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Abstract: Congenital heart disease (CHD) is one of the most common birth defects. Studies in animal
models and humans have indicated a genetic etiology for CHD. About 400 genes have been implicated
in CHD, encompassing transcription factors, cell signaling molecules, and structural proteins that
are important for heart development. Recent studies have shown genes encoding chromatin
modifiers, cilia related proteins, and cilia-transduced cell signaling pathways play important roles in
CHD pathogenesis. Elucidating the genetic etiology of CHD will help improve diagnosis and the
development of new therapies to improve patient outcomes.
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1. Introduction

Congenital heart disease (CHD) is a form of birth defect that affects about 1% of infants born
each year. Disturbances in heart development result in a variety of defects, and while CHD can be
caused by environmental exposures to teratogens [1,2], a genetic underpinning for CHD is strongly
supported by the observation of a high recurrence risk and familial forms of the disease, as well as the
well-described association of CHD with chromosomal anomalies [3].

It is estimated that about 400 genes are associated with CHD pathogenesis. Mutations in genes
encoding transcription factors, cell signaling transducers, and chromatin modifiers can interfere
with cell type specification, differentiation, and patterning important in heart development causing
perturbations in heart structure and function. As many of the proteins encoded by these genes work
synergistically or are connected by functional networks, this suggests a broad interacting network may
be associated with disease [4,5]. However, ~60% of CHD cases remain unexplained, as studies into
the genetic etiology of CHD have been confounded by the genetic diversity of human subjects [6].
Also confounding genetic inquiry is the genetic heterogeneity associated with CHD. Together this
has resulted in variable expressivity where subjects with the same variants may exhibit different
phenotypes, or variable penetrance where some individuals with a known pathogenic variant may
have no disease. As a result, CHD largely has a non-Mendelian inheritance patterns and is best
described as mediated by complex genetics.

There have been several studies utilizing targeted whole-exome or whole-genome sequencing to
investigate the genetic basis for CHD. In trio studies, the proband is sequenced along with unaffected
parents to identify pathogenic variants that may have arisen de novo. In familial studies, multiple
members of a family are phenotyped and sequenced to identify variants that are inherited in diseased
family members. In cohort studies, a large number of unrelated cases and healthy control samples
undergo sequencing to determine if any single gene or set of genes is enriched for variants in the
disease samples. Studies of de novo and rare inherited variants have revealed a higher burden of
mutation in variants predicted to be damaging in genes associated with CHD, highly expressed in
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the heart, or involved in heart development [6]. Among these variants, there is a surprising number
of ciliary genes and genes encoding chromatin modifiers. There is also a high burden of rare copy
number variants in CHD patients, which is likely driven by syndromic cases [7].

Our understanding of the genetic causes of CHD has also benefited from studies in mouse models.
Inbred mice provide an ideal context to conduct genetic analysis, and importantly, mice have the same
four-chamber cardiac anatomy as humans that are susceptible to CHD pathogenesis [8]. Given this, as
well as the rapid advances in reverse genetics for generating gene knockouts, knock-ins, and point
mutations, mice have become the model of choice to interrogate the genetic causes of CHD. These have
allowed for the rapid verification of CHD candidate genes with disease modeling in vivo, along with
in vitro cell and tissue culture studies. The recent use of patient-derived induced pluripotent stem
cells (iPSCs) have become especially valuable for mechanistic studies. Using mice, it is also possible to
interrogate the genetic etiology of CHD using forward genetics with chemical mutagenesis. Using
such forward genetic screening methods with ethylnitrosourea (ENU) mutagenesis, our laboratory has
identified over 100 genes causing CHD [5]. Forward genetic screens are advantageous in that they are
entirely phenotype-driven, so there is no a priori gene bias, allowing the possibility for discovery of
new biology.

In combination, these human and animal studies have helped to elucidate the genetic etiology of
CHD and the underlying molecular mechanisms driving disease. Below, we will first briefly describe
the classification of CHD and developmental processes orchestrating heart development and formation
of the mammalian heart. Next, the major transcription factors and signaling pathways associated with
CHD will be briefly reviewed, with a focus on genes known to be causal of CHD from mouse and
human studies. Lastly, we will touch on the role of chromatin modifiers, cilia, cilia-transduced cell
signaling, and maternal factors in CHD pathogenesis.

2. Congenital Heart Disease Classification and Prevalence

CHD encompasses a variety of cardiac defects that are commonly grouped based on the nature
of the structural heart defect [9,10], resulting blood flow patterns [11], observed familial recurrence
risks [12–14], and shared susceptibility genes [12]. Phenotypes are often sorted into major categories
such as right-sided lesions, left-sided lesions, conotruncal defects, laterality defects, and isolated septal
defects. Right-sided lesions include hypoplastic right heart syndrome (HRHS), Ebstein’s anomaly,
and pulmonary artery atresia. Left-sided lesions include bicuspid aortic valve (BAV), aortic stenosis,
coarctation of the aorta (CoA), and hypoplastic left heart syndrome (HLHS). Conotruncal defects
include tetralogy of Fallot (TOF), pulmonary atresia, truncus arteriosus, and double outlet right ventricle
(DORV) except those with malposed vessels or HLHS. Laterality defects include heterotaxy (HTX),
atrioventricular septal defects (AVSD), anomalous pulmonary venous return (APVR), transposition of
the great arteries (TGA), malposed vessels, dextrocardia, and situs inversus totalis (SIT). Isolated septal
defects include atrial septal defects (ASD) and ventricular septal defects (VSD) [9]. A meta-analysis of
global birth prevalence of CHD showed that the ‘mild lesions’ ASD, VSD, and patent ductus arteriosus
(PDA) account for 57.9% of CHD burden [15]. The prevalence of these mild lesions, as well as severe
complex CHD, has risen ~10% every 5 years since 1970 [15]. CHD associated with chromosomal
abnormalities represents ~8%–10% of all CHD [3] and is believed to have a separate genetic etiology
from non-syndromic disease, with a greater proportion driven by protein truncating and missense de
novo mutation [16].

3. Developmental Processes in Formation of the Four-Chambered Heart

The heart is one of the first organs to develop during embryogenesis. In response to endoderm-
and ectoderm-derived Bmp, Fgf, and Wnt signaling in the early mouse embryo, embryonic precursors
derived from the mesoderm give rise to cardiac progenitors in the cardiac crescent [17]. These cells
migrate and fuse along the midline, generating the linear heart tube. This is followed by looping of
the heart tube, with the outer curvature of the looped heart tube forming the future ventricles, while
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the venous pole becomes the atrial appendages [18]. In parallel, the conotruncal outflow undergoes
septation to generate the aortic and pulmonary arteries. Neural crest cells migrating into the heart
play a critical role in regulating outflow septation. Correct alignment of the outflows such that there is
proper connection of the aorta with the left ventricle (LV) and pulmonary artery with the right ventricle
(RV) is mediated by wedging of the outflows between the cardiac cushions such that there is “mitral to
aortic valve continuity” [19]. Formation of the cardiac valves is mediated via epithelial-to-mesenchymal
transition (EMT) of endocardial cells that form swellings known as the endocardial cushions. The
cushions serve as primitive valves early in development, but later remodel to form the mature thin valve
leaflets [18]. The atrioventricular (AV) valves are formed from superior and inferior atrioventricular
cushions that later fuse with the growing muscular septa between the atria and ventricles. The outflow
tract cushions give rise to semilunar valves of the aorta and pulmonary trunk [20].

Lineage tracing experiments have provided significant insights into the developmental etiology
of different structures of the four-chamber heart [18]. While the linear heart tube is comprised of cells
from first heart field (FHF) that will give rises to the future LV and part of the atria, cells from the
second heart field (SHF) migrate into either pole of the linear heart tube, giving rise to the OFT, RV,
and also part of the atria. When the linear heart tube undergoes looping, bilateral symmetry is broken
with the direction of looping reflecting the left–right body axis. This left–right patterning is of critical
importance since the heart is one of the most left–right asymmetric organs in the body. This asymmetry
is required for efficient oxygenation of blood, establishing circulation from the right side of the heart to
the lungs for oxygenation, while the left side pumps oxygenated blood systemically throughout the
body. Thus, when left–right patterning is disrupted, such as with randomization of visceral organ situs
in HTX, there is invariably complex CHD.

4. Role of Transcription Factors

A combination of clinical studies and studies using mouse models have allowed the identification
of transcription factors and cofactors involved in CHD and uncovered their roles in CHD pathogenesis
(Table 1). The further identification of novel variants and CNVs has emerged from large cohort
studies [21–23]. Transcription factors in CHD patients are also observed to be enriched for de novo
and loss of function mutations [10]. Proteins with such deleterious mutations displayed changes in
transcriptional or synergistic activity, which can interfere with expression of downstream targets,
causing the perturbation of cell type specification, and differentiation [21].

4.1. NKX2-5

NKX2-5 encodes a homeobox transcription factor that plays an important role in heart development.
It is expressed at the earliest stages of cardiogenesis, regulating cardiomyocyte differentiation and
proliferation [24]. NKX2-5 mutations were first identified to cause AV block and ASD [25,26], but
have since been recovered in a wide spectrum of CHD. Moreover, the phenotype and penetrance of
NKX2-5 mutations have been shown to be dependent on genetic background and interaction with
other mutations in both mice and humans [22,25,27,28]. Together, these findings have complicated
investigations into mechanisms by which NKX2-5 mutations cause CHD. In vitro mouse modeling
of a heterozygous mutation in Nkx2-5 associated with AV block and ASD showed reduced NKX2-5
nuclear import, downregulation of BMP and Notch signaling, and ultimately dysregulation of genes
involved in early cardiomyocyte differentiation and function and reduced cardiomyogenesis [29].

4.2. GATA Family

GATA4, 5, and 6 are zinc finger transcription factors that have been shown to be expressed
in the developing heart and have roles in cardiogenesis [30]. Mutations in GATA4 that decrease
transcriptional activity have been associated with BAV and VSD [31]. Mutations in genes that regulate
GATA4, such as NEXN, have also been associated with CHD [32]. Gata4 has been shown to be required
by Hh-responsive progenitors within the SHF involved in OFT development, with a heterozygous Gata4
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mutation shown to cause VSD and OFT defects in mice, including DORV and AVSD [33]. Noncoding
variants in GATA4 have also been associated with BAV, illustrating the importance of further research
into noncoding and regulatory regions of the genome [34]. Heterozygous mutations in GATA6 also
have been identified in CHD patients. Studies in mice showed Gata6 mutations can cause severe OFT
defects through disruption of Sema3c and Plxna2 expression [35,36]. Mice that are double homozygous
knockouts for Gata4/Gata6 exhibit acardia and only generate SHF progenitor cells [33]. Mutations in
GATA5 have only more recently begin to be explored as a cause for CHD. Rare sequence variants have
been reported in patients with TOF, VSD, familial atrial fibrillation, and BAV [37], and loss of Gata5
results in BAV in mice [38].

4.3. T-Box Family

The TBX transcription factors are expressed throughout the developing heart and play a key role
in regulating cardiomyocyte identity [18]. Mutations in TBX1, which is expressed in outflow tract
precursors, have been found in patients with DiGeorge syndrome, which is commonly associated with
cardiac defects. Loss of transcriptional targets of Tbx1, such as Wnt5a, also cause severe hypoplasia of
SHF-dependent structures in mice, similar to loss of Tbx1 [39]. In addition, CNVs affecting PRODH and
DGCR6, which have been reported to affect TBX1 expression, have been associated with conotruncal
defects in DiGeorge patients [40]. TBX5 and TBX20 activate gene expression in the cardiac chambers,
TBX2 and TBX3 repress myocardial gene expression in the inflow and outflow tract precursors, and
TBX18 is expressed in the venous pole. Deletion of these genes in mice result in a variety of cardiac
defects [41]. TBX5 and TBX20 both drive chamber formation from FHF progenitors. Mutations in
TBX5 are known to cause Holt–Oram syndrome, which is characterized by heart and upper limb
deformities [42]. Studies in mice showed Tbx5 interacts with both Gata4 and Gata6, such that double
heterozygous mutations with Gata6 result in neonatal lethality, and double heterozygous mutations
with Gata4 result in more severe cardiac malformations and embryonic lethality. Mutations in TBX20
have also been associated with CHD such as TOF, and knockdown of Tbx20 in mice suggests that it
plays a role in development of the SHF [41].

4.4. Forkhead Box Family

Several forkhead box (FOX) transcription factors also play important roles in heart development,
with mutations leading to cardiac defects and embryonic lethality [43]. Deletion CNVs of the FOXF1,
FOXC2, and FOXL1 are associated with CHD, particularly HLHS [44]. Mutations in FOXC2 are
a well-characterized cause of TOF [45]. A mutation in FOXF1 was identified in one patient with
AVSD, hypoplastic LV, bicuspid aortic valve, and also intestinal malrotation, indicating disturbance of
left–right patterning. Another patient with VACTERL and HTX, was also identified with a mutation in
FOXF1 as well as ZIC3, both of which regulate the specification of laterality [46,47]. FOXA2 has been
shown to regulate TBX1 transcription and development of the outflow tract [43]. Mutations in FOXH1,
a downstream target of the Nodal pathway signaling, have been identified in patients with VSD, TGA,
and laterality defects [48,49]. Mutations in Foxj1, which is a regulator of ciliogenesis, were identified to
cause complex CHD with HTX in a large-scale mouse mutagenesis screen [5].

4.5. Nuclear Receptor Family

A de novo mutation in the DNA binding domain of NR1D2, a nuclear receptor transcriptional
repressor that acts in a heme-dependent manner, has been identified in a cohort of patients with
AVSD [50]. It was shown to change transcriptional activity, and knockout mice were shown to have
cardiovascular malformations. Another nuclear receptor, NR2F2 encodes a pleiotropic transcription
factor shown to be required for normal development of the atria, coronary vessels, and aorta [51]. In a
mouse model, cardiomyocyte-specific knockout of Nr2f2 resulted in ventricularized atria. A mutation
in NR2F2 was found to segregate with disease in a family with DORV and VSD and absent in ethnically
matched controls [52]. This mutant Nr2f2 protein has no transcriptional activity in a mouse model,
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eliminating synergistic transcriptional activation between NR2F2 and GATA4. Mutations that alter
NR2F2 transcriptional activity with preserved repressor function were identified in patients with
AVSD, TOF, aortic stenosis, CoA, and HLHS [53].

4.6. HAND Family

HAND1 and 2 are helix–loop–helix transcription factors that regulate, in a dose-dependent manner,
the expansion of ventricular precursors [54]. In Hand1 null mice, heart development is arrested at the
heart looping stage of development [55]. Hand1 conditional activation knock-in mice have increased
expansion of the outer curvature of both ventricles but lack the interventricular groove and have a
defect in formation of the septum. A mutation in HAND2 has been associated with VSD, and HAND2
may have synergistic activation effects with GATA4 and NKX2-5 [56]. Many other transcription factors
have also been shown to cause CHD when mutated, and the phenotypes resulting from the disruption
of many of these are described in Table 1.

Table 1. Transcription factors associated with congenital heart disease (CHD) and their phenotypes in
patients and mice.

Gene Human Phenotype Mouse Phenotype References

CITED2
AS, PS, SIT, Dextrocardia, TGA,

TOF, RVOTO, TAPVR, ASD,
VSD

DORV, PTA, OA, AA, PAA
anomaly, ASD, VSD [20,57–59]

CREBBP Rubinstein-Taybi syndrome CHD [60,61]

EP300 Rubinstein-Taybi syndrome Hypotrabeculation, Thin
myocardium, ASD, VSD [60,62]

ETS1 DORV, HLHS, ASD, VSD ASD, VSD [20,63]

FOXC1

HLHS, OA, PA, PAH, PDA,
Bilateral SVC, VSD,

Axenfeld–Rieger syndrome,
ASD

Aortic arch defects, IAA, Inflow
tract defects, OFT defects, RV

defects, Semilunar valve defects,
VSD

[20,43,57,61]

FOXC2
HLHS, TOF, OA, PA, PDA, PAH,

TAPVR, Bilateral SVC, ASD,
VSD

Aortic arch defects, IAA, Inflow
tract defects, OFT defects, PTA,

RV defects, Semilunar valve
defects, VSD

[20,43,57,61]

FOXH1 TOF, TGA, HTX, VSD Disorganized myocardium, OFT
defects, RV defects [43,60,64–66]

FOXJ1 CHD Complex CHD with HTX [5,44]

FOXO1 TOF Endocardial cushion defects,
Reduced trabeculations [43,67]

FOXP1 CHD
Defects in ventricular/OFT
septation, valve formation,
myocardial proliferation

[43,60]

GATA4
Dextrocardia, AVSD, DORV,
TOF, BAV, CoA, AR, PAPVR,

PDA, PS, ASD, VSD

Acardia, Cardia bifida, AVSD,
DORV, PTA, ASD, VSD [20,57,63,64]

GATA5 AVSD, DORV, LVNC, BAV, CoA BAV [20,68–70]

GATA6 AVSD, TOF, PDA, PTA, PS, ASD,
VSD

Acardia, AVSD, DORV, PTA,
IAA, PAA anomaly, ASD, VSD [33,57,63,64]

HAND1 AVSD, DORV, HLHS, HLV, HRV,
ASD, VSD

Arrest at looping stage, VSD and
hypoplastic AV valves, Absent

ventricular septum and thin
compact myocardium

[54,55,57,71–73]

HAND2 TOF, LVNC, VSD DORV, HRV, PAA anomaly, PS,
VSD [20,59,64,70,74]

JARID2 Left-sided lesions
DORV, Hypertrabeculation,

Myocardial defects,
Noncompaction, VSD

[20,62,75]

MSX1 BAV, CoA DORV, TOF, PTA, Hypoplastic
valves, VSD [20,37,59]

NFATC1 TOF, LVNC, BAV, CoA, TA, VSD Absent valves, Blunting of
AV/OFT valves, VSD [20,37,57,70,76]



Biomolecules 2019, 9, 879 6 of 23

Table 1. Cont.

Gene Human Phenotype Mouse Phenotype References

NKX2-5

ASD, AVSD, BAV, CoA,
Dextrocardia, DORV, Ebstein’s

anomaly, HTX, HLHS, IAA,
LVNC, Mitral valve anomalies,

PA, PAPVR, PDA, PS, SVAS, TA,
TAPVR, TGA, TOF, PTA, VSD

AVSD, Looping defect, ASD,
VSD [25,57,61,63,64,74]

NR1D2 AVSD AVSD [50]

NR2F2 AVSD, DORV with VSD Hypoplastic atria,
Ventricularized atria [51–53,74]

RBPJ HLHS
Defective EMT, Hypoplastic

endocardial cushions, Impaired
trabeculation, VSD

[20,77–79]

RFX3 PTA HTX [80,81]

SMAD6 HLHS, AS, BAV, CoA

DORV, TGA, PTA, IAA, RAA,
Hypoplastic pulmonary artery,

Aortic valve dysplasia,
Hyperplastic valves, VSD

[5,24,64,79]

TBX1
DORV, TOF, IAA, PTA, VSD,

DiGeorge syndrome,
Velocardiofacial syndrome

AVSD, DORV, TGA, TOF, PTA,
PAA anomaly, VSD [20,57,60,63,64]

TBX2 CHD DORV, Hypoplastic endocardial
cushions, PAA anomaly [20,60]

TBX20 DORV, HLV, LVNC, DCM, CoA,
MS, PDA, ASD, VSD

AVSD, DORV, PTA, Hypoplastic
right heart, ASD, VSD [20,59,63,70,71]

TBX3 Ulnar-Mammary syndrome DORV, TGA, PAA anomaly, VSD [61,80]

TBX5 AVSD, TOF, BAV, CoA, ASD,
VSD, Holt-Oram syndrome ASD, VSD [37,45,57,61,63]

ZFPM2 AVSD, DORV, TOF, VSD
Alignment defects, Coronary

artery defects, OA, PS, TA, ASD,
VSD

[20,50,64,74,81]

AA, aortic atresia; AR, aortic regurgitation; AS, aortic stenosis; ASD, atrial septal defect; AV, atrioventricular;
AVSD, atrioventricular septal defect; BAV, bicuspid aortic valve; CoA, Coarctation of the aorta; DCM, dilated
cardiomyopathy; DORV, double outlet right ventricle; EMT, epithelial-to-mesenchymal transition; HLHS, hypoplastic
left heart syndrome; HLV, hypoplastic left ventricle; HRV, hypoplastic right ventricle; HTX, heterotaxy; IAA,
interrupted aortic arch; LVNC, left ventricular noncompaction; MS, mitral stenosis; OA, overriding aorta; OFT,
outflow tract; PA, pulmonary atresia; PAA, pharyngeal arch artery; PAH, pulmonary artery hypoplasia; PAPVR,
partial anomalous pulmonary venous return; PDA, patent ductus arteriosus; PTA, persistent truncus arteriosus;
RAA, right-sided aortic arch; RV, right ventricle; RVOTO, right ventricular outflow tract obstruction; SIT, situs
inversus totalis; SVAS, supravalvular aortic stenosis; SVC, superior vena cava; TA, tricuspid atresia; TAPVR, total
anomalous pulmonary venous return; TGA, transposition of the great arteries; TOF, tetralogy of Fallot; VSD,
ventricular septal defect.

5. Signaling Pathways Underlying CHD

5.1. Nodal Signaling

An important signaling pathway in cardiovascular development is the Nodal signaling pathway
known to regulating left–right patterning. Central to left–right patterning is Nodal expression that is
restricted to the left side of the developing embryo. This initiates a signaling cascade that establishes
left–right asymmetry. In CHD patients, there is evidence of the enrichment of heterozygous damaging
de novo and loss-of-function mutations in NODAL [10]. NODAL mutations were identified in patients
with TGA and a family history of CHD [49]. De novo CNVs affecting NODAL were also identified in a
cohort of patients with conotruncal defects or HLHS [82]. Mutations in ZIC3, a transcription factor that
functions upstream of NODAL, were identified in the aforementioned study, as well as in a study of
CHD patients with HTX [83,84]. Mutations in several downstream targets of NODAL—GDF1, CFC1,
TDGF1, FOXH1, and SMAD—were also identified in a cohort of CHD patients. Another downstream
target of NODAL, PITX2, encodes a paired-like homeobox domain transcription factor that is a
core effector of left–right patterning. A nonsense mutation identified in a family with endocardial
cushion defect and Axenfeld–Rieger syndrome, which is associated with OFT defects, eliminates its
transcriptional activity and synergistic transcriptional activation with NKX2-5 [85].
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5.2. Notch Signaling

Signaling through the Notch pathway regulates cardiac cell fate and morphogenesis of cardiac
chambers and valves [86]. Notch regulates EMT of the AV cushion progenitor cells which later
contribute to the AV septum [87]. Rare deleterious variants in NOTCH1 were identified in patients with
strong family histories of disease [88]. NOTCH1 mutations have previously been associated primarily
with left-sided lesions, but a study of NOTCH1 mutations in familial CHD identified individuals with
right-sided and conotruncal defects [89]. While rare predicted loss-of-function and intronic variants in
NOTCH1 increase risk for left ventricular outflow tract defects [90], rare or likely pathogenic variants
in NOTCH1 have also been identified in a cohort of BAV patients requiring aortic root replacement [69],
and de novo and rare variants were identified in patients with HLHS [91,92]. In addition, rare or
novel protein-altering mutations in Notch pathway genes NOTCH1, ARHGAP31, MAML1, SMARCA4,
JARID2, and JAG1 were shown to co-segregate with disease in families with left ventricular outflow
tract defects, and an enrichment of pathogenic variants in these genes in patients vs. controls was
observed [93]. Heterozygous rare coding mutations in MIB1, which activates the Notch pathway
through promoting ubiquitination, endocytosis, and activation of Notch ligands, were identified in a
Han Chinese CHD cohort. Two of these mutations were shown to reduce function, resulting in less
JAG1 ubiquitination and the induction of Notch [94]. This upstream effector JAG1 is also associated
with TOF [45]. Expression of Notch and its downstream targets are also reduced in mice with mutations
in the Slit/Robo signaling pathway, resulting in membranous VSDs and BAV [95].

5.3. Wnt/β-Catenin Signaling

The Wnt/β-catenin pathway has an important role in many different aspects of heart development,
including the regulation of cell proliferation in the SHF [96]. The recovery of candidate CHD genes in
the Wnt pathway was observed in patients with bicuspid aortic valve (BAV) [37]. Enrichment for de
novo variants in Wnt pathway genes has also been observed in CHD patients with neurodevelopmental
defects, suggesting a shared genetic etiology [97]. Deletion of Apc, a negative regulator of canonical
Wnt signaling, leads to ventricular hypoplasia in mice [98]. Context-dependent regulators of the Wnt
pathway such as Bcl9 and Pygo are also associated with cardiac defects, such as AVSD in mice or TOF
in humans [99]. Canonical Wnt signaling is regulated by interactions between Dkk1/2, and mice that
are double knockouts for Dkk1 and Dkk2 exhibit myocardial and epicardial hypoplasia, as well as VSD
in later stages of development [100]. Non-canonical Wnt signaling also has been shown to activate the
planar cell polarity (PCP) pathway, which coordinates processes such as chamber remodeling through
actomyosin polarization and also regulates ciliogenesis [101–103]. Several core members of the PCP
pathway were identified to cause cardiac defects in a mouse forward genetic screen [5]. Together with
the finding of enrichment in other cilia-related genes, they indicate the importance of the PCP pathway
in heart development and disease.

5.4. Bmp Signaling

Bmp signaling is required for specification and differentiation of the cardiac mesoderm and
it regulates Nkx2-5 expression through a negative feedback loop [96,104]. BMP4 deficiency can
cause septal defects, defective endocardial cushion remodeling, and abnormal pulmonary valve
formation, and common variants in BMP4 are associated with CHD in a Han Chinese cohort [105].
Nonsynonymous variants in SMAD6, an inhibitor of Bmp signaling, have been identified in CHD
patients [106]. Furin deletion targeted to endothelial cells in mice can reduce Bmp4 and Et1, causing VSDs
and valve malformations [107]. Also recovered were multiple de novo variants in SMAD2 [108,109],
which transduces Bmp signaling by regulating downstream target gene transcription [109]. De novo
protein-truncating, splicing, and deleterious missense variants in SMAD2 were identified in a cohort
of CHD patients with a variety of defects including complex CHD with or without laterality defects
and other congenital anomalies and late-onset vascular phenotype [110]. Mutations have also been
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recovered in GALNT1, a glycosyltransferase that can increase Bmp and Mapk signaling, causing
aberrant valve formation due to increased cell proliferation in the outflow cushions [111]. Other studies
suggest BMP10 plays a role in maintaining expression of NKX2-5 and other key cardiogenic factors to
regulate cardiac growth [104]. HIC2 encodes a transcriptional repressor that may regulate BMP10 in
the FHF lineage specified by NKX2-5 and MESP1. HIC2 is impacted by the 22q11 deletion associated
with DiGeorge syndrome [112].

5.5. Sonic Hedgehog (SHH) Signaling

SHH signaling has been shown to play an important role in the development of the SHF, outflow
tract septation, and proper outflow tract alignment [113,114]. SHH is secreted from the pharyngeal
endoderm, and ligand is received by SHF cells, maintaining proliferation of these progenitor cells
(Figure 1) [113]. GATA4 was shown to be required for proliferation of SHH-receiving cells and
subsequent OFT alignment, and Gata4 mutations in mice cause DORV [115]. Signaling from BMP2
and BMP4 in the outflow tract myocardium, conversely, represses proliferation of SHH-receiving
cells, with overexpression leading to premature differentiation of SHF cells and knockout resulting in
embryonic lethality (Figure 1) [116]. SHH regulates development of SIX2+ progenitor cells, which
contribute to the right ventricle, inflow tract, pulmonary trunk and ductus arteriosus [117]. Ablation
of Six2+ cells in mice was shown to result in severe CHD such as common arterial trunk. SHH is also
required for migration of cardiac neural crest cells to the OFT cushion, with SHH mutations in mice
resulting in neural crest cell death and mislocalization (Figure 1) [114]. Mutations in Megf8 can cause
TGA or other complex CHD associated with HTX [118]. While Megf8 was previously proposed to
regulate Tgfβ/Nodal signaling, a CRISPR screen recently identified Megf8 as a negative regulator of
SHH signaling [119]. Moreover, another negative SHH regulator identified in the same screen, Mgrn1,
was also previously shown to cause HTX with CHD, with the CHD comprising TGA [120]. In fact, the
role of SHH in human CHD has not been systematically examined, but the recovery of other regulators
of SHH signaling among mutations causing CHD from a large scale mouse mutagenesis screen would
suggest this pathway is likely to play an important role in human CHD [5].
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Figure 1. Diagram (a) and flowchart (b) illustrating the roles of Sonic Hedgehog (SHH) in OFT
development. SHH (blue) is secreted from the pharyngeal arch endoderm. SHH signaling mediates
migration and localization of cardiac neural crest (CNC) cells (green) to the outflow tract (OFT)
endocardial cushions (red). SHH-receiving cells expressing GATA4 (orange) proliferate in the SHF, and
those receiving signals from BMP2/4 (pink) differentiate into OFT myocardium.

5.6. Ras/Mapk Signaling

The Ras/Mapk pathway, which regulates proliferation, growth, and other cell processes, is also
known to play important roles in CHD. Thus, disruption of the Ras/Mapk pathway results in a
number of related disorders collectively termed RASopathies, the most common of which is Noonan
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syndrome. Noonan syndrome has the highest incidence of CHD, particularly pulmonary stenosis,
among RASopathy patients [3]. PTPN11, which encodes an upstream regulator of the Ras pathway,
is well known to cause Noonan syndrome and is enriched for de novo mutations in a cohort of
syndromic CHD patients [16]. A de novo mutation in MRAS, which contributes to ERK activation
and downstream Mapk signaling, was identified in a patient with Noonan syndrome and cardiac
hypertrophy [121]. Noonan syndrome patients were also identified with heterozygous de novo and
inherited mutations in A2ML1, which may act upstream of the Ras signaling pathways. However, in
cell lines, expression of A2ML1 did not activate the Ras/Mapk pathway [122].

5.7. Vegf Signaling

The Vegf signaling pathway is required for formation of the AV endocardial cushions and their
morphogenesis into AV valves [123]. In a cohort of TOF patients, predicted damaging variants were
identified in the Vegf-related genes FLT4, KDR, VEGFA, FGD5, BCAR1, IQGAP, FOXO1, and PRDM1.
These variants are associated with absent pulmonary valve and right aortic arch [67]. In a cohort of
patients with Down syndrome and AVSD, variants with the highest probability of being damaging in
cases compared to Down syndrome patients without cardiac defects were in the VEGF-A pathway
genes COL6A1, COL6A2, CRELD1, FBLN2, FRZB, and GATA5 [123]. Signaling pathway genes that have
been shown to cause CHD when mutated in mice and humans, as well as their resulting phenotypes,
are described in Table 2.

6. Myofilament and Extracellular Matrix Proteins

Proteins that compose the sarcomere and extracellular matrix are essential for proper structure
and function of cardiac muscle. Mutations in ACTC1, DCHS1, TTN, ELN, MYH6, MYH7, and MYH11
are known to cause cardiac defects [3]. MYH6 mutations have been associated with atrial septal
defects (ASD) and recently were shown to be significantly associated with CoA in a GWAS study of an
Icelandic population [124]. TPM1, an essential component of the sarcomere, has been associated with
cardiomyopathy [125]. Mutations in the cytoskeletal protein ACTC1 cause ASD that is thought to arise
from cardiomyocyte apoptosis [126,127]. The actin-binding protein NEXN has also been associated
with ASD [32]. Genes that regulate splicing of essential cardiac genes are also known to cause CHD.
The splicing factor RBM20 regulates alternative splicing of genes associated with diastolic function
and ion transport, as well as sarcomere assembly, particularly TTN where greater RBM20 expression is
associated with the expression of shorter isoforms of TTN [128]. In mice, mutations in Rbm20 result in
dilated cardiomyopathy (DCM) with similar severity to Ttn mutations, and arrhythmia that is more
severe than Ttn mutations, indicating a role for other Rbm20 targets in disease [129].

Cells must be able to respond and adhere to other cells and the extracellular matrix to maintain
structure and transduce intracellular signaling. In mice, deficiency in the matrix protein Ccn1, which
regulates cell adhesion and migration, proliferation, survival, and differentiation, results in severe
AVSD [130]. Mutations in BVES, a cell adhesion protein, were identified in TOF patients. One Bves
mutation was shown to alter transcriptional activity in a cell based assay [131]. Pcdha9, encoding a
protocadherin cell adhesion protein, was shown to have an essential role in valvular morphogenesis, as
Pcdha9 mutation can contribute to the aortic hypoplasia/atresia in HLHS and also can cause bicuspid
aortic valve (BAV) [79].
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Table 2. Cell signaling genes associated with CHD and their phenotypes in patients and mice.

Gene Human Phenotype Mouse Phenotype References
Notch Signaling

ADAM17 AVSD CHD [50]

HES1 TGA OA, PAA anomalies, VSD [59,78,81]

HEY2 AVSD TOF, HRV, OA, TA, PS, Thickened
mitral valve, ASD, VSD [20,78,132]

JAG1
Aortic dextroposition, TOF, BAV,

CoA, PS, VSD, Alagille
syndrome

DORV, PTA, TOF, IAA, OA, AAAD,
PS, Thickened or calcified valves,

ASD, VSD
[20,37,57,61,74,78,133]

NOTCH1 HTX, AVSD, TOF, HLHS, LVNC,
BAV, CoA, AS, MS, VSD

Aberrant trabeculation, DORV, HRV,
Hypoplastic endocardial cushions,

Impaired EMT, IAA, PAA
anomalies, PS, PTA, TA, Valve

defects, ASD, VSD

[10,20,24,37,50,61,63,64,
66,71,77,78,134,135]

NOTCH2 AVSD, TOF, BAV, CoA, PS,
Alagille syndrome

PS, Reduced compact myocardium,
ASD, VSD [20,37,50,61,68,78,133]

WNT/β-Catenin Signaling
APC BAV, CoA Ventricular hyperplasia [37,98]

BCL9 CHD Septal defects, Valve defects [99,108]

DCHS1 LVNC, Mitral valve prolapse Prolapsed, thickened mitral leaflets [70,136]

DVL1 LVNC, PDA CHD [60,64]

EDN1 TOF DORV, PTA, PAA anomaly, VSD [20,74,137]

PCDHA9 HLHS HLHS, BAV, Aortic
hypoplasia/stenosis [79]

TGF-β/BMP/Nodal Signaling

ACVR1 HTX, AVSD, DORV, TGA,
Left-sided lesions, ASD PTA, PAA anomaly, ASD, VSD [20,71,75,138]

ACVR2B
HTX, Dextrocardia, AVSD,

DORV, TGA, HLHS, LSVC, PS,
Venous anomaly

HTX, TGA, DORV, AA [59,61,64,66,139]

BMPR1A AVSD Hypoplastic endocardial cushion,
Impaired EMT, PTA, ASD, VSD [20,77,140,141]

BMPR2 AVSD, PDA, PAPVR, ASD, VSD
Absent OFT valves, AV cushion

defect, DORV, PTA, IAA, OA,
Thickened valve leaflets, ASD, VSD

[59,61,91,138]

GDF1 HTX, AVSD, DORV, TGA, TOF HTX, DORV, TGA, TOF [10,59,63,71,142]

SMAD6 HLHS, AS, BAV, CoA

DORV, TGA, PTA, IAA, RAA,
Hypoplastic pulmonary artery,

Aortic valve dysplasia, Hyperplastic
valves, VSD

[5,20,24,64,79,134]

TGFB2 VSD, Loeys-Dietz syndrome

DORV, DILV, PTA, Hypoplastic
endocardial cushions, Hypoplastic

aortic arch, OA, PAA anomaly,
TAAD, BAV, Abnormal AV valves,

Hyperplastic valves, VSD

[20,59,63,77,81,143]

TGFB3 Loeys-Dietz syndrome VSD [20,63]

TGFBR1
BAV, Myxomatous mitral valve,
TAAD, Loeys-Dietz syndrome,

Marfan syndrome

Hypoplastic endocardial cushions,
PTA, PAA anomaly, VSD

[20,61,63,66,69,138,144,
145]

TGFBR2

HTX, Mitral valve prolapse,
Myxomatous mitral valve,

TAAD, Loeys-Dietz syndrome,
Marfan syndrome

DORV, PTA, OA, PAA anomaly,
Tricuspid valve defect, ASD, VSD

[20,61,63,66,138,142,144–
147]
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Table 2. Cont.

Gene Human Phenotype Mouse Phenotype References
RAS/MAPK Signaling

BRAF
Cardiofaciocutaneous syndrome,
Costello syndrome, LEOPARD
syndrome, Noonan syndrome

Cardiac defects modeling
cardiofaciocutaneous syndrome [61,63,68,133,148,149]

PTPN11

AVSD, CoA, AS, PS,
Cardiofaciocutaneous syndrome,
Costello syndrome, LEOPARD
syndrome, Noonan syndrome

AVSD, DORV, PTA, Valve defects,
ASD, VSD

[20,60,61,63,68,134,149–
151]

SOS1

AVSD, PS, Cardiofaciocutaneous
syndrome, Costello syndrome,
LEOPARD syndrome, Noonan

syndrome

Valve defects [60,61,63,64,68,108,134,
144,148]

VEGF Signaling
ETS1 DORV, HLHS, ASD, VSD ASD, VSD [20,57,63,81]

VEGFA TOF, PDA, PTA, AS, BAV, CoA,
IAA, VSD

EMT defects, DORV, TOF, Blunted
AV valves, VSD [20,24,64,71]

AA, aortic atresia; AAAD, aortic arch artery defect; AS, aortic stenosis; ASD, atrial septal defect; AV, atrioventricular;
AVSD, atrioventricular septal defect; BAV, bicuspid aortic valve; CoA, Coarctation of the aorta; DILV, double inlet left
ventricle; DORV, double outlet right ventricle; EMT, epithelial-to-mesenchymal transition; HLHS, hypoplastic left
heart syndrome; HRV, hypoplastic right ventricle; HTX, heterotaxy; IAA, interrupted aortic arch; LSVC, left superior
vena cava; LVNC, left ventricular noncompaction; LVOTO, left ventricular outflow tract obstruction; OA, overriding
aorta; OFT, outflow tract; PAA, pharyngeal arch artery; PAPVR, partial anomalous pulmonary venous return; PDA,
patent ductus arteriosus; PS, pulmonary stenosis; PTA, persistent truncus arteriosus; RAA, right-sided aortic arch;
TA, tricuspid atresia; TAAD, thoracic aortic aneurysm and dissection; TAPVR, total anomalous pulmonary venous
return; TGA, transposition of the great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

7. Chromatin Modifiers

Chromatin modifiers regulate the epigenetic marks that control DNA accessibility and
transcriptional activity. Disruption of these processes can interfere with transcriptional programs
important for orchestrating events in cardiovascular development. Chromatin modifiers were found
to be enriched among genes with de novo mutations in a CHD cohort with diverse phenotypes
including LVOTO, conotruncal defects, and HTX [10]. Several genes involved in the regulation of
active H3K4me/inactive H3K27me histone marks were identified. KMT2D encodes one of these histone
modifiers and is associated with Kabuki Syndrome with CoA, ASDs, and VSDs [152]. Mutations have
also been recovered in CASZ1 encoding a zinc finger transcription factor that interacts with histones
and is essential for cardiogenesis. A CASZ1 mutation associated with reduction in transcriptional
activity caused VSD as a completely penetrant autosomal dominant trait [153].

The HDAC repressor complex plays a key role in many developmental processes, and several
proteins that are associated with this complex are associated with CHD [154]. Thus, variants in SMYD4,
a protein which interacts with HDAC1 and can modulate histone acetylation [155], were identified in
patients with DORV and TOF. Genes regulating chromatin were also identified in Smarca4 and Prdm1
in a mouse forward genetic screen for CHD [5]. Another mutant recovered from the same screen
harbored a CHD-causing mutation in Sap130, a Sin3A associated protein that is also part of the HDAC
repressor complex. Mutation in Sap130 was shown to mediate left ventricular hypoplasia [156]. Double
homozygous Pcdha9 and Sap130 mutations were shown to cause HLHS, with the Pcdha9 mutation
found to drive the aortic valve phenotype associated with HLHS [79].

8. The Role of Cilia and Cilia-Transduced Cell Signaling During Cardiogenesis

The cilium is an organelle that protrudes from the cell surface and can be motile or nonmotile.
Motile cilia are involved in cell motility and the generation of extracellular fluid flow, such as in
mediating mucociliary clearance in the airway or cerebral spinal fluid flow in the brain. During early
embryonic development, motile cilia in the embryonic node generate flow responsible for creating a
gradient of signaling molecules, such as NODAL, that establishes left–right patterning. This is essential
for normal cardiac morphogenesis, as disruption of left–right patterning causing HTX is associated
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with some of the most complex forms of CHD. Nonmotile cilia, known as primary cilia, can function
as cell signaling transducers or serve as mechanosensors. Cilia and cilia-transduced cell signaling can
modulate planar cell polarity and affect cytoskeletal organization involved in the regulation of EMT.
This is essential for emergence of neural crest cells from the neural tube, epicardially-derived cells from
the epicardium, and development of the cardiac cushion mesenchyme from endocardial EMT [157]. In
addition, cell signaling pathways known to play essential roles in heart development, such as Wnt,
Tgfb/Bmp, and SHH are all cilia-transduced (Figure 2) [158].
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A central role for cilia in CHD pathogenesis was discovered via the use of forward genetics
in mice with ENU mutagenesis to recover mutations causing CHD. Cardiovascular phenotype was
assessed using fetal echocardiography, a noninvasive high-throughput phenotyping method that is
also highly sensitive for the detection of CHD and allowed the screening of 100,000 fetal mice. While
the screen was entirely phenotype-driven, surprisingly 50% of the mutations recovered causing CHD
were cilia related. This encompassed mutations in 30 genes related to cilia and ciliogenesis (Figure 3).
Additionally, the screen also recovered many genes involved in cilia-transduced cell signaling (Figure 2)
and in vesicular trafficking (Figure 4), a cell process critical for ciliogenesis and cilia-transduced cell
signaling [5]. A separate mouse screen also identified mutations in Dnah11, an axonemal protein, and
Mks1, a basal body protein, to be associated with CHD [159]. Mutations in these same genes were also
recovered in the large scale fetal mouse CHD screen. The ciliary gene Ift88 is an intraflagellar transport
protein required for cilia formation, and Ift88 null mutant mice exhibited OFT defects. [160,161]. Cilia
have also been shown to play a role in aortic valve disease, such as BAV [162]. Defects in development
of the AV cushions in Cc2d2a mutant mice were associated with loss of cilia from the AV cushions
(Figure 5). In human studies, an enrichment of ciliary genes was observed among genes with damaging
recessive variants in a CHD cohort [10]. We note analysis of the early mouse embryos has revealed
primary cilia in the endocardium of the atria, the endocardial cushions, and the cushion mesenchyme,
as well as in the epicardium [163]. Ciliary defects have only recently been identified as a cause of CHD,
and their role in the developmental processes of the heart and the contribution to CHD pathogenesis
warrants further studies.
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Figure 5. Cc2d2a-mutant mouse (line b2b1035) exhibits dextrocardia with ventricular inversion
(dextroversion) (b), and AVSD (a) with malformed atrioventricular cushions (c), but normal outflow
cushions. Atr, atrium; mLV, morphologic left ventricle; m/m, Cc2d2a-mutant mouse; mRV, morphologic
right ventricle. Confocal imaging of E12.5 Cc2d2a-mutant mouse (m/m) versus wild-type (+/+) embryo
sections showed no cilia in the atrioventricular cushion (d,e), but normal ciliation in the outflow cushion
(OFT cushion) (f,g). Adapted from [5].

9. Maternal Effects

Maternal genetics and behavior should also continue to be studied in relation to their effects on fetal
cardiac development, as changes in the fetal environment have been associated with CHD. Congenital
heart disease has been associated with maternal smoking, parental age, and maternal fertility and
nonfertility medications [164], as well as maternal obesity [165], maternal alcohol consumption [166],
and maternal viral infection [167]. CHD pathogenesis in these cases has been attributed to impacts on
placental development [168], overactive maternal immune responses [169], and deficiency of folic acid,
which is essential for fetal growth and development [170,171].

10. Future Directions

CHD is a heterogeneous disease with complex genetics underlying its pathogenesis. While a large
body of evidence points to CHD being genetically heterogeneous, there may be a central role for cilia
and chromatin modifiers in driving the complex genetics of CHD. However, the molecular mechanisms
driving CHD pathogenesis are still not well understood. Mouse models with genetic mutations causing
CHD is an invaluable resource for further mechanistic studies. Findings from these animal models may
help guide assessments and validation of the role in disease of various sequence variants recovered
from patients with CHD. Such pairing of animal studies with clinical findings may give novel insights
not only into molecular mechanisms of human CHD, but the animal models generated may provide
the means to develop therapies that may have improve outcome for patients with CHD. Similarly,
large-scale studies of human cohorts will continue to reveal novel variants that are relevant to disease
and their effects on phenotype and outcome. Stratification of analyses based on specific phenotypes,
patient outcomes, and variant predictions will further reveal the genetic architecture underlying CHD.
In addition, greater focus on common and non-coding variants can help uncover the role that these
variants play in disease, particularly in the context of known rare and deleterious variants. Further
investigation into epigenetics and the effects of maternal genetics will also be needed to obtain a full
picture of the risk factors contributing to the penetrance and pathogenesis of CHD.
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