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Graphical Abstract

Single-cell RNA sequencing and variable-diversity-joining regions-targeted
sequencing revealed clonal diversity. The universal transcriptional features of
myeloma cells were investigated, and eight meta-programs correlated with
this disease were identified. Several attractive candidates for biomarkers (e.g.,
SMAD1 and STMN1) associated with disease progression were identified, which
were validated by functional investigation and confirmed overall survival related
in the CoMMpass dataset.
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Abstract
Background:Multiple myeloma (MM) is a clinically and biologically heteroge-
neous plasma-cell malignancy. Despite extensive research, disease heterogene-
ity and relapse remain a big challenge in MM therapeutics. We tried to dissect
this disease and identify novel biomarkers for patient stratification and treatment
outcome prediction by applying single-cell technology.
Methods:We performed single-cell RNA sequencing (scRNA-seq) and variable-
diversity-joining regions-targeted sequencing (scVDJ-seq) concurrently on bone
marrow samples froma cohort of 18 patientswith newly diagnosedMM(NDMM;
n = 12) or refractory/relapsed MM (RRMM; n = 6). We analysed the malignant
clonotypes using scVDJ-seq data and conducted data integration and cell-type
annotation through the CCA algorithm based on gene expression profiling. Fur-
thermore,we identified disease status-specific genes andmodules by comparison
of NDMM and RRMM datasets and explored the findings in a larger MM cohort
from the MMRF CoMMpass study.
Results: We found that all the myeloma cells in either diagnosed or relapsed
samples were dominated by a major clone, with a few subclones in several
samples (n = 5). Next, we investigated the universal transcriptional features of
myeloma cells and identified eight meta-programs correlated with this disease,
especially meta-programs 1 and 8 (M1 and M8), which were the most signifi-
cant and related to cell cycle and stress response, respectively. Furthermore, we
classified the malignant plasma cells into eight clusters and found that the cell
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numbers in clusters 2/6/7 were exclusively higher in relapsed samples. Besides,
we identified several attractive candidates for biomarkers (e.g. SMAD1 and
STMN1) associated with disease progression and relapse in our dataset and
related to overall survival in the CoMMpass dataset.
Conclusions: Our data provide insights into the heterogeneity of MM as well
as highlight the relevance of intra-tumour heterogeneity and discover novel
biomarkers that might be a potent therapy.

KEYWORDS
clonal diversity, multiple myeloma, relapse, single-cell RNA-seq, transcriptional features

1 INTRODUCTION

Multiple myeloma (MM) is an incurable plasma cell
disorder.1 Advances in anti-myeloma therapeutics during
the last decades have considerably improved the treatment
outcome inmyeloma.2,3 Despite these improvements, MM
remains incurable, with almost all patients unavoidably
relapsing and dying from this disease.4 Several valuable
genetic biomarkers for disease progression and relapse
have been identified in previous studies using the method-
ology of karyotyping, fluorescence in situ hybridization
(FISH) and targeted sequencing,5 and results from large-
scale whole-genome sequencing studies6–9 have revealed
the genetic landscape of this disease. However, these tech-
nologies lack depth and resolution for defining the com-
plicated cellular composition and pathways driving MM
disease progression and relapse. It is essential to develop
new tools for risk stratification and accurate patient ther-
apeutic response prediction because of the progressive
and continually evolving nature of the malignant cells,
which may substantially improve therapeutic manage-
ment. Thus, novel molecular biomarkers formore success-
ful patient stratification and treatment response predic-
tion are needed. Single-cell sequencing technology opens
a way for characterizing the tumour cells and disease
progression in an unprecedented resolution.10 Applying
this technology, several studies have already identified a
series of significant genes or modules, which correlated
with plasma cell heterogeneity,11 disease pathogenesis,12
immune microenvironment,13,14 resistance pathways and
therapeutic response15,16 in MM. In this study, we per-
formed combined single-cell RNA sequencing (scRNA-
seq) and scVDJ-seq using the 10× Genomics system to
analyse the transcriptional profiles and clonotypes con-
currently for 12 newly diagnosis MM (NDMM) and 6
relapsed/refractory MM (RRMM) samples. Our results
indicated that all the myeloma cells in either diagnosis or
relapse samples were dominated by a major clone, with a
few subclones in five samples. Furthermore, we investi-

gated their universal transcriptional characteristics, clus-
tered the malignant plasma cells and identified several
potential biomarkers (e.g. SMAD1 and STMN1) associated
with disease progression and relapse in our dataset and
related to overall survival (OS) in the CoMMpass dataset.

2 MATERIALS ANDMETHODS

2.1 Samples collection

Patient samples were acquired with patients’ written
consent in accordance with the Declaration of Helsinki
with approval from the ethics committee of Shanghai
Changzheng Hospital. Bone marrow (BM) samples were
acquired from 12 NDMM and 6 RRMM. Plasma cells were
sorted using CD138-coated magnetic beads (MACS; Mil-
tenyi Biotec). Tumour cell purity was estimated using a
slide-based assay and/or flow cytometry (Figure S1).17

2.2 Single-cell 5′ mRNA and VDJ
sequencing

After MACS selection, all CD138+ cells were encapsu-
lating separated into droplets, and libraries were con-
structed using the Single Cell 5’ Library & Gel Bead Kit
(10x Genomics) Chromium and Single Cell V(D)J Enrich-
ment Kit for B cells, following the manufacturer’s instruc-
tions. The libraries were finally sequenced using an Illu-
mina Novaseq 6000.

2.3 ScRNA-seq data processing and
quality control

Raw sequencing data were converted into FASTQs using
the Illumina’s bcl2fastq software. FASTQ files were aligned
to the human genome (GRCh38) using theCellRanger (ver-
sion 3.1.0) pipeline. The initial gene expression matrix was
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then processed and analysed by Seurat package (version
3.1.5)18 unless otherwise stated. We first used Scrublet19
to exclude doublets by predicting potential cell doublets.
Then, the cells were included with genes greater than 500,
the counts of RNA per cell greater than 2000, the percent-
age of mitochondrial reads less than 10% and the percent-
age of haemoglobin reads less than 2%. The basic infor-
mation for single-cell datasets of samples can be seen in
Table S1.

2.4 Dimensionality reduction,
clustering and visualization

After filtering, the expression matrix was normalized by
the NormalizeData function in the Seurat package and
ln- transformed [ln (CPM+1)]. Then, principal compo-
nent analysis was applied with the highly variable genes
as input using ‘RunPCA’. Clustering was applied with
graph-based clustering algorithm and visualized with Seu-
rat functions ‘RunTSNE’ and ‘RunUMAP’.

2.5 Cell type’s identification

Cell types were assigned by examining the mean expres-
sion of classical markersmanually. Themarkers used were
PTPRC (immunocytes), CD19, MS4A1, CD79A (B cells),
CD3, CD4, CD8 (T cells), CD14, FCGR3A, LYZ (monocytes)
and SDC1 (myeloma cells) according to the literature.20,21

2.6 scVDJ analysis

Contig assembly, annotation and clonotype analysis were
performed using ‘cellranger vdj’ with the Cell Ranger
V(D)J compatible reference: (refdata-cellranger-vdj-
GRCh38-alts-ensembl-3.1.0). Assembled contigs labelled
as low-confidence, non-productive or with UMIs < 2 were
discarded. To identify the BCR clonotype for each malig-
nant cell, only cells with at least one heavy chain (IGH)
and one light chain (IGL or IGK) were kept. For a given
malignant cell, if two or more IGH or IGL/IGK assem-
bled, the highest expression level (UMI or reads) IGH or
IGL/IGK was defined as the dominated IGH or IGL/IGK
in the cell. Each unique dominated IGH-IGL/IGK pair
(CDR3 nucleotide sequences and rearranged VDJ genes)
was defined as a clonotype. Malignant cells with the same
clonotype constituted a tumour clone. We defined the
tumour clone that constitutes > 75% of malignant cells
with defined clonotypes as the major clone, with .1-10%
of malignant cells as minor clones. All the other tumour
clones were identified as intermediate clones.

2.7 inferCNV analysis

The copy number variation (CNV) analysis based on
the filtered expression matrix was conducted by infer-
cnv R package (version 1.2.1). For this analysis, the
default parameters for 10x Genomics data were used.
We extracted feature vectors regarding chromosome
1q gain, 13q loss and 17p loss status from a table
‘map_metadata_from_infercnv.txt’ to show the CNV sig-
natures of MM, which were demonstrated before.

2.8 Deciphering intra-tumour
expression programs and meta-programs of
MM

The consensus non-negative matrix factorization (cNMF)
algorithm22 was used for the myeloma cells of each sam-
ple individually. NMF was run 200 times for components
(k) from 2 to 25 signatures. For each k, the 200 repeti-
tions are clustered in k groups. To determine the num-
ber of components (k), we used the diagnostic plot accord-
ing to the tutorial (https://github.com/dylkot/cNMF). We
obtained between 10 and 19 intra-tumour expression pro-
grams per sample, 234 programs in total. From the intra-
tumour expression program Pearson correlations, we used
hierarchical clustering to find trends of programs. Eight
main meta-programs emerged.

2.9 Meta-program score calculation

To avoid bias of random selection of genes in the meta-
program definition, we ranked the marker genes of each
intra-tumour expression program by the frequency of
the occurrence in each meta-program. The top 30 genes
were selected, and the genes which appeared in less
than three intra-tumour immune programswere excluded.
The ‘AddModuleScore’ function in Seurat was applied for
calculating the meta-program score for each single-cell
sample.23,24

2.10 Integrated analysis based on
myeloma cells

To handle batch effects, we utilized the canonical correla-
tion analysis (CCA)25 in the Seurat package for data inte-
gration. For this analysis, the following parameters were
used: default top 2000 genes with the highest dispersion
from 18 datasets, and the first 30 canonical correlation
vectors.
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2.11 Differential gene expression
analysis

To findmarkers that define cell clusters, we performed dif-
ferential expression analysis on data usingPegasus (version
1.0.0) (Mann-Whitney U test, log2FC and AUROC are cal-
culated). In the context of the differential gene expression
analysis, the selected genes for downstream analysis uti-
lized a default threshold of .5 for average log2FC.

2.12 SCENIC analysis

The SCENIC analysis was applied by pySCENIC
package (version 0.10.3), following the protocol on
https://github.com/aertslab/SCENICprotocol.

2.13 RNA velocity analysis

The RNA velocity analysis was applied by scVelo
package (version 0.2.2), following the protocol on
https://scvelo.readthedocs.io.

2.14 Processing of bulk RNA-seq data
and survival analysis

The bulk RNA-seq raw data of BM samples combined
with clinical data from 843 samples, including NDMM
(n = 763) and RRMM (n = 80), were downloaded from the
TCGA (https://tcga-data.nci.nih.gov/) MM RNA sequenc-
ing dataset (MMRF-CoMMpass). Patients without BM
samples or complete survival information were excluded.
The module score was calculated by dividing the FPKM
value of each meta program in each sample, followed
by log2 transformation. Survival times were plotted using
Kaplan-Meier survival curves and analysed using log-rank
tests.

2.15 Reverse transcription-quantitative
polymerase chain reaction assay for RNA
transcript expression

Total RNA was isolated from cells using Trizol reagent
(TIANGEN Biotech, Beijing). Five hundred nanograms
of purified RNA was reverse transcribed using the Hifair
1st Strand cDNA Synthesis SuperMix for qPCR (gDNA
digester plus) (Y Cat. ID:KR116, TIANGEN Biotech). PCR
samples were prepared with diluted cDNA (1:30), 5 μl
SYBR Green PCR master mix (TIANGEN Biotech), .2 μM
each of the forward and reverse primers (Table S2) in a

total volume of 10 μl. Reverse transcription-quantitative
polymerase chain reaction (RT-qPCR) was performed by
using an Analytikjena qPCRsoft 4.0 (Germany). The rela-
tive expression level of the target gene was calculated by
using the 2−ΔΔCT method and graphed as fold change
(2−ΔΔCT) from control.

2.16 Gene silencing and siRNA
transfection

The myeloma cell lines NCI-H929, RPMI8226 and U266
were cultured according to the protocol. The transient
siRNA and the transfection reagent INTERFERin R© (poly-
plus corporation) were used in this study. The siRNA
sequences are listed in Table S3 with the concentration at
15 nM. After transfection, the cells were cultured in a 5%
CO2 incubator at 37◦C for 48 h, and the samples were col-
lected for detection.

2.17 Detection of cell viability by CCK8

Three myeloma cell lines were plated in 96-well plates,
2.0×104 cells per well and transfected according to the
above transfection method. After 48 h of culture, 1/10 vol-
ume of WST-8 solution was added to the culture medium
for 2 h. TheODvaluewasmeasured by amicroplate reader.
The Enhanced Cell Counting Kit-8 used in this experi-
ment was purchased from Beyotime Biotechnology Co.,
Ltd., China (Cat. ID: C0042).

2.18 Apoptosis and cell cycle assays

Cells were transfected with siRNA and cultured for 48 h.
After stainingwith annexin V-FITC/PI (Beyotime Biotech-
nology Co., Ltd., Cat. ID: C1062), the results were detected
by flow cytometry and analysed by FolwJo software. For
cell cycle assay (reagents from Beyotime Biotechnology
Co., Ltd., Cat. ID: C1062), the cells were fixed with 70%
ethanol, stained with PI and detected by flow cytometry
after 48 h culture.

2.19 Statistical analysis

Statistical analysis was performed in R (version 4.1.0)
or Python (3.7.10). All results in graphs are presented
as means ± s.d. unless specified otherwise. The OS and
progression free survival (PFS) curves were estimated
using the Kaplan–Meier method and their differences
were analysed using the two-sided log-rank test. Tests
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used to evaluate statistical significance are detailed in the
figure/table legends. All p values reported were two-sided.

3 RESULTS

3.1 Clinical characteristics of patients

Concurrent single-cell sequencing of tumour clonotypes
with rearrangement of variable-diversity-joining regions
and transcriptomes (scVDJ- and scRNA-seq) was used to
analyse BM CD138+ cells from 18 MM patients, includ-
ing 12 NDMM subjects and 6 RRMM subjects, and an
overview of experimental design is shown in Figure 1A.
The median age of the 18 patients was 56 (range 37–70)
years with 12males and 6 females. Six, nine and three cases
were with IgA, IgG and IgD monoclonal proteins, respec-
tively. Cytogenetic analysis by FISH was a routine test at
sample collection. Of the 18 patients, 14 harboured IgH
translocation, including t(11;14) (n = 2), t(4;14) (n = 4) and
translocation with an unknown partner (n = 8). Besides,
13q-, 17p- and 1q21+ were found in three, two and six
patients, respectively. All 12 NDMM patients received the
uniform bortezomib /cyclophosphamide/dexamethasone
(VCD) regimen as the first-line therapy, while the six
RRMM patients were resistant to multiple front-line ther-
apies (Table 1).

3.2 Identification of malignant cells and
clonotypes in MM at single-cell resolution

After quality control and filtering (Figure 1B), a total of
226 662 cells/transcriptomes were obtained from 18 sam-
ples, with a median of 1541 genes detected per cell (Table
S1). We performed data integration and cell-type anno-
tation using the CCA algorithm based on gene expres-
sion profiling (GEP) (Figure 1D and Figures S2-6). As
expected, most of the CD138+ cells isolated by MACS
were myeloma cells mixed with a few normal immuno-
cytes, including T cells and monocytes (Figures S2-6).
Notably, the SDC1/CD138 gene product was identified as
a weakly expressed in T cells in our study, which was
consistent with previous findings that its expression
was described in dendritic cells, activated T cells and
macrophages.26–29
As MM is a plasma cell neoplasm, myeloma cells

undergo the same V(D)J recombination process and
somatic hypermutation as B cells and often exhibit single-
cell clonal amplification.30 Next, we checked the malig-
nant cell clonotypes through single-cell V(D)J sequencing
data. Clonotypes were distinguished by sequence differ-
ence in the CDR3 region of heavy and light chains through

sequence alignment, and malignant cells with the same
clonotype constituted a tumour clone. A total of 188 260
cells with complete BCR information were used to per-
form BCR analysis. In all patients, we detected a major
clone with a dominated IGH-IGL/IGK pair that existed
in > 75% of malignant cells with defined clonotypes, con-
sistent with the clonal expansion nature of this disease.
Among the 18 samples, 13 samples consist of a single clone
and the other five samples contain more than one clone
(Figure 1E and Table S4). Notably, there was a patient at
diagnosis (MM03_D) with a major MM clone (existed in
75.7% of the myeloma cells) and a subclone at interme-
diate frequencies (existed in 24.3% of the myeloma cells).
We performed differential expression analysis between
these two subclones and identified a list of genes statis-
tically significant but subtle changed (log2FC < .5, Table
S5), although the patient survived for only 1 year after
diagnosis.
To further distinguish malignant cells from non-

malignant cells, we inferred large-scale chromosomal
CNVs based on transcriptomes31 and found that myeloma
cells had a higher frequency of CNVs compared with
immunocytes. Especially, the CNVs of chromosome 1q
gain, 13q loss and 17p loss were observed in myeloma cells
but not in immunocytes. This result was consistent with
that detected by FISH (Figure S7 and Table 1).

3.3 Universal transcriptional features of
myeloma cells

After filtering normal immunocytes, the remaining 190 513
cells were used to obtain the transcriptional signatures
of myeloma cells (Table S1). cNMF algorithm22 was used
to identify the intra-tumour expression programs for
each sample. According to previous reports, intra-tumour
expression programs in each sample reflecting univer-
sal features could be merged into meta-programs.32,33 By
correlation clustering, we grouped 234 identified intra-
tumour expression programs into eight meta-programs
(Figure 2A, Figure S8 and Table S6), which covered diverse
biological functions characterized by their top-scoring
genes, including stress response (M1; FOS, FOSB, JUN,
ZFP36 and DUSP1), type I interferon signalling path-
way (M2; ISG15, MX1, IFITM1, ISG20 and IFIT1), the
transcriptional misregulation (M3; DDX5, MEF2C, DDX17,
TENT5C and ATM), protein processing (M4; MZB1;
HERPUD1, DDIT3 and PDIA3), antigen processing and
presentation (M5; TMSB4X, HLA-DPB1 and HLADRB1),
leukocyte cell-cell adhesion and migration (M6; ANXA1,
LGALS1, LGALS3 and S100A4), translation ofmRNAs (M7;
EEEF1A1, EEF1B2, EEF1G and EIF3F) and the cell cycle
(M8;MKI67, HMGB2, NUSAP1 and STMN1).
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F IGURE 1 Study design, quality control and general characteristics. (A) Overview of study design, sample acquisition, preparation and
analysis. We obtained the bone marrow mononuclear cells (BMMCs) from a Chinese multiple myeloma (MM) cohort (n = 12 for diagnosis
and six for relapse), profiled CD138+ myeloma cells with scRNA-seq and scVDJ-seq to describe their transcriptional features and clonal
diversity. (B) Cell counts over seven quality control (QC) steps. (C) Single-cell QC metrics showed by scatter plot. Each cell was plotted
according to the UMIs per cell, the number of genes per cell and the proportion mitochondrial UMIs per cell. QC thresholds were demarcated
with dashed lines. UMIs, unique molecular identifiers. (D) t-SNE visualization of all cells from 18 myeloma samples. Cells in the left graph
were coloured according to cell types (monocytes, T cells, plasma cells, myeloma cells and myeloma-like cells). Cells in the right graph were
coloured according to clonal types (missing, nonclono, monoclono and multiclono). t-SNE, t-distributed stochastic neighbor embedding;
missing, uncaught cells in scVDJ-seq; nonclono, cells with missing scVDJ-seq data. (E) Percentage of malignant cells per clone (triangle/dot)
and patient (row). The clone frequency distribution for a given patient is represented with a violin plot
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F IGURE 2 Universal features of multiple myeloma in different stages. (A) Heatmap showing 234 programs derived from cNMF analysis
were correlated with MM, and eight highly correlated meta-programs were highlighted. cNMF, consensus non-negative matrix factorization.
(B) Violin plots of the meta-program score for each meta-program. (C) Comparison of the module score between diagnosis subjects and
relapse subjects from the MMRF CoMMpass study. ∗p < .05; ∗∗p < .01; ∗∗∗p < .001, ∗∗∗∗p < .0001. (D) Kaplan–Meier analysis of 843 subjects
from the MMRF CoMMpass study. Subjects were divided into two groups according to the median value of the module scores, and p values
were calculated by the log-rank test
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TABLE 1 Patients’ characteristics

Parameter Total (n = 18) Diagnosis (n = 12) Relapse (n = 6)
Age (years) (median, range) 58 (34–74) 57 (46–74) 55 (37–70)
Male:female 12/6 8/4 4/2
Hb (g/L) (median, range) 91 (54–162) 97 (54–162) 89 (81–121)
Cr (μmol/L) (median, range) 79 (31–613) 86 (31–480) 70 (41–613)
LDH (U/L) (median, range) 241 (122–735) 317 (166–735) 205 (122–600)
β2-MG (mg/L) (median, range) 5.05 (1.23–22.9) 8.32 (1.23/22.9) 3.59 (1.89–7.14)
M protein type, n (%)
IgG 9 (50) 7 (58) 2 (33)
IgA 6 (33) 4 (33) 2 (33)
IgD 3 (17) 1 (8) 2 (33)

ISS stage, n (%)
I 3 (17) 1 (8) 2 (33)
II 4 (22) 3 (25) 1 (17)
III 11 (61) 8 (67) 3 (50)

R-ISS stage, n (%)
I 2 (11) 0 (0) 2 (33)
II 9 (50) 7 (58) 2 (33)
III 7 (39) 5 (41) 2 (33)

FISH abnormalities, n (%)
t(11;14) 2 (11) 2 (17) 0 (0)
t(4;14) 4 (22) 3 (25) 1 (17)
-13/13q– 3 (17) 0 (0) 3 (50)
17p– 2 (11) 1 (8) 1 (17)
1q21+ 6 (33) 2 (17) 4 (67)
Double-hit 2 (11) 0 (0) 2 (33)
No adverse cytogenetics 8 (44) 6 (50) 2 (33)
Any high-risk FISH 10 (55) 6 (50) 4 (67)

EMD, n (%)
Bone adjacent 2 (11) 2 (17) 0 (0)
None-bone 2 (11) 0 (0) 2 (33)

Best response, n (%)
≧PR 14 (78) 11 (92) 3 (50)
<PR 4 (22) 1 (8) 3 (50)
OS (days) (median, range) 702 (39–758) 713 (304–758) 616 (39–732)

Abbreviations: EMD, extramedullary disease; ISS, International staging system; PR, partial response; R-ISS, Revised international staging system; High-risk, 17p-,
t(4;14), 1q21+; Double-hit, > 1 high-risk FISH abnormalities.

Then, we calculated module scores for myeloma cells
based on the top 30 genes of each meta-program and com-
pared their differences between the NDMM and RRMM
samples. The scores of meta-programs 1–5 and 7 were sig-
nificantly higher in NDMM samples than that in RRMM
samples (all p < .001), while the scores of meta-programs
6 and 8 were higher in RRMM samples (both p < .001)
(Figure 2B and Figure S9). To validate these results,
we compared the meta-program scores between NDMM
(n = 763) and RRMM (n = 80) samples with bulk RNA-
seq data from the MMRF CoMMpass study and observed

similar trends on meta-programs 1, 3, 6 and 8, but not on
other meta-programs (Figure 2C and Figure S10), which
suggested that these four meta-programs could be possible
risk factors forMM relapse. Besides, we also found that the
scores of meta-programs 1, 3 and 8 differed significantly in
a different series of matched diagnosis and relapse sam-
ples from 43 individuals (Figure S11). Next, we explored
the correlation of meta-programs scores with patient out-
comes using Kaplan-Meier analysis and the log-rank test
in the CoMMpass dataset. The results showed that the
diagnosed or relapsed MM patients with higher scores of
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meta-program 8 (M8) on myeloma cells had significantly
poorer OS (Figure 2D; p < .0001 and p < .0005, respec-
tively). The diagnosed MM patients with low scores of M3
or high scores of M6 and the relapsed MM patients with
low scores of M1 or M3 were associated with relatively
inferior OS (Figure 2D). Hierarchical clustering analysis
revealed that relapsed individuals were enriched in groups
1 and 3, with a higher expression of cell cycle-related genes
(M8) and antigen processing-related genes (M5), respec-
tively (Figure S12).

3.4 Characterizing the cellular diversity
at the single-cell level

Next, we combined the single-cell transcriptomic data of
all 18 individuals’ myeloma cells using the CCA algo-
rithm and visualized them using UMAP to investigate
the diversity of cell population and transcriptional sig-
natures between initial diagnosis and relapse (Figure 3A
and Figures S13 and 14). We filtered out that human
immunoglobulin heavy chain and light chain V seg-
ments (IGHV and IGLV/IGKV) for their high expression
may influence the intrinsic transcriptional characteristics.
Eight clusters with distinct transcriptional signatures were
observed, and each cluster contained a different cell pro-
portion for NDMM and RRMM samples (Figure 3A,B).
Compared with the NDMM samples, the RRMM samples
showed a significantly lower proportion of cells in clus-
ter 1 and a higher percentage of cells in clusters 2 and 6
(Figure 3C). Notably, two RRMM samples (MM17_R and
MM18_R) had a significantly higher proportion of cells in
cluster 7 (37% and 13%) than others (Figure 3D).

3.5 Unique prognostic transcriptional
factors identified by scRNA-Seq

We applied the single-cell regulatory network inference
and clustering (SCENIC) to analyse the clusters which had
increased cell number exclusively in relapse samples. Since
cells in cluster 7 were exclusively over-presented in two
RRMM samples (MM17_R and MM18_R), we performed
the SCENIC analysis and found that four transcription fac-
tors (i.e. SMAD1,BCL11A,NKX3-2 and SOX2) togetherwith
their target genes were significantly up-regulated in clus-
ter 7 (Figure 4A,B and Table S8). Since BCL11A and SOX2
were known as stem cell-related transcription factors.34,35
lineage scores of split clusters based on the expression
signatures of different haematopoietic lineages were cal-
culated (i.e. MMP, CLP, CMP, MEP, B-cell and plasma)36
(Figure S15), and we found the expression signatures of
MMP and B cells were highly represented in cluster 7,

consistent with the finding of SCENIC analysis. Moreover,
we found that high expression of SMAD1 was associated
with relapse risk and inferior OS, especially in relapsed
patients (Figure 4D and Figure S16). Meanwhile, we also
performed this analysis in cluster 1, which had a signif-
icantly lower proportion of cells in relapse samples, and
found that the transcription factors (i.e. ATF3, CREB3,
ETV6 and XBP1) were specifically expressed (Figure S17).
ATF3 and CREB3 bind to the cAMP-response element
and regulate cell proliferation.37–39 ETV6 is required for
haematopoiesis and maintenance of the developing vas-
cular network,40,41 and XBP1 is a classical transcriptional
regulator of plasma cell lineage.42 Taken together, it indi-
cated that MM cells in cluster 1 retain plasma cell identity
with proliferation status, which was in concordance with
a recent study.36
As the cell proportions of clusters 2 and 6 were

increased significantly in RRMM samples, we explored
these clusters’ signatures and found the proliferation and
proteasome-related genes were differentially expressed
(Figure S18). Noteworthy, the lineage score analysis exhib-
ited the expression signatures of immature progenitors
(e.g. MMP and CLP) were also highly expressed in clusters
2 and 6 (Figure S10). Subsequently, we investigated the rel-
evance of these gene expressions withMMprognosis using
bulk RNA-seq data from the MMRF CoMMpass study and
found that increased levels of these gene expressions, such
as STMN1, TUBA1B, TUBB, TYMS andHMGN2 ranked the
top five genes, were significantly associated with relapse
risk and dismal OS (Figure 4C, Figure S19 and Table S7).
To identify the overlap signature genes between our study
and previous reports, an integrated comparative analy-
sis was performed. Several sets of overlap genes enriched
with pathways of oxidative phosphorylation and glycoly-
sis/gluconeogenesis were found (Table S9 and Figure S20).
To explore the directional flow in cellular trajectories,we

then performedRNAvelocity analysis on allmyeloma cells
of the combined dataset through scVelo and validated the
result on cells from single samples (Figure 4E). We noted
that the velocity arrows pointed from clusters 2/6/7 to clus-
ter 1 in the combined and individual datasets (MM17_Rand
MM18_R), suggesting that cells of clusters 2/6 and then
cluster 7 may be in the earlier stages of malignant devel-
opment than other cells in myeloma.

3.6 Functional validation of the genes
identified

The representative genes identified by scRNA-seq were
candidates for further validation of their expression level
between NDMM and RRMM patients based on RT-qPCR
assay, including HMGN2, TUBA1B, SMAD1, TUBB and
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F IGURE 3 Cellular diversity of diagnosis and relapse MM samples. (A) UMAP visualization of all myeloma cells from 18 samples and
cells were coloured according to clusters. UMAP, uniform manifold approximation and projection. (B) Heatmap showing signature genes of
each cluster. (C) Comparison of cell proportions of each cluster between diagnosis and relapse MM samples. ∗p < .05; ∗∗p < .01; ∗∗∗p < .001,
two-sided unpaired Wilcoxon test. n.s, not significant. (D) Percentage bar plot showing the proportion of each cluster in each sample
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F IGURE 4 Transcription factor regulatory network and RNA velocity underlying myeloma cell phenotypes and states. (A) Regulon
specificity score plot of cluster 7. The top regulons in cluster 7 were highlighted in red and labelled on the plot. The specificity score was
shown on the y axis. (B) Comparison of transcription factor expression and regulon activity. In the first column: histogram of AUC values,
together with the chosen threshold (orange dashed line). In the second column, the cells with AUC values over the threshold were shown in
red and their regulon is considered active. In the third column, the actual AUC values were used to colour the cells. In the fourth column, the
expression of the transcription factor itself was shown. AUC, area under the curve. (C) Box plots of the distribution of STMN1 expression level
for the samples from the CoMMpass data. ∗∗∗∗p < .0001, two-sided unpaired Wilcoxon test. Kaplan–Meier analysis of initial diagnosis (top)
or relapse (bottom) samples in the CoMMpass cohort. Two groups were divided according to the median value of STMN1 expression level. The
p values were calculated by the log-rank test. (D) Box plots of the distribution of SMAD1 expression level for the samples from the CoMMpass
data. ∗∗∗∗p < .0001, two-sided unpaired Wilcoxon test. Kaplan–Meier analysis of initial diagnosis (top) or relapse (bottom) samples in the
CoMMpass cohort. Two groups were divided according to the median value of SMAD1 expression level. The p values were calculated by the
log-rank test. (E) RNA velocity plot of all 190 513 myeloma cells from 18 MM patients and myeloma cells from two individuals (MM17_R and
MM18_R). Each dot represents a cell, and arrows indicate the directions of RNA velocity
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STMN1. The median expression levels of these genes in
RRMM patients were significantly higher than those in
NDMM patients, which is shown in Figure 5A. And then,
we focus on the TUBA1B and TUBB gene function anal-
ysis by knocked-down in NCI-H929, RPMI8226 and U266
myeloma cell lines. After knocking down TUBA1B gene,
cell viability was significantly decreased in myeloma cells
(Figure 5B), indicating that TUBA1B gene may impact on
growth and proliferation of myeloma cell. Similarly, we
observed that TUBA1B and TUBB regulate the levels and
activities of a multitude of myeloma cells working on cell
cycle and apoptosis in MM (Figure 5C,D).

4 DISCUSSION

Despite the advance in development with novel agents,
myeloma relapse remains inevitable.43 Selective pressures
contribute to genomic instability, clonal evolution, drug
resistance44 and increased tumour burden. Understand-
ing the clonal composition of MM helps guide therapeu-
tic decision making by identifying combinations that can
effectively target multiple subclones, therefore, single-cell
sequencing is a newmethodology to dissect the unique cell
type, the entire spectrum and clonal diversity of the tran-
scriptome of individual cells. In this study, we applied this
technology to systematically investigate MM in 18 patients
at different stages of disease progression (newly diagnosis
and relapse). We conducted scRNA and scVDJ sequencing
for > 226K single cells, most of which were CD138+ malig-
nant myeloma cells. We characterized the common fea-
tures of myeloma cells and identified the cellular subpop-
ulations, some of which were significantly over-presented
in the relapsed MM samples. We analysed differentially
expressed genes (DEGs) and identified four potential tran-
scriptional factors associated with disease progression and
OS.
As MM is a plasma-cell malignancy with clonal B-

cell origin, immunoglobulin heavy (IGH) and light chain
V(D)J rearrangement sequences have been successfully
exploited by next-generation sequencing,45,46 which is
moving towards clinical implementation as a minimal
residual disease (MRD) tracking.47,48 We have applied the
scVDJ analysis based on 10x Genomics to confirm the
clonotype of tumour cells and found that 27.8% (5/18) MM
samples possessed more than one clonotype. According
to a previous report of bulk sequencing works, sub-clones
were rare and only found in 3.2% of MM patients by VDJ
sequencing.48 Our work suggests that scVDJ sequencing
may be a more sensitive method to illustrate the clonal
diversity and could be a promising tool for MRD detection.
The transcriptional features of MM have been described

by GEP analysis, and several gene expression signatures,

including EMC92,49 UAMS70,50 UAMS80,51 IFM15,52
MRCIX653 and GPI50,54 have been used for risk strati-
fication in MM. Compared with GEP analysis, scRNA
sequencing was able to more in-depth interrogate het-
erogenetic clonal structures. In this study, all myeloma
cells from 18 samples were analysed to characterize the
transcriptional feature of MM, and a total of eight meta-
programswere identified to be correlatedwith this disease,
in which the most significant one was meta-program 8
covering the function of cell cycle consistent with the
gene signature of IFM15, including 15 genes mainly
involved in the cell cycle.52 Furthermore, meta-program
1 covering stress response genes was also significantly
correlated with MM, consistent with previous findings
that pathways of endoplasmic reticulum stress55 and
oxidative stress56 were extensively involved in myeloma.
Few studies based on scRNA-seq have revealed the
disease-progression or resistant signature of MM. One
of the studies performed scRNA-seq on samples from
primary refractory patients enrolled in a trial of com-
bination daratumumab, carfilzomib, lenalidomide and
dexamethasone, and they identified a primary refractory
signature and a broadly resistant signature, referred to as
‘PMID33619369 Module 1’ and ‘PMID33619369 Resistance
signature 1’, respectively.16 Another study identified six
coexisting transcriptional programs in single myeloma
cells from RRMM patients, and among which program 5
(PMID34675390 P5 Cell cycle) was enriched with cell cycle
genes and robustly expressed across patients.36 To identify
the overlap genes between our study and previous reports,
we performed an integrated comparative analysis between
DEGs in each cluster (Table S9 and Figure S20).16,33,36,57
We identified a slight overlap between our DEGs and other
signature genes, which included a set of 14 genes increased
expression in both clusters 2&6 and the ‘PMID33619369
Resistance signature 1’, indicating that both oxidative
phosphorylation (i.e. COX8A, COX6A1, NDUFB2, COX7B
and NDUFS6) and glycolysis/gluconeogenesis (i.e. ENO1,
TPI1 and LDHA) play roles in MM relapse. Meanwhile,
a set of five gene intersections between clusters 2&6
and the ‘PMID34675390 P5 Cell cycle’ were identified as
well, demonstrating proliferation state across MM cells.
PPIA gene in a set of seven genes intersections among
clusters 2&6, ‘PMID33619369 Resistance signature 1’ and
‘PMID33619369 Module 1’ has been defined as a potential
target for resistance mechanism.16 Notably, most DEGs
in clusters 2&6 and 7 were unique and novel results.
Cell numbers in these clusters were exclusively higher in
relapsed samples, suggesting the role of these clusters in
MM progression and relapse.
Eight clusters of plasma cells were classified in this

study, and the cell number in cluster 7 was exclu-
sively higher in two relapsed samples (MM17_R and
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F IGURE 5 Functional validation of the genes identified by scRNA seq. (A) The expression levels of the five genes compared with the
internal reference gene (β-actin) were measured through qPCR in NDMM (n = 13) and RRMM (n = 12) samples. (B) The cell viability of three
myeloma cell lines relative to the negative control after knocking down TUBA1B. (C) The apoptosis of three myeloma cell lines after
knocking-down of TUBA1B and TUBB. (D) The cell cycle measurement of U266 and RPMI8226 cell lines after knocking down of TUBA1B and
TUBB
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MM18_R). Moreover, we identified four genes, includ-
ing SMAD1, NKX3-2, BCL11A and SOX2, significantly
expressed in this cluster. SMAD1 was one of the essential
molecules in the BMP/SMAD pathway critical for bone
metabolism,58,59 and NKX3-2 was reported to relate with
skeletal dysplasia.60 A recent study showed that SMAD1
was highly expressed in RRMM cells and proved that
SMAD1mediatedMMdrug resistance by regulating of NF-
κB1/TNFAIP8 and ID1-p21/p27 axes,61 strongly supporting
the analysis result from our scRNA-seq data. BCL11A is
essential for lymphoid development,35 and SOX2 is a crit-
ical marker for stemness.34 How these four genes partic-
ipate in the mechanism of myeloma progression needs
to be further exploited. Besides, we found the clusters 2
and 6 were significantly over-represented in RRMM sam-
ples with the top five up-regulated signature genes (i.e.
STMN1, TUBA1B, TUBB, TYMS and HMGN2), three out
of which were found to be included in the identified GEP
gene sets (i.e. STMN1 in IFM15, TUBB in EMC92 and
TYMS in GPI50). Moreover, STMN1 and TUBB genes have
been identified in similar expression programs associated
with cell cycle and proliferation.36,62 In the recent study
based on scRNA-seq, STMN1 and TYMS were identified
to be related to resistance pathways of myeloma cells.16
STMN1, a microtubule depolymerization protein, prevents
assembly and promotes the disassembly of microtubules,
thereby participating in the regulation of cell cycle, migra-
tion, apoptosis and other processes.16 TUBA1B and TUBB
are tubulins as the components of the cytoskeleton and
play a key role in cell mitosis and chromosome separa-
tion. High mobility group nucleosomal binding domain 2
(HMGN2) acts as a transcriptional modulator by binding
to chromatin as a member of HMG superfamily. We sub-
sequently validate the gene expression level of HMGN2,
TUBA1B, SMAD1, TUBB and STMN1 in NDMM and
RRMMpatients. In accordance with our analysis, the gene
expression levels in RRMM patients were more highly
correlated with mRNA expression than NDMM patients.
And then, loss-of-function experiments with TUBA1B and
TUBB knocked-down in three myeloma cell lines, which
illustrated thatTUBA1B andTUBB regulated the levels and
activities of a multitude of myeloma cells working on cell
cycle, cell proliferation and apoptosis in MM. However,
other’s function needs to be further explored in the near
future.
In summary, we have characterized the heterogeneous

malignancy of MM at the single-cell resolution and iden-
tified common and special transcriptomic and clonal fea-
tures between cells from patients with diagnosed and
relapsed MM. These findings shed light on the molec-
ular and cellular complexity of MM and also potential
molecular biomarkers for risk stratification and therapeu-
tic options.
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