 cells. A, HTLV-I proviral genome analyses of WE/HTLYV cell line by Southern blot. the complete provirus
probe was hybridized to the WE/HTLV (at 3 weeks, 4 and 7 months p.i.) genomic DNA digested with EcoRI. B, the Kpnl frag-
ment probe was hybridized to the (at 7 months p.i.) genomic DNA digested with Sacl. C, the Kpnl fragment probe was hybrid-
ized to the (at 7 months p.i.) genomic DNA digested with EcoRI. MT-2 and uninfected WEI17/10 cell lines were used as positive
and negative control respectively. D, TCR/CD3 surface expression over time after HTLV-I infection of WEI7/10 cells. profiles
showing the distribution of immunofluorescence from anti-CD3 antibody staining in a parallel antibody labeling experiment.
Uninfected and HTLV-I infected cells were thawed from the frozen cell line bank at 5, 10, 40, 48, and 58 weeks p.i. TCR/
CD3low cells are identified as cells that fall below the minimum fluorescence intensity defined by the positive control but do not
lie within the region defined by the negative control. TCR/CD3Mi cells fall within the region defined by mock-infected cells, and
TCR/CD3- cells fall within the region designated by the negative control. E, Histograms representation of relative CD3 gene
expression in HTLV-| infected cells at various times p.i. determined by real time RT-PCR in relation to the percentage of sur-
face TCR/CD3* cells determined by flow cytometry. All percentages were calculated relative to uninfected cells (100% posi-
tive). GM-607 B cell line was used as a negative control.
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the cells are CD3y and surface CD3 negative (+ 9-12 mo.
p-i.). This loss of CD3y gene expression is followed by a
steady decrease in CD36 transcripts followed by a slower
but also progressive reduction in CD3¢ and CD3( tran-
scripts. Maintained continuously in vitro, the HTLV-I
infected cells eventually become negative for CD36 as well
as CD3y transcripts. The level of CD3¢ and CD3( tran-
scripts remains ~25% in the CD3y-8- cells even after more
than three years p.i. In MT-2 cells CD3y, CD33 and CD3e
transcripts are completely lost while the CD3( transcripts
are still expressed but at a very low level (data not shown).

The CD3y promoter can be activated in CD3- HTLV-I
infected WEI7/10 cells

In an effort to investigate the full-length CD3y promoter
activity in the HTLV-I infected cells after the loss of CD3y
gene expression we used our previously described con-
struct (pHy3-wt)[23] in a transient reporter assay (Figure
2). pHy3-wt was transfected into uninfected and HTLV-I
infected WE17/10 cells. Interestingly, in CD3y-6+ and
CD3y-36- HTLV-I infected WE17/10 cells, the CD3y pro-
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moter activity was similar to that of uninfected WE17/10
cells. It was over 2.5 fold of the activity measured for the
pGL3 plasmid basic vector (pGL3-BV). The CD3y pro-
moter cloned into a plasmid vector was active while the
CD3y gene transcripts are lost after HTLV-I infection.
Thus, after HTLV-I infection, CD3y gene silencing could
not be explained by a lack of transcription factors but
potentially by a restrained accessibility to its transcrip-
tional regulation region.

Chromatin studies: analysis of DNase | hypersensitivity
sites in the CD3)/CD36 gene region

The human CD3y, CD38 and CD3¢ genes are located in a
50 kb cluster on chromosome 1123, with CD3y and
CD356 positioned head-to-head and separated by 1.6 kb.
DNase 1 hypersensitivity experiments using probes
designed to specifically detect the CD3y promoter, CD38
promoter or CD38 enhancer (an enhancer for the CD3y
gene has not been identified yet) revealed that in unin-
fected (positive control) and HTLV-I infected CD3y+8+
cells all three DNase I hypersensitive sites (DHS) are read-

et
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B
Se' e [ e
4
<
&
g0
81 1 T T
CD3pd+ CD3psd+ CO3pd+
TCRICD3+ Uninfected WE170  TCRICD3- HTLV-H-infected WE17/10

Figure 2

Functional analysis by transfection of the CD3y promoter activity in HTLV-Il infected and uninfected cells. Luci-
ferase activity was measured in uninfected CD3y*$*, HTLV-l-infected CD3y-6* and CD3y-6- WEI17/10 cells after 40 h and nor-
malized to activity from the internal Renilla control. Expression of the wild-type CD3ypromoter constructs (pH y3-wt) was
measured in comparison to the negative control basic vector: (pGL3-BV) set to one. The pGL3 promoter vector (pGL3-PV)
was used as a positive control. The results represent at least three individual experiments, each performed in triplicate.
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ily discernible (Figure 3; relative surface CD3 expression
and transcript levels are shown in Table 1). In contrast, in
CD3ylog+ cells, the CD3ypromoter DHS site is weakly
detectable while the CD38 promoter and enhancer DHS
sites are still clearly evident. In HTLV-I infected CD3y-&-
cells, the DHS sites corresponding to all three transcrip-
tional control regions show no open chromatin in this
region similar to the B cell line GM-607 used as a negative
control. Taken all together our results suggest a potential
chromatin remodeling process taking place after HTLV-I
infection associated to the CD3 locus silencing.

Chromatin studies: CHIP experiments

The hCD3y promoter is lymphoid specific, initiates tran-
scription from multiple start sites, and contains two core
promoters capable of recruiting the general transcription
machinery through specificity protein (Sp)-binding
motifs, with an Initiator (Inr) element present in the pri-
mary core promoter[23]. EMSA experiments showed that
the complex binding to the Spy,/CD3yy,,[23] wild-type
probe was the same in the nuclear extracts from CD3+
uninfected WE17/10 or from CD3- HTLV-I infected
WE17/10 cells (Figure 4A). After HTLV-I infection the in
vitro binding of transcription factor was apparently not
affected in the CD3- HTLV-I infected WE17/10 cells. We
analyzed by CHIP the accessibility of the chromatin in the
CD3y putative promoter area to the transcriptional
machinery after HTLV-I infection. An obvious reduction
in accessibility for Sp1, Sp3 and TFIID was observed in
CD3- HTLV-I infected WE17/10 cells in comparison with
CD3+ uninfected (Figure 4B).

Treatment with TSA/AZA rescued CD3 mRNA in CD3-
HTLV-I infected WEI7/10 cells

Treatment of HTLV-I-infected WE17/10 with the histone
deacetylase inhibitor (HDACI) trichostatin A in associa-
tion with the DNA-methylation inhibitor 5' deoxy-azacy-
tidine rescued CD3y and CD3 transcription as assessed
by RT-PCR.

Table I: TCR/CD3 expression in cells used for the DNase |
hypersensitivity assay

Surface TCR/CD3
(flow cytometry)

mRNA
transcripts
(real-time RT-

PCR)
Cells CD3*cells CD3y CD3
1)

uninfected 100% 100% 100%
HTLV-I y*&* 98% 85% 70%
HTLV-| ylog* 55% 13% 44%
HTLV-I y-8- 0% 0% 0%

B cell control 0% 0% 0%
HIV-1 y-8* control 0% 0% 70%
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Histone H4 hyperacetylation is a typical feature of active
transcription; we therefore analyzed chromatin hyper-
acetylation as well as the binding of HDAC in the CD3y
promoter by comparing TCR/CD3+ uninfected, untreated
and TSA/AZA treated TCR/CD3- HTLV-I infected WE17/10
cells (Figure 5B). We show that histone hyperacetylation
is detectable in CD3+* uninfected WE17/10 cells and TSA/
AZA treated CD3- HTLV-I infected WE17/10 cells, but
absent in untreated CD3- HTLV-I infected WE17/10 cells.
Moreover, in vivo binding of HDAC to the CD3y core pro-
moter is more abundant in CD3- HTLV-I infected com-
pared to CD3*uninfected WE17/10 cells and TSA treated
CD3- HTLV-I infected WE17/10 cells.

Discussion

The T-cell receptor (TCR)/CD3 complex is the keystone of
the antigen-specific immune response. Infection by
HTLV-1 has been shown to ultimately downregulate
CD3y, CD36, CD3¢, and CD3( gene transcripts leading to
a CD3- surface phenotype after 200 days of in vitro infec-
tion[12,13]; however, the sequence of gene loss has not
been investigated. We have shown previously that HIV-1
[14-17] and HIV-2[18] associated loss of CD3 expression
was characterized by an initial reduction in CD3y gene
transcripts. Moreover, infected CD4+ T-cells from patients
with ATLL are routinely characterized as having a CD3- or
CD3low phenotype [7-9]. The viral load and the natural
history of HTLV-I has been studied over 10 years[30] in
infected individuals. Interestingly, their figures indicate
that HTLV-1+ cells have a very weak contribution to the
total number of CD3+ cells. Therefore, it is not surprising
that some groups did not find a decrease when looking at
the total population of T-cells in patients post HTLV-I
infection.

In this study, we investigated proviral integration, viral
gene expression, CD3 surface density, CD3 gene transcrip-
tion and chromatin structure over a period of time of
three years post HTLV-I infection of the WE17/10 cell line.
We found that HTLV-I in vitro infection leads to progres-
sive downmodulation of TCR/CD3 complexes from the
cell surface following a pattern of decreasing surface den-
sity reminiscent of that observed for HIV-1[14,15] and
HIV-2[18], except for its slower kinetics. There is an
altered regulation of gene expression affecting initially
and more specifically the CD3y gene. To ensure that this
phenomenon was not restricted to our experimental set-
ting and the utilized cell line, we have tested a number of
well-established HTLV-I infected CD4+ cell lines and
found a general down modulation of TCR/CD3 surface
expression in comparison to their uninfected counterpart.

However in contrast to the selective targeting of CD3y by
HIV[15,18], HTLV-I infection represses in a sequential
manner the expression of all four CD3 genes, a distinction
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DNase | hypersensitivity of CD3y and CD335 genes regulatory regions after HTLV-I infection. DNase | hypersensi-
tivity experiments using probes designed to specifically detect the CD3y promoter, CD35 promoter or CD33 enhancer, indi-
cated on the Y axis. DNA was digested with increasing concentrations of DNase | (increasing from left to right in each panel)
and extracted from uninfected CD3y*3* cells and HTLV-l CD3y*6*, CD3y'°5*, and CD3y$- cells. The B cell (CD3 negative) and
HIV-1 CD3y-6* cell lines were used as controls. The various cell lines are indicated on the X axis. The level of surface TCR/

CD3 expression and relative CD3 gene transcripts for each cell line is shown in Table 1.
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Transcription factor accessibility to the CD3y promoter after HTLV-I infection. A,In vitro binding to the Spy,/CD3y,,,, [22]
wild-type probe was examined in EMSA assay using nuclear extracts from TCR/CD3* uninfected WE17/10 and CD3y-d- HTLV-| infected
WEI7/10 cells. B, ChIP assay using anti-Sp|, anti-Sp2, anti-Sp3, anti-TFIID, to study the in vivo binding to the sequence surrounding the
Spy,/CD3y,,, motif in TCR/CD3*uninfected and in CD3y-6- HTLV-I infected WEI7/10 cells.

obvious at several stages post-infection. Quantification of
CD3 gene transcripts in HTLV-I infected cells expressing
~70% of the normal number of surface TCR/CD3 com-
plexes contain only 20% CD3y, 48% CD36, 62% CD3¢
and 75% CD3( gene transcripts. This extensive loss of
CD3y transcripts prior to significant TCR/CD3 down-
modulation was similar to what we have observed previ-
ously for TCR/CD3 loss after HIV-1 infection[17]. These

data explain why the progression, viewed from the cell
surface, appears to be very slow by showing that transcrip-
tional downmodulation is actually initiated early after
infection with a considerable and rapid erosion of tran-
scripts until a threshold is reached where the normal
number of complete TCR/CD3 complexes can no longer
be assembled and exported to the cell surface [31].
Although the complete loss of CD3y parallels the receptor
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TSA/AZA treatment of HTLV-I infected WE17/10 cells. A, Representative ethidium bromide-stained gels of CD3y, CD35 and
GAPDH (endogenous control) RT-PCR products from untreated HTLV-I infected CD3y-3'o, TSA/AZA HTLV-I infected CD3y-3/° (treated
for 72 hours with 4 uM of 5'AZA and for 18 hours with 500 nM of TSA) and uninfected untreated WEI7/10 cells. B, ChIP assay using anti-
Ac-H4 and anti-HDAC to study the in vivo binding to the sequence surrounding the Spy,/CD3y,,,, motif in TXP/XA3+ yninfected and in
untreated and TSA/AZA treated CD3y-8'° HTLV-I infected WEI7/10 cells.

negative phenotype in cell lines infected with both
viruses, CD3- HTLV-I infected cells continue to progres-
sively loosing expression of the remaining CD3 genes,
with CD33 transcripts being absent at 29 months p.i and
about ~25% CD3e and CD3({ transcripts being still
expressed at 3 years p.i. In contrast, HIV-1 infected cells
maintain CD38, CD3¢ and CD3( transcripts at >75% of
normal levels in the presence of steadily decreasing CD3y
transcripts. Our data thus reveal that while both HIV-1
and HTLV-I target the expression of the CD3 genes,
remarkably they appear to accomplish this task with dis-
tinct kinetics.

Importantly, we also observed that, in contrast with HIV
infected cells, an in vitro selection of certain clones occurs,

as demonstrated in Fig 1, the cells with the lowest CD3
expression growing more rapidly, as we have observed it
by comparing the growth speed of cell frozen at different
stage of CD3 expression, then put back in culture (data
not shown).

The human CD3y, CD36 and CD3¢ genes, located together
on chromosome 11q23, are highly homologous due to
their common ancestry[32], while the human CD3( gene
is located on chromosome 1 and has no apparent
sequence homology with the other CD3 genes. It is there-
fore remarkable that all four genes are sequentially tar-
geted in HTLV-1 infected cells. Previous studies
investigating the role of individual CD3 chains in thy-
mopoiesis suggest that a mechanism exists for controlling
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access to the CD3y, CD36 and CD3¢ gene cluster. Disrup-
tion of the CD3¢ gene by insertion of a neomycin cassette
in place of either exon 5[30], exons 5 and 6[33] or the pro-
moter plus exons 1 and 2[34] left CD3&/- mice who did
not only show a CD3¢ deficiency, but also underwent a
significant inhibition of CD3y and CD36 genes transcrip-
tion. Expression of CD3y and CD36 could be restored in
CD3¢/-mice by deletion of the neomycin cassette using in
vivo recombination but not by transgenic reconstitution of
CD3¢ protein expression[35]. Furthermore, insertion of
the same neomycin cassette in the contiguous CD3y [36]
or CD33 [37] genes had no effect on transcription of their
other two neighboring CD3 genes. It has been reported
that the coding sequence of neo gene can act as a transcrip-
tional silencer[38], which suggests that neo insertion in
CD3e potentially functions as an insulator by separating
CD3y and CD38 genes from a putative locus control
region. Taken altogether, these data indicate the existence
of a mechanism for the global control of the 11q23 CD3
genes cluster that is likely to be critical in modulating the
expression of these genes during the early stages of T-cell
commitment. Similar cellular factors may also be
involved in controlling the CD3( gene to ensure its coor-
dinate expression with the other CD3 genes during T-cell
differentiation and development.

However, by transient transfection we observed that CD3y
expression could be restored in HTLV-I infected cells lack-
ing endogenous CD3y expression. This demonstrates that
the loss of CD3y is not due to a defect in factors binding
to the CD3y promoter region and rather suggests a lack of
accessibility of these factors to the promoter regions in
HTLVI infected cells. We further demonstrated that the
loss of CD3y and CD33 transcripts is associated with pro-
gressive closure of the CD3y promoter DHS followed by
the CD36 promoter and enhancer DHS. Modification in
the corresponding DHS occurred in tandem with the
reduction and loss of CD3y and CD33 gene expression p.i.

In addition, we showed a reduction in vivo binding of Sp1,
Sp3 and TFIID to the CD3y core promoter region in CD3-
HTLV-I infected WE17/10 cells in comparison with TCR/
CD3+* uninfected cells, while the in vitro binding was not
affected. It has been shown that Sp1 and Sp3 transcription
factor binding to TRE-I repeat III participates in the regu-
lation of HTLV-I viral gene expression[39]. On the other
hand, epigenetic mechanisms are responsible of HTLV-I-
genes transcriptional silencing[40].

Histone H4 hyper-acetylation is a typical feature of active
transcription. Histone H4 hyperacetylation was reduced
and binding of HDAC to the CD3y core promoter was
more abundant in CD3- HTLV-I infected compared to
CD3+ uninfected WE17/10 cells. As expected, treatment
with the histone deacetylase inhibitor (HDAC) trichosta-

http://www.virologyj.com/content/4/1/85

tin A in association with the DNA-methylation inhibitor
5' deoxy-azacytidine reestablished the H4 hyperacetyla-
tion status and reduced the HDAC binding to the CD3y
core promoter and rescued the transcription of CD3y and
CD33 in the CD3- HTLV-I infected. This result reempha-
sizes that an epigenetic mechanism is at work to down-
modulate the four CD3 genes after HTLV-I infection. We
recently started a study aiming at unraveling the molecu-
lar determinants that coordinate the successive downreg-
ulation of the four CD3 genes.

In a previous work we have shown that HTLV-I infection
of WE17/10 CD4+cell line leads to progressive alteration
of Ca**influx that eventually results in loss of CD7 expres-
sion and activation of an antiapoptotic pathway involving
AKT and BAD which paves the way for malignant transfor-
mation[10]. Since dysregulation of calcium flux after T-
cell activation can be one of the consequences of the lack
of TCR/CD3 expression[11] the loss of TCR/CD3 expres-
sion could be of significance in the progression of HTLV-
1 mediated malignant disease.

Conclusion

We conclude that HTLV-I expression initiates a process
leading to several phenomena, among which a progres-
sive loss of TCR/CD3 by epigenetic mechanisms. These
modifications persist after HTLV-I genes are silenced
through a mechanism that we have started to investigate.
This eventually leads to a CD3-, CD7- phenotype associ-
ated with perturbation of calcium fluxes and constitutive
activation of PI3 kinase, which prevents apoptosis and
augments growth of the infected cells. The mechanism by
which these phenomena continue after the loss of viral
gene expression will be the subject of further studies, as
well as determining whether CD3 progressive loss is an
epiphenomenon or a causal event in the process of even-
tual malignant transformation.
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