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Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%.
Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis
and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development
and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment.
Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal
tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-
specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted
drugs for HCC.
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Liver cancer is one of the most common fatal diseases in the

world.1 Early-stage liver cancer has no symptoms, whereas

late-stage symptoms become obvious, leading to delays in

diagnosis and reduced therapeutic efficacy.2 There are more

than 850 000 new cases of liver cancer every year worldwide,

90% of which are hepatocellular carcinoma (HCC).3 In China

in particular, due to the high incidence of hepatitis B, the num-

ber of HCC deaths in 2015 reached roughly 422 000, account-

ing for 57% of the global HCC deaths.4 At present, surgery is

still an effective way to improve the survival rate of patients

with HCC.5 However, incomplete resection, high recurrence

rate, and high metastasis rate are the main problems affecting

HCC’s clinical therapeutic efficacy.

In recent years, with advances in understanding of HCC’s

molecular biology, the clinical development and application of

molecular targeted drugs and immunotherapy drugs have

brought new breakthroughs in HCC treatment, greatly improv-

ing its diagnosis and treatment efficacy, prolonging the sur-

vival of patients with HCC, and improving their quality of

life.6 However, HCC’s morbidity and mortality have not

decreased, and they are still increasing year by year. In this

article, the latest research progress in targeted therapy for HCC

from recent years is briefly reviewed, including small molecule

targeted inhibitors, targeted drugs designed based on specific

antigens for HCC, and immune checkpoint inhibitors.

Small Molecule Targeted Drugs

In recent years, molecular targeted therapy has emerged as a new

cancer treatment method.7 Compared with traditional therapy,
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molecular targeted therapy has improved targeting, can specif-

ically kill tumor cells and reduce damage to normal tissues, has

low rates of drug resistance, and is safer and better tolerated by

patients.8 In 1906, Enrlich first proposed the concept of targeted

drug delivery, that is, to use a specific carrier to selectively

deliver drugs or other antitumor active substances to the target

site, therefore limiting the therapeutic effect or drug effect to

specific target cells, tissues, or organs as far as possible, without

affecting the function of their normal counterparts, so as to

improve efficacy and reduce adverse reactions.9

Molecular targeted therapy targets overexpressed cell recep-

tors, key genes, and some marker molecules of tumor cells by

selecting specific blockers to inhibit tumor growth, progress,

and metastasis.10 The principle of molecular targeted therapy is

to target key genes and signaling pathways in the process of

tumor development, or the proto oncogene, tumor suppressor

gene, and suicide gene, among others, by designing small

molecule inhibitors to reverse the biological behavior of tumor

cells at the molecular level, so as to inhibit the proliferation and

metastasis of tumor cells.11 At present, there are dozens of

molecular targeted drugs both on the market and in the clinical

research stage, including sorafenib, regorafenib, lenvatinib,

cabozantinib, and other drugs, which have achieved significant

results (Figure 1) (Table 1).

Sorafenib

Sorafenib is a broad-spectrum, small molecule inhibitor that

can inhibit the expansion, angiogenesis, and apoptosis of many

tumor cells.12 Sorafenib primarily targets serine/threonine

kinase, vascular endothelial growth factor receptor (VEGFR),

Platelet-derived growth factor receptor beta (PGFRb), Kit,

fms-like tyrosine kinase-3 (FLT3), ret proto-oncogene (RET),

and other receptor tyrosine kinases to inhibit tumor cell pro-

liferation and angiogenesis, which subsequently inhibits tumor

growth.13 In 602 patients with advanced HCC who had not

received systematic treatment before, the median survival time

of the sorafenib group was 2.8 months longer than that of

placebo group (44%). There was a significant difference

between the sorafenib group and the placebo group.13 The

patients with advanced HCC had good tolerance to sorafenib,

indicating that sorafenib can be used as a first-line drug to treat

patients with advanced HCC.

Regorafenib

The molecular structures of regorafenib and sorafenib are very

similar,asare theirmechanismsofaction.8However, regorafenib

has higher biological activity than sorafenib, capable of widely

inhibiting the kinases related to angiogenesis and tumorigenesis,

such as VEGFR 1-3, tyrosine protein kinase receptor Tie, RET,

PDFGR, basic fibroblast growth factor receptor (FGFR), serine/

threonine protein kinase RAF, mitogen-activated protein, and

kinase p38, so as to play an antitumor role.14

The researchers tested regorafenib as a second-line drug in

573 patients with HCC who had been treated with sorafenib,

194 of whom received placebo.15 The final data showed that,

compared with the placebo group, regorafenib significantly

improved the overall patient survival time from 7.8 months

in the placebo group to 10.6 months in the experimental group.

In 2 of the patients treated with regorafenib, the tumor shrank to

an undetectable state.16 These data indicate that regorafenib

has a good therapeutic effect in patients with HCC who have

been treated with sorafenib.

Table 1. Characteristics of Agents Approved for Second-Line Treatment of Patients With Advanced HCC.

Regorafenib Cabozantinib Ramucirumab Nivolumab Pembrolizumab
Ipilimumab plus
nivolumab

Drug class Multitarget kinase inhibitor Multitarget
kinase
inhibitor

Monoclonal
antibody

Monoclonal
antibody

Monoclonal
antibody

Monoclonal
antibody

Molecular targets VEGFR-1–3, TIE2, KIT, RET,
RAF1, BRAF, BRAFV600E,
PDGFR, FGFR

VEGFR-2, MET,
RET, AXL,
FLT3, c-KIT

VEGFR-2 PD-1 PD-1 CTLA-4/PD-1

Route of
administration

Oral Oral Intravenous
infusion

Intravenous
infusion

Intravenous
infusion

Intravenous
infusion

Study RESORCE (NCT01774344) CELESTIAL
(NCT01908426) REACH-2
(NCT02435433) CheckMate 040
(NCT01658878) KEYNOTE-224
(NCT02702414) CheckMate 040
(NCT01658878)

Design Phase 3 Phase 3 Phase 3 Phase 1-2 Phase 2 Phase 1-2
Primary end point OS OS OS ORR ORR ORR

Abbreviations: CTLA-4, cytotoxic T-lymphocyte antigen 4; BRAF, B-Raf Proto-Oncogene; PDGFR, Platelet Derived Growth Factor Receptor Beta; ORR,
Objective Response Rate; OS, overall survival; FGFR, fibroblast growth factor receptor; FLT3, fms-like tyrosine kinase-3; PD, programmed cell death; RET, ret
proto-oncogene; VEGFR, vascular endothelial growth factor receptor.
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Lenvatinib

Lenvatinib is an inhibitor of VEGFR1-3, FGFR1-4, PDGFRa,

and tyrosine protein kinase receptor RET and Kit.17 In June

2017, the annual meeting of the American Society of Clinical

Oncology reported the phase III clinical research results of

lenvatinib in the first-line treatment of unresectable liver can-

cer.18 It was found that the total survival time of the main

clinical end point in the lenvatinib group was longer than that

of the sorafenib group (13.6 vs 12.3 months), and the secondary

clinical end point in the lenvatinib group was also significantly

better than that of the sorafenib group, including progression-

free survival time (7.4 vs 3.7 months), disease progression time

(8.9 vs 3.7 months), and objective remission rate (24% vs 9%).

Although the main clinical end point overall survival of the

lenvatinib group and sorafenib group did not reach statistical

difference, progression-free survival of the lenvatinib group

was twice as long as that of the sorafenib group, and time to

progress was nearly 3 times longer than that of sorafenib group

(Figure 2).19

In addition, 83% of the Asian patients (288 cases) in the

REFLECT study had been infected with the hepatitis B virus

(HBV). Among the patients with HBV-related HCC, the effec-

tive rate of the lenvatinib group was 21.5%, which was

2.6 times higher than that of the sorafenib group (8.3%). The

median overall survival time of the lenvatinib group

(15.0 months) was significantly longer than that of the sorafenib

group (10.2 months), and the median progression-free survival

time and median time to progression in the lenvatinib group

were significantly better than those of the sorafenib group.18,20

It has been confirmed that lenvatinib is not inferior to sor-

afenib in the first-line treatment of advanced liver cancer, espe-

cially in patients with HBV-related HCC.8 This shows that

lenvatinib has good application prospects in Asia, especially

in China, and is expected to become the latest standard for the

treatment of advanced HCC.

Cabozantinib

Cabozantinib is an effective multireceptor tyrosine kinase inhi-

bitor, which can target VEGFR2, c-Met, Kit, Axl, and FLT3

with 0.035, 1.3, 4.6, 7, and 11.3 nM half-maximal inhibitory

concentration, respectively. In the second-line phase III

CELESTIAL trial, cabozantinib significantly improved overall

survival in patients with liver cancer and was approved for use

in patients with unresectable liver cancer.21,22

Inhibitors of VEGF

Vascular endothelial growth factor is the only known growth

factor that specifically acts on vascular endothelial cells.23,24

Studies have shown that VEGF was expressed in both hepato-

cytes and HCC cells, and its expression intensity gradually

increased with the development of HCC.25 Vascular endothelial

growth factor and its receptor are powerful factors for inducing

angiogenesis. When combined, they can strongly induce

endothelial cell proliferation and tubular formation, which is

an important part of angiogenesis.26 Furthermore, HCC is a

vascular-rich cancer.27 Vascular endothelial growth factor

and microvessel density in HCC are significantly increased,27,28

and the high expression of VEGF in HCC indicates poor prog-

nosis.29 At each stage of HCC progression, the proliferation of

vascular endothelial cells is active, and the expression of

VEGFR molecules on the cell surface is significantly upregu-

lated.30 Angiogenesis in cancer tissues has an important impact

on the biological invasion abilities of the tumor.31 Therefore,

blocking VEGF/VEGFR and reducing angiogenesis in the tis-

sues are considered a novel idea for targeted therapy in HCC.

Bevacizumab is a recombinant human-mouse chimeric

monoclonal antibody against VEGF.32 The humanization pro-

cess prolongs the half-life of the drug and weakens its immu-

nogenicity.33 Through competitive binding with VEGF in the

circulation, bevacizumab can prevent the binding of VEGF to

the corresponding receptor, thus blocking the formation of new

blood vessels in HCC.24 At the same time, bevacizumab can

normalize the distribution of blood vessels in HCC and its

surrounding tissues, which improves the delivery of che-

motherapy drugs by reducing the interstitial pressure.34

The efficacy of bevacizumab in advanced HCC treatment has

been initially confirmed.35 Zhu et al reported a GE2MOX2B

scheme for the treatment of advanced liver cancer in a phase

II clinical study.36 All of the 33 patients were enrolled into the

group, 30 of whom were evaluable, with an effective rate of 20%
and a disease stability rate of 27%; the median survival time was

9.6 months, the median progression-free survival time was

5.3 months, and the disease-free survival times at 3 and 6 months

were 70% and 48%, respectively. Therefore, the scheme has

certain antitumor activity as well as a high disease-free survival

rate in 6 months, which is worth further study. Siegel et al also

used bevacizumab in a phase II clinical drug trial.37 The results

showed that 65% of the 46 patients had a median progression-

free survival time of 6 months. Adverse reactions included

hypertension, thrombosis, and bleeding. Through dynamic

contrast-enhanced nuclear magnetic resonance imaging of the

tumor, it could be observed that the concentration of VEGF in

patients’ plasma was decreased, and the vasoactivity was also

decreased.

Ramucirumab is an anti-VEGF monoclonal immunoglobulin

G (IgG) antibody. It was first evaluated in the REACH trial, a

second-line phase III trial in patients with progression or intol-

erance leading to the failure of sorafenib.38-40 Ramucirumab

significantly improved the overall survival rate to 8.5 months

(hazard ratio: 0.71, 95% CI: 0.5-0.95), compared with the med-

ian survival rate of 7.3 months in the placebo group. Ramucir-

umab is the first approved systemic therapy for liver cancer in a

biomarker selection population. Ramucirumab has demon-

strated survival benefits in patients having unresectable HCC

with a-fetoprotein (AFP) � 400 ng/dL.41,42

Thalidomide can inhibit angiogenesis by interfering with the

effect of VEGF and fibroblast growth factor.43 Several clinical

trials discussed the therapeutic effect of thalidomide on patients

with HCC whose cancer could not be resected or treated
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locally.44 It was found that the objective response rate of thali-

domide was about 5%, and 10% to 30% of patients demonstrated

disease stability for 2 months after thalidomide single drug

treatment.45

Matrix Metalloproteinase Inhibitors

Metastasis is one of the characteristics of cancer.46-49 One of

the important steps is the degradation of extracellular matrix

(ECM), which is especially important for liver cancer.50-52

The invasion and metastasis that result after ECM degradation

are largely related to integrin and matrix metalloproteinases

(MMPs).53-55 Integrin not only mediates the adhesion of HCC

cells to other HCC cells and HCC cells to the ECM but also

participates in the chemotaxis, proliferation, and apoptosis of

tumor cells, and thus, integrin involvement extends nearly

throughout the entire process of HCC cell invasion and metas-

tasis.56-60 The monoclonal antibodies LM609 and Vitaxin of

integrin aVb3 also showed good antiangiogenic effects in

vitro and in vivo, and Vitaxin has subsequently entered phase

II clinical trials.61

Matrix metalloproteinase is a type of proteolytic enzyme

involved in the degradation of the ECM and basement mem-

brane.62-65 Its structure, function, and regulatory level are

closely related to the growth, invasion, and metastasis of liver

cancer.66-69 A large number of studies have shown that

MMPs, including MMP-7, MMP-9, and MMP-2, are highly

expressed in liver cancer cells and tissues.70-73 Marimastat is a

synthetic MMP inhibitor.74 Like tissue inhibitor of

metalloproteinases-2, Marimastat can inhibit the invasion

induced by hepatocyte growth factor (HGF).75 Clinically

related drugs also include Bamalabaster, Novartis, BAY12-

9566, AG-3340, 0PB-3206, KBR07785, and KBR-8301.76-78

At present, it is suggested that the response rate of these drugs

is low, and they may be used as chemopreventive drugs for

liver cirrhosis and other patients with a higher risk of devel-

oping liver cancer.

Liver Cancer-Specific Antigen Targeting
Drugs

a-Fetoprotein Targeted Drugs

a-Fetoprotein is a sensitive serum marker of HCC.79-81 A clin-

ical study of Japanese chronic hepatitis showed that the sensi-

tivity, cutoff, and specificity of AFP were 79%, 78 ng/mL, and

78%, respectively.82 In small liver cancer, the sensitivity of AFP

is relatively low (33%-65%),83 and the level of AFP in serum

seems to be related to the size and differentiation of HCC.84 In a

considerable number of patients with chronic liver disease, AFP

(20-200 ng/mL) increased significantly.85 Therefore, AFP has

long been used in the clinical diagnosis of HCC.

With the development of new research, tumor immunology

researchers are increasingly interested in the antitumor immune

response of AFP.86 In a phase I/II clinical trial, 4 kinds of AFP-

activated dendritic cells were used to treat patients with HCC to

test their immune response.87 The results of ELISPOT showed

that interferon g (IFN-g) increased in 6 of 10 individuals after

inoculation with at least 1 AFP polypeptide, resulting in AFP-

specific T-cell response.88 In addition, studies of AFP-DNA

vaccines and adenovirus-driven immunotherapy in 2 pretreated

AFP-positive HCC patients reported expected safety and immu-

nogenic T-cell responses.89

Glypican-3 Targeted Drugs

Glypican-3 is a heparin sulfate proteoglycan anchored to the

cell surface by glycosylphosphatidylinositol.90 Glypican-3 is a

carcinoembryonic antigen, and its abnormal overexpression in

81% of patients with HCC is related to poor prognosis.91 There-

fore, it may be an ideal target for HCC targeting therapy.

So far, many research institutions have invented 4 high-

affinity antibodies, GCC-3, HN3, HS20, and YP7, for GPC-3

using phage display and hybridoma technology.92 A phase I

clinical study of GCC3 showed that patients with high GPC-3

expression had significantly higher progression-free survival

than those with low GPC-3 expression.93 HN3 and YP7 can

fuse with the fragment pe38 of Pseudomonas exotoxin A to

produce immunotoxin.94 The heterotopic tumor of Hep3B and

HepG2 can be eliminated using HN3-PE38 alone or combined

with chemotherapy.95 The immunotoxin produced by YP7-

PE38 has better antitumor activity than that produced by

HN3-PE38.96 Therefore, GPC-3 is expected to be a new poten-

tial target for HCC treatment.

Hepatocyte Growth Factor and Its Receptor Inhibitors

Hepatocyte growth factor is an important liver regeneration

factor.97 Its receptor is c-Met, which belongs to the tyrosine

kinase receptor family.98 c-Met is highly expressed or mutated

in many tumor cells, including HCC.99 Hepatocyte growth fac-

tor combined with c-Met, through a series of signal transduc-

tion pathways, is closely related to cell growth, differentiation,

angiogenesis, and other processes, and promotes the infiltration

and metastasis of HCC cells.100-103 This indicates that HGF

may become an effective target for the treatment of HCC.

At present, the inhibitors and antagonists of HGF include the

following: (1) NK4, an endogenous fragment truncated by

HGF, which can bind to the c-Met receptor, but cannot activate

it, thus antagonizing the interaction between HGF and c-Met,

and in turn inhibiting HCC cell invasion and metastasis104; (2)

small molecule c-Met selective inhibitors, such as SOMCL-

863, PHA.665752, and SU11274105; (3) tivantinib (ARQ

197), which mainly binds to retinoic acid receptor and can

downregulate the expression of c-Met protein, inhibit HGF-

induced invasion, and inhibit the intrahepatic spread of HCC

cells and liver metastasis of other types of cancer by inhibiting

transcription factor subuni (AP1) activity.106 Clinical trials

have confirmed that tivantinib is a drug with better efficacy

and less adverse reactions, and thus, it may become a new anti-

HCC drug.
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Drugs Targeted at Immuno Checkpoint

Immuno checkpoint blocking therapy has recently become a

promising treatment for many kinds of malignant tumors,

including HCC.107 At present, cytotoxic T-lymphocyte antigen

4 (CTLA-4), programmed cell death (PD) 1, T-cell immunoglo-

bulin and mucin domain-containing protein 3, and B- and T-

lymphocyte attenuator are the most studied immuno checkpoint

receptors.108 Blocking the above negative regulatory immune

regulatory targets can significantly improve the median overall

survival and response rate of patients and improve the prognosis

of patients with melanoma, renal cancer, and non-small cell lung

cancer.109 The blocking monoclonal antibodies of CTLA-4 and

PD-1/PD-L1 have been approved by the Food and Drug Admin-

istration (FDA) for melanoma treatment.110

Cytotoxic T-lymphocyte Antigen 4 Targeted Drugs

Cytotoxic T-lymphocyte antigen 4 is expressed in activated T

cells and Treg cells and also in the initial T cells.111 Compared

with CD28, CTLA-4 has higher affinity to CD80 and CD86.112

Therefore, CTLA-4 can inhibit the binding of CD28, CD80,

and CD86, and thus inhibit T-cell activation.113 Cytotoxic T-

lymphocyte antigen 4 signaling may also stimulate the expres-

sion of transforming growth factor b in CD4-positive T

cells.114 In addition, inhibition of CD28 binding to CD80 and

CD86 in Regulator Of WNT Signaling Pathway (APC) may

result in a decrease in T-cell activation.115 Specific knockout or

blocking of CTLA-4 can activate the autoimmune response and

improve anticancer immunity.116 In 2011, the US FDA

approved a randomized phase III clinical trial using the mono-

clonal antibody ipilimumab blocking CTLA-4 for the treatment

of melanoma.117

The phase I clinical trial (NCT01008358) of human IgG2

monoclonal antibody tremelimumab against CTLA-4 in

patients with HCC showed that 21 patients with advanced liver

cirrhosis (liver function grade of Child-Pugh A or B) who were

not suitable for percutaneous ablation or transarterial emboliza-

tion had good tolerance to tremelimumab, and there were no

treatment-related deaths.112 About 17.6% of the patients had

partial reactions, and 45% of them were stable for more than 6

months. Interestingly, patients with stable IFN-g during treat-

ment had a better response than those with decreased IFN-g,

which indicated that patients with stable IFN-g had active anti-

tumor immunity. A phase I clinical trial of tremelimumab in

patients undergoing radiofrequency ablation or arterial therapy

is currently in progress (NCT01853618).118 Another phase II

clinical trial (NCT01649024), in which tremelimumab was used

to treat patients with advanced HCC, showed that among the 17

evaluable cases, 3 had partial remission, 10 had stable tumor

control, and the disease control rate was as high as 76.4%.119

Programmed Cell Death 1 Targeted Drugs

As a member of the CD28 superfamily, PD-1 was first discov-

ered by Professor Yoshio Benshu of Kyoto University in

1992.120 At present, PD-1, as a significant target of immunother-

apy, has attracted wide attention in the field of tumor-targeted

therapy.121 Programmed Cell Death 1 was mainly expressed in

CD8-positive T cells but could also be detected in Treg cells and

myeloid-derived suppressor cells (MDSCs).122 Programmed

Cell Death 1 not only mediates the differentiation and prolifera-

tion of Treg but also regulates peripheral blood tolerance and

autoimmunity.123 Long-term antigen exposure leads to overex-

pression of PD-1 in T cells, leading to T-cell depletion or

nonresponse.124

Tumor cells can express PD-L1 or PD-L2 to activate the

expression of PD-1 in tumor-infiltrating lymphoid tissue and

escape from immune surveillance.8 The clinical study results

showed that the PD-1/PDL-1 pathway may induce immune tol-

erance for HCC. At the same time, the expression levels of PD-1

and PD-L1 are closely related to the development stage, local

recurrence rate, and poor HCC prognoses.125 Similarly, the level

of PD-1 and CD8 positive T cells in the tumor is related to HCC

progression and postoperative recurrence.126

In addition, in the HBV-positive HCC patients who received

cryoablation, the prognosis of those who expressed PD-1 and

PD-L1 on circulating tumor cells was poor.127 In vitro, Treg

cells, MDSCs, and PD-1-positive T cells from the peripheral

blood of patients with advanced HCC were consumed simulta-

neously to restore the activation of CD8-positive T cells.128

In 2017, El Khoueiry et al released the latest data of nivolu-

mab, a PD-1 inhibitor, in the treatment of patients with advanced

HCC.129 In the dose extension stage, 42 (20%) patients observed

objective response, 96 (45%) patients observed stable disease,

138 (64%) patients observed disease control, 28 (67%) patients

had sustained response, and the median response time was

9.9 months. Most of the diseases were stable for at least

6 months, and 79 (57%) of 138 patients demonstrated disease

control. At the dose extension stage, the median progression

time was 4.1 months, and the overall survival rate was 83% at

6 months and 74% at 9 months. The 6-month progression-free

survival rate was 37%, and the 9-month progression-free

survival rate was 28%.130,131

Outlook

Multiple combination regimens, including immunotherapy,

multireceptor kinase inhibitors, and anti-VEGF agents likely

portend the future of HCC treatment, in which combination

therapies will hopefully increase objective responses and overall

survival. In recent years, PD-1 antibody has made great achieve-

ments in further promoting the application and research of var-

ious drugs targeting immunoassay sites in HCC, and liver cancer

treatments targeting immunoassay sites have entered develop-

ment. Although the available treatment methods of advanced

liver cancer are greatly expanding at present, single administra-

tion treatment methods do not yield satisfactory results. There-

fore, it is necessary to increase the development of new targeted

drugs and to simultaneously promote the research and applica-

tion of targeted drugs combined with other treatment methods or

multiple targeted drugs combined with each other. These
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combinations may include targeted therapy combined with sur-

gical resection, radiotherapy, chemotherapy, interventional

therapy, and immunotherapy, and even targeted therapy com-

bined with cell therapy, gene therapy, and other conventional or

emerging treatment methods for liver cancer. As research broad-

ens and deepens in scope, targeted therapy will likely continue to

demonstrate its advantages of high specificity, good therapeutic

effects, long-lasting benefits, and less adverse reactions.

Figure 1. Overview of various targeted drugs. Molecular targeted therapy selects specific blockers to effectively intervene in the regulation of
cell receptors, key genes, and marker molecules, in order to achieve tumor-inhibiting effects.

Figure 2. Second-line systemic treatment options in patients with hepatocellular carcinoma. PD-1 inhibitors can be considered given objective
response rates of 15% to 20%, although phase III studies have failed to demonstrate statistically significant survival benefit compared to other
agents in phase III studies. PD-1 indicates programmed cell death 1.
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