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ABSTRACT
Metabolic dysfunction-associated steatotic liver 
disease (MASLD) encompasses a wide spectrum 
of liver injuries, ranging from hepatic steatosis, 
metabolic dysfunction-associated steatohepatitis 
(MASH), fibrosis, cirrhosis to MASLD-associated 
hepatocellular carcinoma (MASLD-HCC). Recent 
studies have highlighted the bidirectional impacts 
between host genetics/epigenetics and the gut 
microbial community. Host genetics influence 
the composition of gut microbiome, while the 
gut microbiota and their derived metabolites can 
induce host epigenetic modifications to affect the 
development of MASLD. The exploration of the 
intricate relationship between the gut microbiome 
and the genetic/epigenetic makeup of the host 
is anticipated to yield promising avenues for 
therapeutic interventions targeting MASLD and its 
associated conditions. In this review, we summarise 
the effects of gut microbiome, host genetics and 
epigenetic alterations in MASLD and MASLD-HCC. 
We further discuss research findings demonstrating 
the bidirectional impacts between gut microbiome 
and host genetics/epigenetics, emphasising the 
significance of this interconnection in MASLD 
prevention and treatment.

INTRODUCTION
Metabolic dysfunction-associated steatotic liver 
disease (MASLD), previously known as non-
alcoholic fatty liver disease (NAFLD), encom-
passes a wide range of liver injuries and remains 
as one of the leading causes of hepatic disease 
worldwide, affecting approximately 32.4% of 
the population.1 In 2023, a multisociety state-
ment proposed the adoption of the term MASLD 
to replace NAFLD, which is defined as the pres-
ence of hepatic steatosis accompanied by at least 
one cardiometabolic risk factor, including over-
weight/obesity, type 2 diabetes mellitus (T2DM) 
or evidence of metabolic dysregulation.2 
MASLD begins with hepatic steatosis, charac-
terised by accumulation of excess triglyceride 
in the liver (≥5% hepatocytes). A subset of 
patients with MASLD progresses to metabolic 
dysfunction-associated steatohepatitis (MASH), 
which involves inflammatory responses asso-
ciated with ballooned hepatocytes and/or 
fibrosis, encountering a higher risk of liver 

WHAT IS ALREADY KNOWN ON THIS SUBJECT
	⇒ Metabolic dysfunction-associated steatotic 
liver disease (MASLD) has emerged as the 
leading chronic liver disease and a primary 
cause of hepatocellular carcinoma (HCC).

	⇒ The developmental process of MASLD is 
intricate and comprises various risk factors, 
including cardiometabolic risk factors, genetic 
polymorphisms, epigenetic alterations and the 
gut microbiome.

WHAT THIS STUDY ADDS
	⇒ This review provides a thorough overview of the 
existing research on the gut microbial profile 
and heritable components of MASLD and HCC, 
consolidating the current understanding of this 
crucial aspect.

	⇒ Accumulating evidence highlights the 
significance of epigenetic modifications, such 
as DNA methylation, histone modification, 
chromatin remodeling, and non-coding RNA, 
and proposes their utilisation as non-invasive 
biomarkers.

	⇒ The findings present compelling evidence role 
of the gut microbiota and its metabolites as 
potential epigenetic modifiers in modulating 
epigenetic patterns associated with MASLD 
pathogenesis.

	⇒ Carriers of MASLD risk alleles exhibit a distinct 
enrichment of pathogenic bacteria, depletion of 
beneficial bacteria and alterations in microbial 
metabolite production. This review highlights 
the novel perspective on the reciprocal 
relationship between host genetics and the gut 
microbiome, which holds great promise for the 
development of new therapeutic avenues.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This review analyses the intricate interplay 
between the gut microbiome, host genetics, and 
epigenetic modifications in the development 
of MASLD and HCC, shedding light on their 
potential as promising therapeutic targets in 
personalised medicine.

	⇒ This review further underscores the clinical 
advantages of modulating the gut microbiome 
and epigentic patterns, to mitigate the effects 
of genetic variations linked to MASLD.

http://www.bsg.org.uk/
http://gut.bmj.com/
http://orcid.org/0000-0002-3222-5824
http://orcid.org/0000-0001-5008-2153
http://crossmark.crossref.org/dialog/?doi=10.1136/gutjnl-2024-332398&domain=pdf&date_stamp=2024-06-29


2 Ha S, et al. Gut 2024;0:1–12. doi:10.1136/gutjnl-2024-332398

Recent advances in basic science

cirrhosis and MASLD-associated hepatocellular carcinoma 
(MASLD-HCC), which are end-stage liver diseases.3

The factors that associate with the development of 
MASLD and HCC include not only cardiometabolic risk 
factors but also genetic polymorphisms, epigenetic alter-
ations and the gut microbiome. Research through familial 
aggregation studies,4 twin studies5 and investigations 
into interethnic differences susceptibility6 7 has provided 
evidence supporting the heritable components of MASLD. 
The alterations of gut microbiota (dysbiosis) have also 

gained attention as a risk factor of pathogenesis and progres-
sion of MASLD. The gut microbiome maintains a symbiotic 
relationship with the host via contributing to the immune 
system homeostasis and energy metabolism.8 Dysbiosis has 
been causally linked to multiple liver diseases because the 
gut and the liver are connected via the portal vein, biliary 
tract and systemic circulation,9 and thus, this gut-liver axis 
takes an important role in MASLD. Furthermore, host 
genetics and gut microbiome have bidirectional impacts. 
The influence of host genetics on the composition of human 

Figure 1  Risk factors in MASLD and the intricate interplay between gut microbiome, microbial metabolites, and host genetics and epigenetics. 
MASLD is a multifactorial disease which associates with host genetics, epigenetics, gut microbiome and gut-derived metabolites. More importantly, 
these risk factors may influence one another in the course of MASLD development and progression. The altered gut microbial abundance impacts 
their metabolite production and thus affecting lipid metabolism, inflammatory response and gut barrier function. The gut microbiome also influences 
host epigenetics at a transcription level, while host genetics shape the composition and function of the gut microbial community. The results of these 
various factors eventually lead to hepatic lipid accumulation, persisted inflammation and progression to MASLD-HCC. The microbiota-gene interaction 
may provide novel therapeutic strategies in MASLD and MASLD-HCC treatments. BAs, bile acids; BCAAs, branched-chain amino acids; DNMT, 
DNA methyltransferase; GCRK, glucokinase regulatory protein; HDACs, histone deacetylases; HSD17B13, hydroxysteroid 17-beta dehydrogenase 
13; lncRNA, long non-coding RNA; LPS, lipopolysaccharide; m6A, n6-methyladenine; MASH, metabolic dysfunction-associated steatohepatitis; 
MASLD-HCC, metabolic dysfunction-associated steatotic liver disease (MASLD)-associated hepatocellular carcinoma; MBOAT7, membrane-bound 
O-acyltransferase 7; METTL3, methyltransferase 3; miRNA, microRNA; NF-κB, nuclear factor kappa B; NOD2, nucleotide-binding oligomerization 
domain 2; PNPLA3, patatin-like phospholipase domain-containing protein 3; PPARγ, peroxisome proliferator-activated receptor gamma; SCFAs, short-
chain fatty acids; TCA, tricarboxylic acid; TG, triglyceride; TLR, Toll-like receptor; TM6SF2, transmembrane 6 superfamily member 2; YTHDF1, YTH N6-
methyladenosine RNA binding protein F1.
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gut microbiome has been confirmed in twin studies, which 
showed that monozygotic twins tend to have a more similar 
microbiota than dizygotic twins.10 While host genetics shape 
the species richness and abundance of individual taxa,11 the 
gut microbiota and their derived metabolites can induce 
epigenetic modifications,12 which in turn may influence the 
progression of MASLD and HCC.13 This complex crosstalk 
has potential implications on patients’ health status and 
disease development in MASLD and HCC (figure  1). This 
review intends to comprehensively evaluate and summarise 
different aspects of the gut microbial and genetic factors 
of MASLD, and more importantly, explore the potential of 
new therapeutic approaches based on elucidating the inter-
play between host genetics, epigenetics and gut microbiome 
in MASLD and HCC.

GUT MICROBIOME AND METABOLITES IN MASLD AND ITS 
RELATED HCC
Gut microbiome and its produced metabolites play crucial roles 
in the development of MASLD and its related HCC. Patients 
with MASLD often exhibit an altered ratio of Firmicutes/Bacte-
roidetes, which is correlated with hepatic steatosis and obesity, 
indicating gut dysbiosis.14 This dysbiosis leads to the production 
of metabolites that can disrupt the intestinal barrier, also known 
as ‘leaky gut’, which causes portal translocation of bacteria and/
or their metabolic products to the liver and triggers sustained 
inflammation.15 Dysregulation of gut microbial metabolites 
including short-chain fatty acids (SCFAs), bile acids (BAs), 
endogenous ethanol, tryptophan metabolites, trimethylamine 
and branched-chain amino acids have been linked to the develop-
ment of MASLD and HCC.16 Our team has reported the supple-
mentation of probiotics and beneficial metabolites protected 
against MASLD and its related HCC. For instance, Parabacte-
roides distasonis and its produced pentadecanoic acid amelio-
rates MASH by restoring gut barrier function and preventing 
bacterial toxin translocation,17 and Lactobacillus acidophilus-
derived valeric acid exhibits robust anti-tumourigenic effects 
in MASLD-HCC by binding to G protein-coupled receptors 
to inactivate the oncogenic Rho-GTPase signalling pathway.18 
In addition to metabolites, bacterial antigens such as lipopoly-
saccharide (LPS), peptidoglycan, flagella, polysaccharide A and 
bacterial DNA also contribute to MASLD. LPS is endotoxin that 
compromises the integrity of the gut barrier and induces inflam-
mation via Toll-like receptor (TLR) 4, leading to the activation 
of nuclear factor κB (NF-κB) and tumour cell proliferation.19 
Peptidoglycan induces MASH development through stimu-
lating lipogenesis through nucleotide oligomerization domain 
2 (NOD2)-NF-κB-peroxisome proliferator-activated receptor 
gamma (PPARγ) signalling.20 Flagellin, the primary structural 
component of flagella, is associated with an increased risk of 
MASLD and HCC via stimulating inflammatory responses via 
TLR5.21 22 Moreover, polysaccharide A produced by Bacte-
roides fragilis can be recognised by dendritic cells to stimulate 
the development of Tregs with the ability to attenuate colitis.23 
Bacterial DNA in the liver is closely associated with MASLD 
severity.24 Lachnospiraceae DNA links to more severe histology, 
and Proteobacteria DNA correlates with higher inflammation 
scores. Besides, viral and fungal antigens are also associated 
with MASLD, for instance, the coexistence of hepatic steatosis 
in patients with chronic viral hepatitis B infection leads to 
the aggravation of liver fibrosis,25 while β-glucans from fungi 
Candida albicans are known to induce intestinal inflamma-
tion and accelerate obesity, T2DM and MASLD in mice via 

the dectin-1-dependent pathway.26 Taken together, these gut 
microbiota-derived metabolites and antigens play crucial roles 
in MASLD.

Studies have proposed the idea of gut microbial signature to 
distinguish different phases of MASLD. A model based on gut 
microbial changes has demonstrated the ability to discriminate 
patients with steatosis, achieving an area under curve (AUC) of 
0.727, while a multivariate model that integrates metagenomic, 
transcriptomic and metabolomic information improved the 
performance to AUC of 0.87.27 12 MASH-associated bacteria 
species could discriminate MASH from healthy control with 
AUC of 0.75–0.81 in 279 patients with biopsy-proven MASH 
and 78 healthy controls.28 37 bacterial species could distinguish 
mild/moderate MASLD from advanced fibrosis, yielding an 
impressive AUC of 0.936. Another study has highlighted that 
a combination of two bacteria (Veillonellaceae and Ruminococ-
caceae) could diagnose significant fibrosis (fibrosis score ≥2) 
in non-obese MASLD, achieving an AUC of 0.765. The addi-
tion of stool metabolites (cholic acid, chenodeoxycholic acid, 
ursodeoxycholic acid and propionate) further enhanced the 
performance, resulting in an AUC of 0.939.29 Additionally, the 
gut microbiome signature comprising 19 discriminatory species 
demonstrated an AUC of 0.91 in detecting MASLD-cirrhosis in 
the proband cohort.30 In addition to bacteria, viral changes have 
also been observed in MASLD with a significant reduction in 
the proportion of bacteriophage compared with other intestinal 
viruses. The combination of viral diversity (inverse Simpson 
index), aspartate transaminase (AST) and age showed AUC of 
0.95 for predicting MASLD activity score 5–8 or liver cirrhosis. 
The combination of viral diversity with age, alanine transami-
nase (ALT) and platelet counts could diagnose advanced fibrosis 
with AUC of 0.88.31 However, there is currently no consistent 
evidence of microbial signature that can be applied universally 
to determine the stage of simple steatosis, MASH or HCC, since 
the gut microbial composition differs between populations and 
ethnicities. Moreover, the potential confounding impact of 
metabolic variables might influence the detection of microbial 
signatures. Larger cohorts comprising various population groups 
detailed information pertaining to diet composition and exten-
sive control groups (eg, patients with the presence of metabolic 
syndrome, diabetes or T2DM) are essential in developing diag-
nostic/prognostic markers and new therapeutic targets.

GENETICS AND EPIGENETICS IN MASLD AND HCC
Both genetics and epigenetics have been established as crucial 
factors in the development of MASLD and HCC. Genetic alter-
ations involve single nucleotide polymorphisms in genes such 
as patatin-like phospholipase domain-containing 3 (PNPLA3), 
transmembrane 6 superfamily member 2 (TM6SF2), membrane 
bound O-acyltransferase domain containing 7 (MBOAT7), 
glucokinase regulator (GCKR) and hydroxysteroid 17-beta dehy-
drogenase 13 (HSD17B13), which have been identified through 
genome-wide association studies (GWAS) and exome-wide 
association studies. The PNPLA3 gene encodes for a multifunc-
tional enzyme that associates with hepatic lipid regulation via its 
triglyceride hydrolase and acylglycerol O-acyltransferase activity 
on the surface of lipid droplets.32 The G allele of rs738409 
(C>G) is associated with higher hepatic fat content and inflam-
mation, as well as MASLD-HCC,33 34 while r6006460 (G>T) is 
associated with lower hepatic fat content.35 The TM6SF2 gene 
is predominately expressed in the liver and small intestine and 
encodes for proteins that participate in lipid metabolism via 
mediating hepatic triglyceride secretion.36 The rs5842926 (C>T) 
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variant leads to lower total cholesterol and low-density lipopro-
teins levels37 and confers a significantly greater risk of advanced 
hepatic fibrosis and progression to MASLD-HCC.38 MBOAT7 
encodes for an integral membrane protein that serves as a lyso-
phosphatidylinositol acyltransferase to transfer polyunsaturated 
acyl-CoAs to lysophosphatidylinositol and other lysophospho-
lipids in the Lands cycle. The variant rs641738 (C>T) is associ-
ated with MASLD, resulting in more severe liver damage and an 
increased risk of fibrosis.39 The GCKR gene encodes glucokinase 
regulatory protein that inhibits glucokinase expressed in the liver 
and β-cells of Islets.40 Two common variants in the GCKR gene, 
rs780094 (C>T) and rs1260326 (C>T), have been shown to 
impact hepatic fat content, triglycerides and lipoprotein levels, 
and more severe MASH and fibrosis stages.41 HSD17B13 gene 
encodes for lipid droplet enzymes essential for hepatic lipid 
droplet targeting.42 The variant rs72613567 (T>TA) is found 
to be protective against MASLD and mitigate liver injury in 
patients who are genetically predisposed to liver disease caused 
by PNPLA3 148M polymorphisms via reducing PNPLA3 mRNA 
expression,43 suggesting the therapeutic potential of HSD17B13 
rs72613567 in specific group of patients with MASLD. In addi-
tion, rs72613567 TA allele associates with a reduced risk of HCC 
development and greater survival advantages in HCC.44

In addition to genetic alterations, epigenetic modifications also 
play a significant role in MASLD and HCC. Epigenetics is the study 
of heritable and stable phenotypes that occur through alteration in 
the chromosome without changes in the DNA sequence.45 These 
modifications influence gene expression patterns and cellular 
phenotypes, thereby impacting the development and progression 
of MASLD and HCC. The role of epigenetic mechanisms, such 
as DNA methylation, histone modification, chromatin remodelling 
and non-coding RNA in metabolic diseases including MASLD, has 
been extensively investigated and documented.46 In recent years, 
epitranscriptomics, which focuses on RNA modifications, has 
emerged as a critical area of study in post-transcriptional regulation 
of gene expression, including protein translation, RNA stability 
and function. Among RNA modifications, n6-methyladenine 
(m6A) is the most prevalent and well-studied modification. Our 
recent research demonstrated that the m6A ‘writer’ protein, meth-
yltransferase 3 (METTL3), plays a significant role in promoting 
MASLD-HCC progression. Specifically, METTL3 mediates m6A 
modification on mRNA of sterol regulatory element-binding 
protein cleavage-activating protein (SCAP), resulting in enhanced 
translation of SCAP. This process leads to the activation of 
cholesterol biosynthesis and drives MASLD-HCC progression.47 
Furthermore, another m6A-related protein, the ‘reader’ YTH 
N6-methyladenosine RNA binding protein F1 (YTHDF1), was 
found to be involved in MASLD-HCC tumourigenesis.48 YTHDF1 
promotes tumourigenesis through the enhancer of zeste homolog 
2/interleukin 6 (EZH2/IL-6) signalling pathway. This pathway 
recruits and activates myeloid-derived suppressor cells, which 
in turn cause dysfunction in cytotoxic CD8 T cells, ultimately 
contributing to MASLD-HCC development. These studies high-
light the intricate involvement of RNA modifications, particularly 
m6A, in the pathogenesis of MASLD and HCC. The dysregulation 
of m6A writers, readers and downstream signalling pathways can 
have profound effects on gene expression, cellular processes and 
tumour microenvironment, ultimately impacting MASLD-HCC 
progression and therapeutic interventions.

INTERPLAY BETWEEN GUT MICROBIOME, HOST GENETICS 
AND EPIGENETICS IN MASLD AND HCC
Genetic susceptibility of MASLD involves gene-gene and gene-
environment interactions, which goes beyond mere specific 

loci identification. Aberrant epigenetic modification alters the 
expression of genes involved in the pathogenesis of MASLD 
and MASLD-HCC. In recent findings, studies have concluded 
that changes in gut microbial and metabolite composition can 
induce epigenetic modifications in liver diseases (figure 2), while 
MASLD-associated genetic variants and gene expression can 
shape the composition and function of gut microbiota and their 
derived metabolites (table 1). The interplay of this host gene-gut 
microbiota linkage could provide new therapeutic insights in 
tackling the onset and progression of MASLD.

GUT MICROBIOTA AND METABOLITES INDUCE HOST 
EPIGENETIC ALTERATIONS IN MASLD
DNA methylation involves DNA methyltransferases (DNMTs) 
and plays an important role in maintaining genome stability 
and transcription factor binding by catalysing the transfer of 
methyl group from S-adenosyl methionine to cytosine. DNA 
methylation is the key in governing gene expression by silencing 
or activating genes through hypermethylation or hypometh-
ylation, respectively.49 Alteration of gut microbiome is closely 
associated with DNA methylation of genes involved in lipogen-
esis. Studies demonstrated that the modulation of gut micro-
biome via antibiotics protects against diet-induced weight and 
adipocyte expansion. The depletion of Firmicutes, Lactoba-
cillus and Helicobacter, and enrichment in Bacteroides, Entero-
bacter and Klebsiella by antibiotics elevates adipose expression 
of adiponectin and resistin via DNA hypomethylation in their 
promoters and downregulation of DNMT1 and DNMT3A.50 
The inhibitive effects on body weight gain are also accompa-
nied by the increased expression of genes associated with fatty 
acid β-oxidation and thermogenesis, including PPARα, PPARγ 
coactivator 1-alpha and adipose triglyceride lipase. In addition, 
the depleted mRNA levels of adiponectin and resistin in obese 
mice can be rescued by SCFA supplementation through inhib-
iting the binding of DNMT1, DNMT3A and DNMT3B to their 
promotors.51 Regarding PPARα, its activity can be influenced by 
microbial-derived metabolites. LPS hinders the expression of 
PPARα by inhibiting hepatocyte nuclear factor 4 (HNF4) activity 
in PPARα transactivation. The suppressed PPARα activation 
further inhibits the production of pigment-epithelium-derived 
factor (PEDF), which is a Wnt inhibitor that restrains intestinal 
stem cell proliferation and maintains gut homeostasis.52 More-
over, PPARα also interacts with other epigenetic enzymes, such 
as sirtuin-1,53 which opens the door to investigation on how gut 
metabolites modulate MASLD via PPARα in epigenetics. Faecal 
microbiota transplantation (FMT) is another emerging ther-
apeutic intervention in gut microbial modulation. FMT from 
healthy donors to patients with MASLD not only altered gut 
microbial composition but is also accompanied by changes in 
liver DNA methylation. The enriched Eubacterium siraeum in 
recipients is found to be negatively correlated with DNA meth-
ylation of cg16885113 in zinc finger protein 57 (ZFP57),54 a 
key regulator of epigenetic imprinting which has implication in 
insulin resistance and diabetes.55 56 More intriguingly, MASLD 
may induce persistent changes in gut microbial composition and 
liver DNA methylation pattern even after therapeutic interven-
tion. Persistent hypomethylation of apolipoprotein A4 (APOA4) 
in MASLD is found to be associated with serum triglyceride 
levels and sustained gut Odoribacter abundance. Odoribacter is 
well known for its ability to produce butyrate which potentially 
modulates APOA4 methylation and APOA4-mediated hepatic 
triglyceride export, intestinal lipid absorption and very low-
density lipoprotein particle expansion.57
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Histone modifications are crucial in the epigenetic regula-
tion of gene expression. Histone acetyltransferases and histone 
deacetylases (HDACs) are responsible for histone acetylation 
and deacetylation, respectively. Furthermore, their activities are 
highly sensitive to gut microbiota and their derived molecules.58 
Histone deacetylation regulates transcriptional inactivation, and 
overexpression of HDACs has been linked to multiple intestinal 
diseases. Hence, HDAC inhibitors have well-known potential 
to serve as therapeutic agents. In conventional mice, HDAC3 
enriched in adipocytes plays an important role in intestinal 
homeostasis owing to its high sensitivity to microbial signals in 
mediating lipid metabolism in liver, muscle and adipose cells. 
Intestinal-specific deletion of HDAC3 increased the suscepti-
bility to intestinal damage and inflammation caused by the loss 
of Paneth cells and impairment of intestinal epithelial cell func-
tion. However, the effect of HDAC3 knockout was not observed 
in germ-free mice.59 Conversely, in diet-induced obesity models, 
HDAC3 was found to promote weight gain and insulin resis-
tance, while HDAC3 knockout resulted in increased energy 
expenditure and a decrease in serum triglycerides, body fat and 
weight gain. SCFAs, including butyrate, propionate and acetate 
are well-known HDAC inhibitors. Butyrate administration 

in conventional high-fat diet-fed mice, but not in HDAC3 
knockout mice, significantly reduced weight gain, supporting the 
specific role of butyrate as a HDAC3 inhibitor in diet-induced 
liver abnormalities.60 Furthermore, butyrate hinders the progres-
sion of hepatic steatosis to MASH via inhibition of HDAC2 and 
promotion of hepatic glucagon-like peptide-1 receptor (GLP-
1R) expression.61 In MASLD-HCC, the expressions of various 
HDACs are upregulated in patients, and enhanced expression 
of HDACs has been found to be a crucial factor in malignant 
growth and immune escape.62 The synergistic cytotoxic effect of 
sodium propionate in combination with chemotherapeutic agent 
cisplatin enhanced the inhibition of proliferation and induction 
of apoptosis of cancer cell by reduction of HDAC6 and 8 activ-
ities in a GPR41-dependent manner.63 In addition, acetate has 
been reported in regulating anti-tumour immunity through inhi-
bition of HDAC activity and induction of sex-determining region 
Y-box transcription factor 13 (SOX13) acetylation in HCC. 
The consequential decreased expression of SOX13 reduces the 
production of IL-17A in type 3 innate lymphoid cells. Moreover, 
the combination programmed death 1/programmed death ligand 
1 blockade with acetate administration enhances anti-tumour 
immunity in HCC model, suggesting that the therapeutic 

Figure 2  Gut microbiota and microbial metabolites modulate host epigenetics in MASLD. Gut microbiome and their derived metabolites are 
closely linked with host epigenetic modifications, influencing DNA methylation, histone modification and RNA regulation. Gut dysbiosis may 
promote DNA methylation and DNMT activity in genes associated with lipid metabolism, insulin resistance and stem cell proliferation. SCFAs are 
well-known histone deacetylase inhibitors and regulate transcription in anti-inflammatory genes. Dysbiosis also favour specific miRNA activity in 
promoting MASH and MASLD-HCC. Moreover, gut microbiota and metabolites may regulate m6A modification in MASLD and HCC prevention which 
require further investigation. ACC1, acetyl-CoA carboxylase 1; APOA4, apolipoprotein A4; DNMT, DNA methyltransferase; FABP4, fatty acid binding 
protein 4; HNF4, hepatocyte nuclear factor 4; IL-6, interleukin 6; LPS, lipopolysaccharide; MASH, metabolic dysfunction-associated steatohepatitis; 
MASLD-HCC, metabolic dysfunction-associated steatotic liver disease (MASLD)-associated hepatocellular carcinoma; METTLE3, methyltransferase 
3; miRNA, microRNA; m6A, n6-methyladenine; PEDF, pigment-epithelium-derived factor; PPARα, peroxisome proliferator-activated receptor-alpha; 
SCD1, stearoyl-CoA desaturase 1; SCFAs, short-chain fatty acids; Snhg9, small nucleolar RNA host gene 9; SOX13, Sex-determining Region Y-box 
transcription factor 13; TNF-α, tumour necrosis factor-alpha; TMBIM1, transmembrane BAX inhibitor motif containing 1; TLR4, Toll-like receptor 4; 
YTHDF1, YTH N6-methyladenosine RNA binding protein F1; ZFP57, zinc finger protein 57.
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effect of acetate in improving immunotherapy efficacy may 
be mediated via HDAC regulation.64 In addition, Bacteroides 
thetaiotaomicron-derived acetic acid was found to inhibit HCC 
recurrence through histone acetylation modification in the 
acetyl-CoA carboxylase 1 (ACC1), a key enzyme in fatty acid 
biosynthesis.65 These findings suggested a complex interplay 
between gut microbial metabolites and epigenetic regulations 
in HCC; further research is essential to elucidate the clinical 
application potentials by targeting gut metabolites in modulating 
histone modifications.

The miRNAs are involved in the course of MASLD and 
the severity of hepatic disease can be characterised by specific 
microRNA (miRNA) signature. In high-fat diet-induced meta-
bolic adaptation, the altered abundances of Firmicutes and Bacte-
roides acidifaciens are significantly associated with miRNA-21α 
activity, thus, influencing hepatocyte apoptosis, insulin signalling, 
proinflammatory cytokines and liver fibrosis.66 Gut microbial 
modulation in Eubacterium, Blautia, Clostridium, Lactobacillus 
and Parasutterella mitigates diet-induced hepatic steatosis via 
regulating miRNA-130α, miR-34α and miR-29α. The abun-
dance of Bacteroidetes, Proteobacteria and Parasutterella reveals 
robust negative correlations with miRNA-34α and potentially 
suppresses miRNA-34α to regulate hepatic lipid metabolism 
via hepatocyte nuclear factor 4α (HNF-4α), SIRTUIN1 and 
PPARα.67 Gut dysbiosis in patients with MASH is associated 
with the upregulation of miRNA-582-3 p in plasma. Dysbiosis 
in Shigella, Enterobacter, Bacteroides, Porphyromonas and Mega-
monas was found to upregulate miRNA-582-3p to promote 
hepatic stem cell proliferation and myofibroblast markers 
expression via transmembrane BAX inhibitor motif containing 
1 (TMBIM1) and TLR4, leading to MASH and fibrosis.68 In 
addition to miRNA, the gut microbiota can reprogramme intes-
tinal lipid metabolism through long non-coding RNAs. Whole-
transcriptome sequencing of small intestinal epithelial cells 

from conventional and germ-free mice identified that the small 
nucleolar RNA host gene 9 (Snhg9) activity is highly suppressed 
by gut microbiota through myeloid cells and group 3 innate 
lymphoid cells. Overexpression of Snhg9 was found to reduce 
the expression of fatty acid transporter CD36, fatty acid binding 
protein 4 (FABP4) and lipogenic enzyme stearoyl-CoA desatu-
rase 1 (SCD1) via direct binding to cell cycle and apoptosis regu-
lator 2 (CCAR2), suggesting that the gut microbiota promotes 
lipid absorption and metabolism by repressing the expression of 
long non-coding RNAs.69

While the contribution of gut microbiota in influencing 
host m6A profiles in MASLD and HCC is still under inves-
tigation, it has been well established that the gut microbiota 
can indeed impact m6A modifications in intestinal metab-
olism and disease development. Using m6A-methylated 
RNA-immunoprecipitation and sequencing of liver tissue 
from conventional and germ-free mice, variations in gut 
microbiota were found to be correlated with m6A modifi-
cation in metabolic pathways associated with lipid, vitamin, 
amino acids and insulin signalling. The study further showed 
that Akkermansia muciniphila and Lactobacillus plantarum 
impact specific m6A modifications in mono-associated 
mice.70 Alteration of m6A level in the liver and small intes-
tine is presented in high-fat diet-fed animal models and is 
closely associated with gut dysbiosis. FMT has been shown 
to restore m6A level and abrogate diet-induced obesity in 
mice potentially via enrichment of Lactobacilli.71 Folic 
acids, a major donor for DNA synthesis and methylation, 
synthesised by beneficial Lactobacillus and Bifidobacterium 
have also been reported in regulating m6A modification to 
maintain normal intestinal environment.72 These studies 
unravelled the role of gut microbiota in m6A modification, 
which deserves further exploration in future MASLD-HCC 
research.

Table 1  MASLD-associated host genetics and gene expression in shaping composition of liver and gut microbiome

Host genes Liver microbial alterations Associated disease pathways References

PNPLA3 rs738409 ↑Enterobacter, Marivota De novo fatty acid biosynthesis 11 120

TM6SF2 rs58542926 ↑Gemella, Fusobacterium
↑Methylobacterium, Prevotelle_9
↑Pseudoalteromonas, Megamonas

Tryptophan metabolism 11

MBOAT7 rs641738 ↑Tyzzerella
↓Butyricicoccus, Streptococcus

Nucleotide and purine biosynthesis 11

HSD17B13 rs72613567 ↑Methylotenera
↓Fusobacterium, Parasutterella

Phosphatidylglycerol and gondoate biosynthesis 11

Host genes Gut microbial alterations Associated disease pathways References

PNPLA3 rs738409 ↑Desulfobacteraceae bacterium
↑Bacteroidetes, Gemmiger
↑Oscillospira

De novo fatty acid biosynthesis 73

GPR35 ↑Ruminococcus gnavus Hepatic fat accumulation 79

FKBP5 ↑Bacteroidales, Verrucomicrobiales
↓Clostridiales, Burkholderiales
↓Enterobacteriales

MASLD-HCC inhibition 87

HIF-2α ↑Bacteroides vulgatus
↓Ruminococcus torques

Adipose tissue thermogenesis
BA metabolism

81

SQLE ↑Desulfovibrio fairfieldensis
↑Brucella abortus, Chlamydia muridarum
↑Lachnospiraceae
↓Ruminococcus

BA metabolism
De novo hepatic lipogenesis
Hepatic cholesterol accumulation
Gut barrier disruption

83 85

BA, bile acid; FKBP5, FK506-binding protein; Gpr35, G protein-coupled receptor 35; HIF-2α, hypoxia-inducible factor 2α; HSD17B13, 17-beta hydroxysteroid dehydrogenase; 
MBOAT, membrane bound O-acyltransferase domain containing 7; PNPLA3, patatin-like phospholipase domain-containing protein 3; SQLE, serum squalene epoxidase; TM6SF2, 
transmembrane 6 superfamily member 2.
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HOST GENETIC VARIANTS AND GENE EXPRESSION PROFILE 
SHAPING MICROBIAL COMPOSITION IN MASLD AND HCC
The roles of genetics and microbiome in MASLD have been 
studied extensively. However, the specific mechanisms by 
which genetics modulates gut microbiota in MASLD are still 
unclear. The advancements in omics and bioinformatics allow 
disentangling the complex interplay between host genetics and 
gut microbiome. Nonetheless, the majority of human studies 
were conducted in small sample sizes and findings have yet to 
be widely replicated across larger and more diverse cohorts. A 
study comparing 44 obese youth with MASLD to 29 obese youth 
without MASLD showed that the abundance of faecal Gemmiger, 
Oscillospira and PNPLA3 rs738409 variant was predictive of 
hepatic fat fraction.73 Another study of 10 patients with simple 
steatosis and 22 patients with steatohepatitis showed that the 
faecal Desulfobacteraceae bacterium was significantly decreased, 
while fungi such as Fusarium, Candida, Aspergillus and Saccha-
romyces were higher in patients with the PNPLA3 rs738409 
GG genotype.74 Microbiome analysis in the liver tissue of 116 
patients with MASLD (19 control, 44 patients with MASL and 
53 patients with MASH) confirmed the linkage between host 
genetics and the liver microbiome. PNPLA3 rs738409 G allele 
carriers presented enriched liver Enterobacter and Marivota, 
while TM6SF2 rs58542926 T allele carriers had enriched 
Pseudoalteromonas and Megamonas. The carriers of MBOAT7 
rs641738 T allele showed depleted Butyricicoccus and Strep-
tococcus, while carriers of HSD17B13 rs72613567 TA allele 
showed decreased abundances of Fusobacterium and Parasut-
terella.11 The strongest associations were between Enterobacter 
and PNPLA3 rs738409, and Pseudoalteromonas and TM6SF2 
rs58542926. These two genera belong to Gamma proteobacteria 
which are associated with more severe forms of MASLD.24

Considering the interpatient variations in host genetics and gut 
microbiome, the lack of high-quality studies hinders establishing 
conclusive evidence and elucidating underlying mechanisms. 
Future studies should employ rigorous statistical analysis and 
ensure biological plausibility. Another limitation of the related 
studies is their descriptive nature. Despite the remarkable prog-
ress in GWAS and metagenomic data, the biological mechanisms 
underlying the association between host genetics, specific micro-
bial species and metabolite production remain poorly under-
stood, particularly with respect to the role of host genetics in 
shaping gut microbiome. However, our recent research has shed 
light on this topic. We have discovered that the genetic dele-
tion of Tm6sf2 in the intestine alters gut microbiome composi-
tion by increasing free fatty acid secretion, leading to MASLD 
development.75 Nonetheless, further investigations are needed 
to elucidate how host genetics influence the gut microbiota in 
patients with MASLD. While some evidence suggests an associ-
ation between the microbiome and host genetics in humans, it is 
important to consider the strength of these findings.

Besides the role of host genetic variants, MASLD-related gene 
expression profiles also impact composition of gut microbiome. 
G protein-coupled receptor 35 (GPR35) is an orphan receptor 
highly expressed in the gut epithelial and myeloid cells. Regu-
lation of hepatic cholesterol homeostasis by GPR35 has been 
found to mitigate obesity-related MASH.76 Polymorphisms in 
GPR35 are associated with intestinal inflammation, metabolic 
stress and T2DM.77 78 Global and intestinal-specific GPR35 dele-
tions induce gut dysbiosis and increased susceptibility to liver 
steatosis and metabolic syndrome. Further research has shown 
that the loss of GPR35 leads to an increase in Ruminococcus 
gnavus in the gut, which, in combination with high-fat diet, 

disturbs lipid metabolism and causes hepatic fat accumulation 
through the production of indoxylsulfuric acid, a uraemic toxin. 
These findings indicate that GPR35 plays a crucial role in gut-
liver signalling serving as a chemosensor of microbial metabo-
lites and potentially be a potential target for to mitigating the 
risk of metabolic diseases.79 Human studies have reported that 
the constitutive expression of hypoxia-inducible factor 2α (HIF-
2α) contributes to the development of hepatoic steatosis.80 
Therefore, the HIF-2α pathway is becoming recognised as a vital 
mediator of lipid metabolism in the liver, although its molec-
ular mechanisms in MASLD remain obscure. It is reported that 
HIF-2α expression increases Bacteroides vulgatus and reduces 
Ruminococcus torques abundances by upregulating intestinal 
lactate; furthermore, both bacteria have the ability to modu-
late BA metabolism.81 HIF-2α ablation downregulates intestinal 
lactate dehydrogenase A expression and the sequential lactate 
production, thus reducing Bacteroides vulgatus and promoting 
the growth of Ruminococcus torques. The altered gut bacterial 
abundances induced by HIF-2α ablation elevate the conjugated 
BA levels and the activation of TGR5, promoting white adipose 
tissue thermogenesis. More importantly, the phenotype of 
HIF-2α knockout mice can be mirrored by FMT, and the bene-
ficial effects of HIF-2α ablation are diminished when the gut 
microbiome is eliminated by antibiotics, suggesting the influence 
of host gene expression profile in gut microbial composition as 
well as BA metabolism.81

In MASLD-HCC, the influence of host genes on the gut 
microbiome is a developing field of study. By performing RNA 
sequencing analysis of 17 paired human MASLD-HCC and adja-
cent normal tissues, squalene epoxidase (SQLE) was found as 
an outlier gene which markedly upregulated in MASLD-HCC. 
SQLE exerts its effect via epigenetic reprogramming by 
cholesteryl ester and NADP+ and activating the phosphatase 
and tensin homologue deleted on chromosome ten (PTEN)/
phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of 
rapamycin (mTOR) signalling cascade to drive carcinogenesis in 
MASLD-HCC.82 Moreover, our team has also recently proposed 
that the highly expressed SQLE, together with carbonic anhy-
drase 3 (CA3), could be used as non-invasive biomarkers to 
distinguish patients with MASH from steatosis and healthy indi-
viduals. SQLE has a profound impact on hepatic cholesterol 
accumulation and thereby inducing proinflammatory NF-κB 
signalling and steatohepatitis. The direct binding of SQLE 
and CA3 also triggers SREBP1C activation and expression of 
genes involved in de novo hepatic lipogenesis.83 Downregula-
tion of SQLE expression has been shown to suppress hepatic 
lipid accumulation, accompanied by the increase of Lachno-
spiraceae and decrease of Ruminococcaceae that are respon-
sible for hepatic cholesterol metabolism.84 Our team has further 
demonstrated that the SQLE transgenic mice display significant 
enrichment of pathogenic Desulfovibrio fairfieldensis, Brucella 
abortus and Chlamydia muridarum. Moreover, SQLE trans-
genic mice showed altered abundance of BAs. Lithocholic acid 
(LCA), chenodeoxycholic acid (CDCA), taurodeoxycholic acid 
and deoxycholic acid (DCA) were significantly enriched in the 
stools compared with wild-type mice.85 The enriched LCA and 
DCA function as FXR antagonists in the presence of CDCA and 
suppress FXR-mediated lipid metabolism and fatty acid β-ox-
idation.86 FMT of SQLE transgenic mice into germ-free mice 
promoted gut barrier disruption confirmed by downregula-
tion of mucin 2, junctional adhesion molecule C and occludin 
mRNA level.85 Another gene, FK506-binding protein 5 (FKBP5), 
has been proposed to play an essential role in promoting HCC 
development.87 FKBP5 is also implicated in the development of 
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various cancers and cancer cell motility and invasion.88 FKBP5 
has been found highly expressed in human HCC tissue as well 
as HCC cell lines. Loss of FKBP5 inhibited DEN-induced HCC 
progression via alterations in gut microbial composition and 
their production of BAs. The enriched abundance of Bacteroi-
dales and Verrucomicrobiales, and decreased Clostridiales, Burk-
holderiales and Enterobacteriales in FKBP5 knockout mice was 
accompanied by the depletion in BA concentration. The altered 
gut microbiome and total BAs potentially participate in the effect 
of FKBP5-mediated reduction of abdomen adipose tissues and 
the level of serum total cholesterol.87

Acknowledgement in host gene-gut microbiome interplay is 
still a relatively new aspect in MASLD, especially MASLD-HCC. 
Whether targeting modulation on specific gene expression can 
override the causative effects of gut dysbiosis, or the mechanisms 
on how these two factors influence one another is undetermined. 
Strong associations have been presented in studies, researchers 
ought to place their attention in the crosstalk between host 
genetics/gene expression profile and gut microbiome in MASLD 
and MASLD-HCC.

SEXUAL DIMORPHISM IN GUT MICROBIOME, GENETIC RISK 
FACTORS AND MASLD DEVELOPMENT
Sex is a crucial biological variable that needs to be taken into 
account in studies, given the evidence of sexual dimorphism 
in MASLD.89 Generally, male are more prone to MASLD,90 
MASH,91 fibrosis92 and HCC93 than female. Studies suggest that 
female sex hormones, such as oestrogen in the premenopausal 
state, may confer a protective influence against MASLD. In 
multiple studies, premenopausal female presented higher abun-
dance of gut bacteria that are inversely associated with meta-
bolic profiles.94–96 In a Chinese prospective cohort involving 188 

male and 233 female patients with MASLD, and 571 male and 
567 female healthy controls, it was observed that male patients 
presented lower microbial α-diversity, higher abundance of Dial-
ister, Streptococcus and Bifidobacterium, and lower abundance 
of Phascolarctobacterium. Conversely, female patients presented 
a higher α-diversity and reduced abundance of liver cirrhosis-
associated Dialister.97 Sexual dimorphism may also contribute 
to the genetic and epigenetic determinants of MASLD. Despite 
female being generally protected against MASLD, the carriage of 
the rs738409 variant conferred an increased risk of MASLD in 
females than in males.98 99 In contrast, the TM6SF2 rs58542926 
variant may have a more significant impact on males with 
impaired glucose tolerance and T2DM,100 while the TT geno-
type of GCKR rs780094 and rs1260326 potentially involve in 
hyperuricaemia in female.101 In addition, sex hormones play 
roles in epigenetics modification and HCC development.102 103 
Larger and more ethnically diverse studies are necessary to gain a 
comprehensive understanding of the sex-associated genetic and 
epigenetic basis of MASLD, considering the inconsistent findings 
in other studies.98

POTENTIAL ADVANCES IN CLINICAL APPLICATIONS
MASLD is currently the most prevalent chronic liver disease 
on a global scale, becoming a major contributor to adverse 
liver outcomes including HCC. In the last decade, clinical trials 
targeting the gut-liver axis underwent intensive investigation in 
aiming to reduce ALT/AST levels, intestinal inflammation and 
hepatic fat content in patients with MASLD. Interestingly, the 
effects of the microbiota-based therapy seem to be influenced 
by ethnicity,104 implicating the role of host genetics in shaping 
the complexity of the gut microbial community. Untargeted 
modification of gut microbiota by antimicrobials, FMT and 

Figure 3  Development of personalised gut microbiota-based therapy targeting host genetics and epigenetics. Recent studies have unravelled 
the effects of host genetics and epigenetics in shaping the composition and metabolic production of the gut microbiota. Identification of the host 
genotype-associated gut dysbiosis allows development of personalised gut microbiota-based therapies. Preclinical studies and randomised clinical 
trials (ClinicalTrials.gov ID labelled in brackets) are currently ongoing in investigating the therapeutic effects of probiotics, postbiotics, antimicrobials, 
genetically modified bacteria, FMT and bacteriophage in MASLD. FVT, faecal virome transplantation; GDCA, glycodeoxycholic acid; GLP-1, glucagon-
like peptide 1; KO, knock out; MASLD, metabolic dysfunction-associated steatotic liver disease; TDCA, taurodeoxycholic acid; WT, wild type; UDCA, 
ursodeoxycholic acid.
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probiotic cocktails serve as an initial approach to improve dysbi-
osis and disease outcomes. In this review, we emphasise that the 
host genetic and epigenetic profiles are closely linked to the gut 
microbiome and appear to be associated with the specific bacteria 
abundances. These findings prompt the idea of a more targeted 
approach by precisely targeting specific bacterial strains or their 
metabolites with the ultimate objective of restoring gut micro-
bial eubiosis and maintaining intestinal homeostasis (figure 3). 
Our team has demonstrated that the administration of MASLD-
depleted and HCC-depleted gut bacteria and metabolites 
exerted protective effects on disease development and progres-
sion.13 17 18 The innovation in targeted gut microbiota modulation 
has encouraged the development of genetically modified probi-
otics.105 106 Preclinical studies have demonstrated the antiobesity 
effect of Escherichia coli Nissle 1917107 via genetic manipulation 
to secret gut hormone glucagon-like peptide 1 (GLP-1),107 while 
engineered Lactobacillus plantarum exhibited ammonia hyper-
consuming ability in protecting against liver failure.108 More 
intriguingly, the utilisation of bacteriophage could selectively 

eradicate specific pathogenic bacteria to attenuate hepatic 
dysfunction via gut microbiota modulation.109 110 Furthermore, 
accumulated evidence indicates the roles of epigenetics as patho-
logical mechanisms and non-invasive biomarkers in MASLD and 
HCC. The gut microbial metabolites are well-known epigenetic 
modifiers, which in turn might be used as therapeutic reagents 
to modify host epigenetics and the sequential expression of 
genes involved in MASLD and HCC. Random clinical trials are 
underway in investigating the effects of postbiotics (components 
derived from probiotics), including probiotic lysate and their 
metabolites in alleviating MASLD pathology (NCT05804422 
and NCT04977661). Further preclinical investigations and clin-
ical trials are needed to determine the potential applications of 
gut metabolites in modulating host epigenetics.

In the current scenario, the treatment options of MASLD 
are limited while lifestyle intervention remains the primary 
course of therapy. Recently in March 2024, resmetirom devel-
oped by Madrigal Pharmaceuticals was approved by Food and 
Drug Administration (FDA) as the first therapeutic drug for 

Figure 4  Recent advances in clinical application and future research directions in MASLD in relation to gut microbiome and genes. (a) There is 
currently no consistent evidence of a single microbial signature that can be applied universally to distinguish or determine the stage of simple 
steatosis, MASH or HCC. Potential confounding impact of metabolic variables might also influence the detection of microbial signatures. Larger 
cohorts comprising various population groups, detailed information pertaining to diet composition and extensive control groups are essential in 
developing diagnostic/prognostic markers and new therapeutic targets. (b) Conducting larger cohorts to explore the effect of the host genome on 
the liver, gut and intestinal microbiome is important to understand the impact of host genetics on MASLD and HCC gut microbial composition and, 
more importantly, to aid in the development of personalised medicine. (c) It is crucial to comprehend the gene-environment interaction to understand 
whether gut microbiome is primarily influenced by host phylogenetics or shared environments, or if both factors have a co-regulatory effect in the 
development of MASLD. (d) Randomised clinical trials have demonstrated the promising therapeutic effects of untargeted gut microbiota modulation 
by probiotics, antimicrobials and FMT in patients with MASLD. In the future, there should be more focus on modulating the gut microbiota in a 
targeted manner via probiotics, postbiotics (metabolites), genetically engineered microbiota and bacteriophages. (e) The collection of preclinical 
research has revealed the role of gut metabolites in mediating the modification of host epigenetics. A comprehensive understanding of the underlying 
mechanisms could offer valuable insights into potential clinical applications. (f) While resmetirom is the sole FDA-approved drug for treating MASH-
fibrosis, its mechanism remains unclear. As the gut microbiome-epigenetic interplay plays a vital role in MASLD, exploring resmetirom’s potential 
impact on gut microbiome and epigenetic modifications could shed light on its efficacy in mitigating MASLD. FDA, Food and Drug Administration; 
FMT, faecal microbiota transplantation; MASLD, metabolic dysfunction-associated steatotic liver disease; T2DM, type 2 diabetes mellitus.
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the treatment of MASH with moderate to advanced fibrosis 
in clinical settings,111 based on the promising results from 
phase 3 MAESTRO clinical programme (NCT03900429 and 
NCT04197479). Resmetirom serves as a liver-targeted thyroid 
hormone receptor β (THR-β) agonist and has also been demon-
strated to reduce hepatic fat content, improve liver histology and 
mitigate biomarkers associated with liver damage and dyslipi-
daemia in MASH clinical trial (NCT02912260). Resmetirom 
may function by binding to THR-β, forming a heterodimer 
with retinoid X receptor to activate transcription of carnitine 
palmitoyltransferase I (CPT1) and sterol regulatory element 
binding transcription factor 1 (SREBF1), which mediate mito-
chondrial fatty acid oxidation and hepatic de novo lipogenesis, 
respectively.112 Emerging research also suggests that thyroid 
dysfunction can lead to changes in the gut microbiome,113 114 
supplementation of thyroid hormones can alter metabolomics 
profiling in lipid metabolites,115 and more crucially, thyroid 
hormones also participate in the epigenetic modification of 
histones in the liver to regulate lipogenesis.116 117 Hence, it might 
be worth exploring the potential of resmetirom in modulating 
the gut microbiome-epigenetic axis as a means of addressing the 
severity of MASH.

Both the microbiome and epigenome represent promising 
targets for therapeutic interventions in MASLD. However, the 
intricate interplay between these two factors, as well as their 
interactions with host genetics, has yet to be fully elucidated 
in the context of MASLD treatment. Previous research has 
provided compelling evidence of how host genetics affecting the 
gut microbiome, which in turn can affect epigenetic modifica-
tions that contribute to MASLD pathogenesis. By manipulating 
the gut microbiome, it may be possible to mitigate the effects of 
genetic variants implicated in MASLD. For instance, our recent 
research showed that modulating the gut microbiome could 
suppress MASLD resulting from intestinal Tm6sf2 deficiency.75 
This finding highlights the potential therapeutic value of 
targeting the gut microbiome in individuals with specific genetic 
risk alleles. Further mechanistic studies are necessary to fully 
understand the intricate connections of these factors in MASLD 
treatment. Moreover, human studies are needed to explore the 
potential for targeted treatments that aim to modulate the gut 
microbiome and epigenome in patients carrying specific genetic 
risk alleles.

CONCLUSION
The deleterious effect of MASLD can lead to end-stage liver 
diseases, particularly HCC. Although much ground-breaking 
research has been conducted to understand the pathophysiology, 
genetic predisposition and treatment of MASLD and HCC, 
many elements are yet to be investigated (figure 4). Studies on 
the gut microbiome in MASLD have primarily focused on micro-
bial composition, alteration in abundance, functionality and 
associated pathways, however, less appreciation on the inter-
play of microbiome/metabolites and host genetics/epigenetics. 
Studying the effects of host genetics on gut microbiome also 
poses challenges. While several studies support the notion that 
host genetics can shape the gut microbial composition, others 
have suggested that environmental factors may override the 
impacts of host genetics.118 119 Environmental factors such as 
diet, lifestyle and medication can also alter microbial composi-
tion even in familial studies. Therefore, the central question in 
MASLD revolves around whether host phylogenetics or shared 
environments dominate the shaping of the gut microbiome, or 
if there is a specific co-regulation of the gut microbiome by both 

factors in MASLD pathogenesis. To gain a comprehensive under-
standing of how host genetics contribute to gut microbiome with 
or without other co-mediating factors in MASLD and HCC, 
future research should focus on disentangling the effects of host 
genetics and environmental factors in a natural setting. Investi-
gating the effects of MASLD risk alleles on microbial metabolic 
pathways contributing to liver diseases, and conducting larger 
cohorts to explore the influence of the host’s entire genome on 
the liver, gut and intestinal microbiome are necessary steps in 
understanding the role of host genetics in MASLD and HCC gut 
microbial signatures and vice versa, more crucially, aiding the 
development of personalised medicine. Research in the field of 
the direct regulatory role of host genetics on the gut microbiome 
is still in its preliminary stages, requiring urgent attention in 
future studies focusing on the underlying biological mechanisms.
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