V = 3591.4 (2) Å³

Mo $K\alpha$ radiation

 $0.28 \times 0.26 \times 0.22$ mm

6324 independent reflections

3647 reflections with $I > 2\sigma(I)$

 $\mu = 0.21 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.042$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,6-Bis(2-chlorophenyl)-4-oxo-3,5diphenylheptane-1,1,7,7-tetracarbonitrile

A. Jahubar Ali,^a S. Athimoolam,^b S. Asath Bahadur^c* and V. P. Alex Raja^d

^aDepartment of Science and Humanities, National College of Engineering, Maruthakulam, Tirunelveli 627 151, India, ^bDepartment of Physics, University College of Engineering Nagercoil, Anna University of Technology Tirunelveli, Nagercoil 629 004, India, ^cDepartment of Physics, Kalasalingam University, Anand Nagar, Krishnan Koil 626 190, India, and ^dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India Correspondence e-mail: s_a_bahadur@yahoo.co.in

Received 30 April 2011; accepted 7 May 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.061; wR factor = 0.211; data-to-parameter ratio = 16.7.

In the title compound, $C_{35}H_{24}Cl_2N_4O$, the phenyl rings are oriented almost parallel to each other, making a dihedral angle of 0.6 (2)°, whereas the chlorophenyl rings are oriented at a dihedral angle of 28.3 (1)°. The crystal structure is stabilized through an extensive series of $C-H\cdots N$, $C-H\cdots O$ and $C-H\cdots Cl$ interactions. One of the $C-H\cdots N$ interactions generates an $R_2^2(12)$ ring motif around a crystallographic inversion centre. C(5), C(10) and C(12) chain motifs are observed in the unit cell through $C-H\cdots N$ and C- $H\cdots Cl$ interactions. During the structure analysis, it was observed that the unit cell contains large accessible voids, which host disordered solvent molecules. This affects the diffraction pattern, mostly at low scattering angles and was corrected with the *SQUEEZE* program [Spek, A. L. (2009). *Acta Cryst.* D65, 148–155].

Related literature

For our investigations into regio/stereoselectivity in adduct reactions and weak hydrogen bonding, see: Ali *et al.* (2010). For weak hydrogen-bonding interactions, see: Desiraju & Steiner (1999). For ring and chain motifs, see: Etter *et al.* (1990).

Experimental

Crystal data
C35H24Cl2N4O
$M_r = 587.48$
Monoclinic, $P2_1/c$
a = 17.7226 (6) Å
b = 10.6169 (3) Å
c = 20.8491 (7) Å
$\beta = 113.724 (2)^{\circ}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer 32501 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ 379 parameters $wR(F^2) = 0.211$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$ 6324 reflections $\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7\cdots N11^{i}$	0.98	2.33	3.186 (4)	145
C23−H23···N11 ⁱⁱ	0.93	2.65	3.409 (5)	139
C34−H34···N72 ⁱⁱⁱ	0.93	2.52	3.443 (8)	176
$C52-H52\cdots N12^{iv}$	0.93	2.64	3.489 (5)	152
C36−H36···N12 ^{iv}	0.93	2.96	3.805 (7)	152
$C54-H54\cdots N71^{v}$	0.93	2.91	3.564 (6)	128
C53−H53···N71 ^v	0.93	2.96	3.583 (5)	126
$C64-H64\cdots Cl2^{vi}$	0.93	2.97	3.663 (5)	133
C64−H64···O1 ^{vi}	0.93	2.88	3.673 (5)	144
$C65-H65\cdots Cl1^{vi}$	0.93	2.80	3.728 (4)	174

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 2, -y + 1, -z + 2; (iii) $x, -y - \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 2, -y, -z + 2; (v) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (vi) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL/PC*; molecular graphics: *Mercury* (Macrae *et al.*, 2006) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL/PC*.

AJA and SAB sincerely thank the Vice Chancellor and Management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement. AJA also thanks the Principal and the Management of the National College of Engineering for their support. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5139).

References

- Ali, A. J., Athimoolam, S., Bahadur, S. A. & Raja, V. P. A. (2010). Acta Cryst. E66, 02593.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 246–253. IUCr Monographs on Crystallography. Oxford University Press.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor,

R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Acta Cryst. (2011). E67, o1407-o1408 [doi:10.1107/S1600536811017284]

2,6-Bis(2-chlorophenyl)-4-oxo-3,5-diphenylheptane-1,1,7,7-tetracarbonitrile

A. J. Ali, S. Athimoolam, S. A. Bahadur and V. P. A. Raja

Comment

In continuation of our investigations into regio/stereoselectivity in adduct reactions and weak hydrogen bonding (Ali *et al.*, 2010), the title compound was synthesized and crystallized and the structural features are disucussed here.

The molecular structure of the title compound is shown in Fig. 1. The two phenyl rings are oriented almost parallel to each other with the dihedral angle of $0.6 (2)^\circ$, whereas the two chlorophenyl rings are oriented with an angle of $28.3 (1)^\circ$. This large variation may be due to the strong and moderate C—H···Cl interactions observed in the lattice. Also, due to these C—H···Cl interactions in the crystal packing (Fig. 2, Table 1), the chlorine atoms in the chlorophenyl rings lie away from the benzene ring planes with the distances of 0.01 (1)Å (for Cl1 atom in C21/C26/Cl1 ring) and 0.08 (1)Å (for Cl2 atom in C61/C66/Cl2 ring).

The packing diagram of the title compound is shown in Fig. 2. The crystal packing is stabilized through an extensive series of C—H···N, C—H···O and C—H···Cl interactions (Desiraju & Steiner, 1999). One C—H···O, two C—H···Cl and seven C—H···N interactions are observed in the lattice (Table 1). The two C—H···Cl interactions are involved in making chain motifs, *viz.*, a zigzag C(12) chain motif [through C65—H65···Cl1 (-*x* + 1, *y* - 1/2, -*z* + 3/2)] and a linear C(5) chain motif [through C64—H64···Cl2 (-*x* + 1, *y* - 1/2, -*z* + 3/2)] (Etter *et al.*, 1990). These chain motifs are speckled on the *ab*-plane of the unit cell as shown in Fig. 3. A C(10) chain motif is observed through C7—H7···N11 (*x*, -*y* + 1/2, 2–1/2) interactions which connect the molecules in a head-to-tail fashion along the *c* axis. Another C—H···N interaction makes a zigzag C(12) chain motif extending along *c* (Fig. 4). A centrosymmetric R_2^2 (16) ring motif is observed around a crystallographic inversion centre through C—H···N interactions (Fig. 5).

Experimental

A mixture of 1,3-diphenylacetone 5 (1 mmol), 2-[(2-chlorophenyl)methylene]malononitrile 6 (2 mmol), and sodium ethoxide (2 mmol) was ground well in a mortar and pestle at ambient temperature for about 15–30 sec. Then water (50–70 ml) was added to the mixture and the product was filtered and washed with water, dried *in vacuo* and subjected to flash chromatographic purification employing flash silica gel (230–400 mesh) with petroleum ether-ethyl acetate mixture (1:2 v/v) as eluent. The products were further recrystallized from ethanol-ethyl acetate mixture (1:2 v/v).

Refinement

All the H atoms were positioned geometrically and refined by the riding model approximation with d(C-H) = 0.93 - 0.98Å and $i>U_{iso}(H)=1.2U_{eq}(C)$. During the structure analysis, it was observed that the unit cell contains large accessible voids in the crystal structure which tend to host unpredictable disordered solvent molecules. This affects the diffraction pattern, mostly at low scattering angles and was corrected with the SQUEEZE program (Spek, 2009). Figures

Fig. 1. The title molecule with the atom numbering scheme. The displacement ellipsoids are shown at the 30% probability level.

Fig. 2. Packing diagram of the title structure viewed down the *a* axis. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)

Fig. 3. Linear chain C(5) and zigzag chain C(12) motifs speckled along *ab*-plane of the crystal through C—H…Cl interactions. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)

Fig. 4. Zigzag chain C(12) motif extending along *c* axis of the unit cell. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)

Fig. 5. Ring $R_2^2(12)$ motif formed through C—H…N interactions. (Cl is shown in green, N in blue, O in red, C in black and H as a circles)

2, 6-Bis (2-chlorophenyl)-4-oxo-3, 5-diphenyl heptane-1, 1, 7, 7-tetra carbonitrile

Crystal data	
C ₃₅ H ₂₄ Cl ₂ N ₄ O	F(000) = 1216
$M_r = 587.48$	$D_{\rm x} = 1.087 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4531 reflections
a = 17.7226 (6) Å	$\theta = 2.8 - 24.8^{\circ}$
b = 10.6169 (3) Å	$\mu = 0.21 \text{ mm}^{-1}$
c = 20.8491 (7) Å	T = 293 K
$\beta = 113.724 \ (2)^{\circ}$	Bulk, colourless
V = 3591.4 (2) Å ³	$0.28\times0.26\times0.22~mm$
Z = 4	

Data collection

Bruker SMART APEX CCD area-detector 3647 reflections with $I > 2\sigma(I)$

diffractometer

Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.042$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
ω scans	$h = -21 \rightarrow 21$
32501 measured reflections	$k = -12 \rightarrow 12$
6324 independent reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.061$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.211$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.114P)^2 + 0.3187P]$ where $P = (F_o^2 + 2F_c^2)/3$
6324 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
379 parameters	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8486 (2)	0.2323 (3)	1.03039 (17)	0.0623 (9)
H1	0.8131	0.1752	1.0428	0.075*
C2	0.80856 (18)	0.2513 (2)	0.95012 (16)	0.0511 (7)
H2	0.7513	0.2768	0.9379	0.061*
C3	0.80630 (17)	0.1253 (2)	0.91167 (15)	0.0471 (7)
Н3	0.8628	0.1041	0.9185	0.057*
C4	0.75542 (17)	0.1395 (2)	0.83391 (14)	0.0432 (7)
C5	0.78235 (17)	0.0628 (2)	0.78571 (14)	0.0469 (7)
Н5	0.8066	-0.0159	0.8097	0.056*
C6	0.70861 (17)	0.0294 (2)	0.71749 (15)	0.0478 (7)
H6	0.6838	0.1091	0.6953	0.057*
C7	0.73918 (19)	-0.0388 (3)	0.66625 (17)	0.0574 (8)

H7	0.7774	0.0182	0.6574	0.069*
C11	0.8527 (2)	0.3532 (4)	1.06706 (19)	0.0695 (9)
C12	0.9297 (3)	0.1773 (3)	1.05569 (18)	0.0682 (9)
C21	0.84917 (19)	0.3550 (3)	0.92648 (16)	0.0544 (8)
C22	0.9254 (2)	0.3393 (3)	0.92435 (18)	0.0649 (9)
H22	0.9522	0.2625	0.9386	0.078*
C23	0.9631 (3)	0.4317 (4)	0.9022 (2)	0.0888 (12)
H23	1.0151	0.4180	0.9025	0.107*
C24	0.9248 (4)	0.5425 (5)	0.8801 (2)	0.1061 (16)
H24	0.9499	0.6049	0.8641	0.127*
C25	0.8508 (3)	0.5635 (4)	0.8809 (3)	0.1058 (15)
H25	0.8248	0.6405	0.8654	0.127*
C26	0.8118 (2)	0.4710 (3)	0.9049 (2)	0.0785 (11)
C31	0.7717 (3)	0.0166 (3)	0.93763 (18)	0.0689 (10)
C32	0.6897 (3)	0.0163 (4)	0.9284 (2)	0.0900 (13)
H32	0.6555	0.0832	0.9059	0.108*
C33	0.6594 (5)	-0.0833 (6)	0.9528 (4)	0.148 (3)
H33	0.6047	-0.0834	0.9473	0.178*
C34	0.7084 (9)	-0.1801 (8)	0.9843 (5)	0.189 (5)
H34	0.6874	-0.2456	1.0018	0.227*
C35	0.7875 (7)	-0.1860 (6)	0.9916 (4)	0.167 (3)
H35	0.8196	-0.2565	1.0112	0.200*
C36	0.8197 (4)	-0.0850(3)	0.9692 (2)	0.1048 (15)
H36	0.8747	-0.0861	0.9756	0.126*
C51	0.84908 (17)	0.1359 (2)	0.77357 (15)	0.0483 (7)
C52	0.9270(2)	0.0907 (3)	0 79355 (18)	0.0672(9)
H52	0.9402	0.0123	0.8150	0.081*
C53	0.9874(2)	0 1595 (4)	0.7825(2)	0.081 0.0877 (12)
H53	1 0407	0.1282	0.7971	0.105*
C54	0.9676 (3)	0.2725 (4)	0.7502(2)	0.0889(12)
H54	1 0074	0.3184	0.7418	0.107*
C55	0.8901 (3)	0.3199 (4)	0.7298 (2)	0.107 0.0827(11)
н55	0.8775	0.3978	0.7076	0.0027 (11)
C56	0.8309(2)	0.2548 (3)	0.74135 (19)	0.077
E56	0.7784	0.2888	0.7280	0.0092 ())
C61	0.64183 (18)	-0.0448(2)	0.72805 (15)	0.005
C62	0.6602(2)	-0.1490(3)	0.72803(13) 0.77301(18)	0.0490(7)
H62	0.0002 (2)	-0.1713	0.77501 (18)	0.0027(7)
C63	0.7149	-0.2186(3)	0.7984 0.7803 (2)	0.070°
Н63	0.5995 (5)	-0.2860	0.7803 (2)	0.0018 (11)
C64	0.0132	-0.1800(5)	0.3103 0.7426(2)	0.098
1164	0.3187 (3)	-0.1890 (3)	0.7430 (3)	0.0955 (15)
1104 C65	0.4770	-0.2379	0.7402	0.114°
U65	0.4983 (2)	-0.0889 (4)	0.7003 (2)	0.0637 (12)
110 <i>5</i>	0.5586 (2)	-0.0174(2)	0.0704	0.103
C00	0.3300(2) 0.7844(2)	0.0174(3)	0.09103(17)	0.0398 (8)
C71 C72	0.7044(2)	-0.1338(4)	0.0939 (2)	0.0728(10)
C12	0.0731(2)	-0.0039(3)	0.0978 (2)	0.0707(9) 0.1247(6)
CI2	0./1040 (/)	0.30340 (9)	0.20070(9)	0.124/(0)
CIZ	0.32/10(0)	0.10803 (10)	0.03430 (3)	0.0695 (4)

N11	0.8558(2)	0.4487(4)		1 09207	(19)	0.095	3 (11)	
N12	0.0931(3)	0.1336 (4)		1.0738 (2)	0.095	6 (11)	
N71	0.9991(3)	-0.2441(4)		0.7103 (2)	0.102	8 (12)	
N71	0.6197(2)	-0.0886(4)		0.7195 (2)	0.107	5(12)	
01	0.0213(2)	0.0880 (4)))	0.5465	(12)	0.107	4 (6)	
01	0.09028 (13)	0.20891 (19)	0.81120	(12)	0.004	4(0)	
		2						
Atomic displace	ment parameters	(\AA^2)						
	U^{11}	U^{22}	U^{33}		U^{12}		U^{13}	U^{23}
C1	0.073 (2)	0.0613 (17)	0.060 (2))	-0.0149 (17	')	0.0352 (19)	-0.0043 (15)
C2	0.0488 (17)	0.0524 (15)	0.0531 (19)	-0.0042 (13	5)	0.0216 (15)	-0.0043 (13)
C3	0.0486 (17)	0.0468 (14)	0.0483 (18)	-0.0044 (12	2)	0.0220 (15)	-0.0012 (12)
C4	0.0418 (16)	0.0410 (13)	0.0476 (18)	-0.0076 (13	5)	0.0189 (14)	0.0009 (12)
C5	0.0474 (17)	0.0470 (14)	0.0462 (17)	0.0011 (12)		0.0189 (14)	0.0046 (12)
C6	0.0509 (17)	0.0503 (15)	0.0453 (17)	-0.0023 (13	5)	0.0228 (15)	0.0008 (12)
C7	0.0534 (19)	0.0652 (17)	0.064 (2))	-0.0067 (15	5)	0.0342 (18)	-0.0031 (15)
C11	0.065 (2)	0.087 (2)	0.067 (2))	-0.0161 (18	3)	0.0382 (19)	-0.0177 (19)
C12	0.079 (3)	0.073 (2)	0.049 (2))	-0.005(2)		0.020 (2)	-0.0031 (16)
C21	0.057 (2)	0.0517 (16)	0.0488 (18)	-0.0103 (14)	0.0153 (15)	-0.0030 (13)
C22	0.065 (2)	0.0675 (19)	0.062 (2))	-0.0153 (16	Ĵ	0.0255 (18)	-0.0023 (16)
C23	0.090 (3)	0.098 (3)	0.083 (3))	-0.038(2)	,	0.039 (2)	-0.002 (2)
C24	0.131 (4)	0.095 (3)	0.086 (3))	-0.053(3)		0.037 (3)	0.007 (2)
C25	0.116 (4)	0.059 (2)	0.119 (4)	,)	-0.014(2)		0.023 (3)	0.023 (2)
C26	0.072 (2)	0.0543 (18)	0.092 (3))	-0.0060 (17	7)	0.015 (2)	0.0025 (17)
C31	0.105 (3)	0.0566 (18)	0.057 (2))	-0.0177 (18	Ś	0.045 (2)	-0.0049 (15)
C32	0.104 (3)	0.084 (2)	0.110 (3)	,)	-0.040(2)	,	0.072 (3)	-0.023 (2)
C33	0.227 (7)	0.122 (4)	0.172 (6)	-0.084(5)		0.159 (6)	-0.050 (4)
C34	0.367 (15)	0.104 (5)	0.152 (6	,)	-0.095 (8)		0.163 (9)	-0.018 (4)
C35	0.291 (10)	0.073 (3)	0.151 (6	,)	-0.013(5)		0.104 (7)	0.023 (3)
C36	0.169 (5)	0.054 (2)	0.096 (3)	,)	0.003 (2)		0.058 (3)	0.017 (2)
C51	0.0420 (17)	0.0577 (16)	0.0450 (, 17)	-0.0033 (13	6)	0.0173 (14)	0.0051 (13)
C52	0.055 (2)	0.075 (2)	0.076 (2)	0.0024 (16)	,	0.0301 (19)	0.0075 (17)
C53	0.055 (2)	0.110 (3)	0.105 (3)	,)	-0.007(2)		0.039 (2)	-0.004 (3)
C54	0.071 (3)	0.114 (3)	0.090 (3)	,)	-0.025(2)		0.042 (2)	0.006 (2)
C55	0.083 (3)	0.088(2)	0.076 (3)	,)	-0.021(2)		0.031 (2)	0.021(2)
C56	0.057(2)	0.0697 (19)	0.073 (2)	,)	-0.0032(16	6	0.0188 (18)	0.0171 (17)
C61	0.0455 (17)	0.0542 (15)	0.0548 (, 19)	-0.0018 (13	ő	0.0257 (15)	-0.0092(14)
C62	0.060 (2)	0.0599 (17)	0.072 (2)	-0.0060 (15	ő	0.0300 (18)	0.0092 (16)
C63	0.083 (3)	0.076 (2)	0.095 (3)	,)	-0.016(2)	,	0.044 (2)	0.001 (2)
C64	0.084 (3)	0.118 (3)	0.097 (3)	,)	-0.034(3)		0.050 (3)	-0.007(3)
C65	0.046 (2)	0.129 (3)	0.085 (3)	,)	-0.004(2)		0.030 (2)	-0.008(3)
C66	0.050(2)	0.078 (2)	0.054 (2)	,)	0.0052 (16)		0.0242 (16)	-0.0077(15)
C71	0.066 (2)	0.088 (2)	0.075 (3))	0.006 (2)		0.040 (2)	-0.007 (2)
C72	0.068 (2)	0.092 (2)	0.056 (2))	0.005(2)		0.029 (2)	-0.0180 (19)
Cl1	0.0854 (8)	0.0705 (6)	0.1940 (15)	0.0109 (5)		0.0308 (9)	-0.0038(7)
Cl2	0.0723 (7)	0.1123 (8)	0.0810 (7)	0.0277 (5)		0.0279 (5)	0.0140 (5)
N11	0.100 (3)	0.107 (2)	0.104 (3)	-0.024(2)		0.067 (2)	-0.040 (2)
N12	0.106 (3)	0.112 (3)	0.081 (3))	0.016 (2)		0.028 (2)	0.007 (2)
				,				

N71	0.100 (3)	0.104 (3)	0.128 (3)	0.034 (2)	0.055 (3)	0.010(2)
N/2	0.089(3)	0.141(3)	0.083(3)	0.001(2)	0.020(2)	-0.041(2)
01	0.0532 (13)	0.0653 (12)	0.0664 (15)	0.0092 (11)	0.0154 (11)	-0.0047 (11)
Geometric param	neters (Å, °)					
C1—C12		1.441 (5)	C31—	-C32	1.38	7 (5)
C1—C11		1.481 (5)	C32—	-C33	1.373	3 (6)
C1—C2		1.546 (4)	C32—	-H32	0.930	00
C1—H1		0.9800	C33—	-C34	1.33	5 (12)
C2—C21		1.503 (4)	C33—	-H33	0.930	00
C2—C3		1.551 (4)	C34—	-C35	1.348	8 (12)
С2—Н2		0.9800	C34—	-H34	0.930	00
C3—C31		1.506 (4)	C35—	-C36	1.38	1 (8)
C3—C4		1.513 (4)	C35—	-H35	0.930	00
С3—Н3		0.9800	C36—	-H36	0.930	00
C4—O1		1.211 (3)	C51—	-C52	1.359	9 (4)
C4—C5		1.512 (4)	C51—	-C56	1.403	5 (4)
C5—C51		1.518 (4)	С52—	-C53	1.389	9 (5)
C5—C6		1.537 (4)	C52—	-H52	0.930	00
С5—Н5		0.9800	C53—	-C54	1.35	1 (6)
C6—C61		1.510 (4)	C53—	-H53	0.930	00
С6—С7		1.557 (4)	C54—	-C55	1.361 (5)	
С6—Н6		0.9800	C54—	-H54	0.9300	
С7—С72		1.438 (5)	C55—	-C56	1.356 (5)	
C7—C71		1.473 (5)	C55—	-H55	0.9300	
С7—Н7		0.9800	C56—	-H56	0.9300	
C11—N11		1.132 (4)	C61—	-C66	1.391 (4)	
C12—N12		1.132 (5)	C61—	-C62	1.401 (4)	
C21—C22		1.379 (4)	C62—	-C63	1.36	5 (5)
C21—C26		1.385 (4)	C62—	-H62	0.930	00
C22—C23		1.368 (5)	С63—	-C64	1.359	9 (6)
С22—Н22		0.9300	С63—	-H63	0.930	00
C23—C24		1.343 (7)	C64—	-C65	1.343	3 (6)
С23—Н23		0.9300	C64—	-H64	0.930	00
C24—C25		1.338 (7)	C65—	-C66	1.380	0 (5)
C24—H24		0.9300	C65—	-H65	0.930	00
C25—C26		1.403 (6)	C66—	-Cl2	1.723	3 (3)
С25—Н25		0.9300	C71—	-N71	1.123	3 (4)
C26—Cl1		1.723 (4)	С72—	-N72	1.119	9 (4)
C31—C36		1.366 (5)				
C12—C1—C11		109.1 (3)	C25—	-C26—Cl1	119.8	8 (3)
C12—C1—C2		113.9 (3)	C36—	-C31—C32	118.0	5 (4)
C11—C1—C2		110.6 (3)	C36—	-C31—C3	120.9	9 (4)
С12—С1—Н1		107.7	C32—	-C31—C3	120.:	5 (3)
С11—С1—Н1		107.7	C33—	-C32—C31	119.7	7 (5)
С2—С1—Н1		107.7	C33—	-С32—Н32	120.2	2
C21—C2—C1		112.3 (2)	C31—	-С32—Н32	120.2	2
С21—С2—С3		112.2 (2)	C34—	-C33—C32	120.	1 (7)

C1—C2—C3	110.6 (2)	С34—С33—Н33	120.0
C21—C2—H2	107.1	С32—С33—Н33	120.0
C1—C2—H2	107.1	C33—C34—C35	122.1 (7)
С3—С2—Н2	107.1	C33—C34—H34	118.9
C31—C3—C4	107.9 (2)	С35—С34—Н34	118.9
C31—C3—C2	113.9 (2)	C34—C35—C36	118.5 (8)
C4—C3—C2	110.4 (2)	С34—С35—Н35	120.7
С31—С3—Н3	108.2	С36—С35—Н35	120.7
С4—С3—Н3	108.2	C31—C36—C35	120.9 (6)
С2—С3—Н3	108.2	С31—С36—Н36	119.5
O1—C4—C5	121.6 (3)	С35—С36—Н36	119.5
O1—C4—C3	121.8 (2)	C52—C51—C56	118.2 (3)
C5—C4—C3	116.6 (2)	C52—C51—C5	122.1 (3)
C4—C5—C51	108.1 (2)	C56—C51—C5	119.7 (3)
C4—C5—C6	111.2 (2)	C51—C52—C53	121.3 (3)
C51—C5—C6	113.2 (2)	С51—С52—Н52	119.4
С4—С5—Н5	108.1	С53—С52—Н52	119.4
С51—С5—Н5	108.1	C54—C53—C52	119.2 (4)
С6—С5—Н5	108.1	С54—С53—Н53	120.4
C61—C6—C5	114.2 (2)	С52—С53—Н53	120.4
C61—C6—C7	111.5 (2)	C53—C54—C55	120.7 (4)
C5—C6—C7	110.0 (2)	С53—С54—Н54	119.7
С61—С6—Н6	106.9	С55—С54—Н54	119.7
С5—С6—Н6	106.9	C56—C55—C54	120.8 (3)
С7—С6—Н6	106.9	С56—С55—Н55	119.6
C72—C7—C71	109.3 (3)	С54—С55—Н55	119.6
C72—C7—C6	112.3 (3)	C55—C56—C51	119.9 (3)
C71—C7—C6	112.6 (3)	С55—С56—Н56	120.1
С72—С7—Н7	107.4	С51—С56—Н56	120.1
С71—С7—Н7	107.4	C66—C61—C62	116.1 (3)
С6—С7—Н7	107.4	C66—C61—C6	122.2 (3)
N11—C11—C1	176.4 (4)	C62—C61—C6	121.7 (3)
N12—C12—C1	178.2 (4)	C63—C62—C61	121.4 (3)
C22—C21—C26	116.4 (3)	С63—С62—Н62	119.3
C22—C21—C2	121.7 (3)	С61—С62—Н62	119.3
C26—C21—C2	121.9 (3)	C64—C63—C62	120.7 (4)
C23—C22—C21	122.8 (4)	С64—С63—Н63	119.6
C23—C22—H22	118.6	С62—С63—Н63	119.6
C21—C22—H22	118.6	C65—C64—C63	119.8 (4)
C24—C23—C22	119.8 (4)	С65—С64—Н64	120.1
C24—C23—H23	120.1	С63—С64—Н64	120.1
С22—С23—Н23	120.1	C64—C65—C66	120.8 (4)
C25—C24—C23	120.2 (4)	С64—С65—Н65	119.6
C25—C24—H24	119.9	С66—С65—Н65	119.6
C23—C24—H24	119.9	C65—C66—C61	121.2 (3)
C24—C25—C26	120.9 (4)	C65—C66—Cl2	117.7 (3)
C24—C25—H25	119.5	C61—C66—Cl2	121.1 (2)
C26—C25—H25	119.5	N71—C71—C7	179.0 (5)
C21—C26—C25	119.9 (4)	N72—C72—C7	179.0 (5)

C21—C26—C11	120.3 (3)				
C12—C1—C2—C21	-71.0 (3)		C4—C3—C31—C36		121.2 (3)
C11—C1—C2—C21	52.3 (3)		C2—C3—C31—C36		-115.9 (4)
C12—C1—C2—C3	55.2 (3)		C4—C3—C31—C32		-57.2 (4)
C11—C1—C2—C3	178.5 (2)		C2—C3—C31—C32		65.7 (4)
C21—C2—C3—C31	175.7 (3)		C36—C31—C32—C33		1.9 (6)
C1—C2—C3—C31	49.5 (3)		C3—C31—C32—C33		-179.7 (4)
C21—C2—C3—C4	-62.7 (3)		C31—C32—C33—C34		-0.9 (8)
C1—C2—C3—C4	171.1 (2)		C32—C33—C34—C35		-2.0 (12)
C31—C3—C4—O1	92.2 (3)		C33—C34—C35—C36		3.8 (13)
C2—C3—C4—O1	-32.9 (3)		C32—C31—C36—C35		-0.1 (6)
C31—C3—C4—C5	-88.1 (3)		C3—C31—C36—C35		-178.5 (5)
C2—C3—C4—C5	146.9 (2)		C34—C35—C36—C31		-2.7 (10)
O1—C4—C5—C51	95.0 (3)		C4—C5—C51—C52		117.7 (3)
C3—C4—C5—C51	-84.7 (3)		C6—C5—C51—C52		-118.7 (3)
O1—C4—C5—C6	-29.7 (3)		C4—C5—C51—C56		-61.6 (3)
C3—C4—C5—C6	150.5 (2)		C6-C5-C51-C56		62.0 (3)
C4—C5—C6—C61	-58.8 (3)		C56—C51—C52—C53		-0.1 (5)
C51—C5—C6—C61	179.2 (2)		C5-C51-C52-C53		-179.4 (3)
C4—C5—C6—C7	174.9 (2)		C51—C52—C53—C54		-1.1 (6)
C51—C5—C6—C7	53.0 (3)		C52—C53—C54—C55		1.2 (7)
C61—C6—C7—C72	55.6 (3)		C53—C54—C55—C56		-0.1 (7)
C5—C6—C7—C72	-176.6 (3)		C54—C55—C56—C51		-1.2 (6)
C61—C6—C7—C71	-68.4 (3)		C52—C51—C56—C55		1.3 (5)
C5—C6—C7—C71	59.4 (3)		C5—C51—C56—C55		-179.4 (3)
C12-C1-C11-N11	102 (6)		C5-C6-C61-C66		136.4 (3)
C2-C1-C11-N11	-24 (7)		C7—C6—C61—C66		-98.2 (3)
C11—C1—C12—N12	-131 (13)		C5-C6-C61-C62		-46.5 (4)
C2-C1-C12-N12	-7(13)		C7—C6—C61—C62		78.9 (3)
C1—C2—C21—C22	74.6 (4)		C66—C61—C62—C63		-0.2 (5)
C3—C2—C21—C22	-50.7 (4)		C6—C61—C62—C63		-177.5 (3)
C1—C2—C21—C26	-106.2 (3)		C61—C62—C63—C64		0.5 (6)
C3—C2—C21—C26	128.5 (3)		C62—C63—C64—C65		-1.2 (6)
C26—C21—C22—C23	-0.1 (5)		C63—C64—C65—C66		1.8 (7)
C2—C21—C22—C23	179.2 (3)		C64—C65—C66—C61		-1.5 (6)
C21—C22—C23—C24	-1.4 (6)		C64—C65—C66—Cl2		179.2 (3)
C22—C23—C24—C25	1.3 (7)		C62—C61—C66—C65		0.7 (4)
C23—C24—C25—C26	0.1 (7)		C6—C61—C66—C65		178.0 (3)
C22—C21—C26—C25	1.5 (5)		C62—C61—C66—Cl2		180.0 (2)
C2—C21—C26—C25	-177.8 (3)		C6—C61—C66—Cl2		-2.7 (4)
C22-C21-C26-Cl1	-177.3 (3)		C72—C7—C71—N71		174 (100)
C2-C21-C26-Cl1	3.4 (5)		C6-C7-C71-N71		-60 (27)
C24—C25—C26—C21	-1.5 (7)		C71—C7—C72—N72		31 (24)
C24—C25—C26—C11	177.2 (4)		C6—C7—C72—N72		-94 (24)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C7—H7…N11 ⁱ		0.98	2.33	3.186 (4)	145

C23—H23…N11 ⁱⁱ	0.93	2.65	3.409 (5)	139
C34—H34…N72 ⁱⁱⁱ	0.93	2.52	3.443 (8)	176
C52—H52···N12 ^{iv}	0.93	2.64	3.489 (5)	152
C36—H36···N12 ^{iv}	0.93	2.96	3.805 (7)	152
C54—H54…N71 ^v	0.93	2.91	3.564 (6)	128
C53—H53…N71 ^v	0.93	2.96	3.583 (5)	126
C64—H64···Cl2 ^{vi}	0.93	2.97	3.663 (5)	133
C64—H64···O1 ^{vi}	0.93	2.88	3.673 (5)	144
C65—H65···Cl1 ^{vi}	0.93	2.80	3.728 (4)	174

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+2, -*y*+1, -*z*+2; (iii) *x*, -*y*-1/2, *z*+1/2; (iv) -*x*+2, -*y*, -*z*+2; (v) -*x*+2, *y*+1/2, -*z*+3/2; (vi) -*x*+1, *y*-1/2, -*z*+3/2.

Fig. 4

