

GOPEN ACCESS

Citation: Bernatchez JA, McCall L-I (2020) Insights gained into respiratory infection pathogenesis using lung tissue metabolomics. PLoS Pathog 16(7): e1008662. <u>https://doi.org/10.1371/journal.ppat.1008662</u>

Editor: Rebecca Ellis Dutch, University of Kentucky, UNITED STATES

Published: July 14, 2020

Copyright: © 2020 Bernatchez, McCall. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Lung metabolomics research in the McCall laboratory is supported by a pilot grant from the Oklahoma Center for Respiratory and Infectious Diseases, funded by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM103648. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

PEARLS

Insights gained into respiratory infection pathogenesis using lung tissue metabolomics

Jean A. Bernatchez^{1,2}*, Laura-Isobel McCall^{3,4,5,6}*

 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America, 2 Center for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, La Jolla, California, United States of America, 3 Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America, 4 Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America, 5 Stephenson Cancer Center, University of Oklahoma, Oklahoma City, Oklahoma, United States of America,
6 Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America

* jbernatchez@health.ucsd.edu (JAB); Imccall@ou.edu (LIM)

Respiratory infections have long represented a serious threat to humanity, given their relative ease of dissemination via aerosols. The current pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recent outbreaks of related coronaviruses and influenza continue to highlight the importance of studying the pathogenesis of these diseases to better prepare ourselves for the next threat. Elucidating the metabolic determinants of severe versus mild disease states in the lung during respiratory infections may hold the key to the development of therapeutics to modulate symptom and disease severity. Metabolomics and the related field of lipidomics seek to analyze the global changes of small molecule effectors of gene expression and lipids in living systems, respectively. Two principal techniques are used to study these changes: mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. The first technique utilizes the mass-to-charge ratio of molecular ions to help elucidate molecular structure, whereas the second technique utilizes the differences in local magnetic fields about the nuclei of atoms in a molecule to help determine the chemical structure [1]. In this Pearl, we review the advances in the fields of untargeted metabolomics and lipidomics as they pertain to the study of lung tissue, in respiratory infectious diseases. For in vitro or ex vivo immunometabolomic studies of respiratory pathogens or for targeted metabolomic analyses, we refer the reader to excellent reviews on these topics (e.g., Goodwin and colleagues [2], du Preez and colleagues [3], Rao and colleagues [4]).

Viral infections

Studies of the lung metabolome in viral infections have focused predominantly on influenza virus (6 studies) [5, 6, 7, 8, 9, 10], with one additional study on respiratory syncytial virus (RSV) [11]. Influenza virus studies were performed in ferrets (1 study) [5] and C57BL/6 mice (5 studies) [6, 7, 8, 9, 10], with all but one study [8] using MS. These differences in animal model, viral strain, instrumentation, and data acquisition and analysis parameters, as well as the use of different infection time points, likely account for the limited overlap between these studies. Indeed, only uridine, sphingosine, sphinganine, and kynurenine were found increased in more than one study (Cui and colleagues [6] and Chandler and colleagues [9]), and adenosine monophosphate (AMP) and threonine showed opposite trends depending on the study [5, 6, 9]. However, common trends include alterations in amino acids and related molecules [5, 6, 9], in some nucleosides, nucleotides, and analogs [5, 6, 9], and in select lipids [5, 6, 9, 10],

increases in carbohydrates and related molecules (Tisoncik-Go and colleagues [5] and Cui and colleagues [6]) and decreases in mannitol, myo-inositol, and glyceric acid [5] (Table 1). Changes in amino acids, lipids, and nucleosides/nucleotides likely reflect the consequences of viral manipulation of host metabolism to favor the production of new viral particles, whereas modulation of pro-inflammatory (e.g., sphingosine, which is metabolized to sphingosine-1-phosphate) and anti-inflammatory metabolites (e.g., kynurenine) contribute more indirectly to disease pathogenesis.

Bacterial infections

Lung metabolome characterization in bacterial infections has been performed in Mycobacterium tuberculosis infection (four studies, two in guinea pigs [12, 13] and two in C57BL/6 mice [14, 15]), using NMR [12, 13, 14] and capillary electrophoresis-mass spectrometry (CE-MS), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) [15]; in Pseudomonas aeruginosa infection (two studies in C57BL/6 mice, one using NMR [16] and one using time-of-flight-secondary ion mass spectrometry (TOF-SIMS)MS [17]); and in Francisella tularensis infection in ICR mice using desorption electrospray ionization-mass spectrometry (DESI-MS) [18]. Given the common methods employed in most of the *M. tuberculosis* studies, significant overlap in infection-induced metabolic shifts was observed, including increases in lactate, glutamate, aspartate, glutathione, and betaine (Table 1) [12, 13, 14, 15]. Increases in oxidized glutathione are likely due to inflammatory processes [12, 15], and increases in amino acids may reflect increased proteolysis [15]. Succinate was also increased in *P. aeruginosa* infection, whereas glutathione was decreased [16]. Glucose was also increased by *P. aeruginosa* [16] but decreased by *M. tuberculosis* infection [14]. Changes in lactate and succinate likely reflect the complex energy requirements associated with pathogen growth (particularly in the context of intracellular infection with M. tuberculosis) [14, 16]; these metabolites are also immunomodulatory [4, 21].

Fungal infections

Few studies have investigated small molecule changes in the lung in response to fungal infection. One study detected siderophores produced by *Aspergillus fumigatus* in the lung of infected, immunosuppressed rats [20]. A second study used NMR to show increases in lung and pathogen-derived sugars, lipids, and alcohols in *Cryptococcus neoformans*–infected rats [19]. These likely represent *Cryptococcus* adaptations to survive in the host environment and microbial metabolism [19].

Implications for drug development

Metabolic modulation has been successfully deployed in several studies as a therapeutic strategy against respiratory infectious diseases, particularly in the context of immunomodulation [4]. For instance, shifting human macrophages to increased states of aerobic glycolysis has been identified as a potential therapeutic target in mitigating *M. tuberculosis* replication in these cells [22]. Also, inhibition of lactate production via targeting of lactate dehydrogenase A rescues RIG-I-like receptor (RLR)-mediated type I interferon (IFN) production and leads to enhanced protection from vesicular stomatitis virus in multiple tissues, including the lung, in mice [23]. Applying existing metabolomic and lipidomic data acquired from studies of respiratory infections to the development of novel metabolism-focus therapies should therefore be strongly considered going forward. This is particularly important for respiratory diseases in which no specific therapies exist, such as SARS, Middle East respiratory syndrome (MERS), and coronavirus disease 19 (COVID-19). Given the severity of these diseases, and the fact that

Table	l. Lungme	tabolomics studies.				-					-				-	
Reference	2	9	2	8	6	[10]	Ξ	[13]	[13]	[14]	[15]	[16]	5	18	6	[20]
Pathogen	influenza virus	influenza virus	influenza virus	influenza virus	influenza virus	influenza virus	RSV	M. tuberculosis	M. tuberculosis	M. tuberculosis	M. tuberculosis	P. aeruginosa	P. aeruginosa	F. tularensis	2. A. teoformans	Jumigatus
Pathogen strain	Influenza A: 1918, CA04 (H1N1)	Influenza A: PR8 (H1N1)	Influenza A: CA04 (H1N1)	Influenza A: PR8 (H1N1)	Influerza A. CA04 (H1N1)	Influenza A: PR8, C A04 (H1N1), Vietnam/1 203/04 (H5N1)	A2	H37Rv	4619, 4233, 4147, 3393	H37Rv	H37Rv	CHA, CHAApopBD	CHA	live vaccine strain	/PB571- 10 015	59 CCF
Model	ferrets	mice	mice	mice	mice	mice	mice	guinea pig	guinea pig	mice	mice	mice	mice	mice	ats ra	tt.
Model strain	,	C57BL/6	C57BL/6	C57BL/6	C57BL/6	C57BL/6	BALB/c	Hartley	Hartley	C57BL/6	C57BL/6	C57BL/6	C57BL/6	ICR	Tisher 344 Lo	wis
Method	LC-MS; GC-MS	LC-MS	LC-MS	NMR	LC-MS	LC-MS	LC-MS	NMR	NMR	NMR	CE-MS, LC-MS, GC-MS	NMR	TOF-SIMS	DESI-MS	VMR LC	C-MS, ALDI-MSI
Timepoint (days)	1, 3, 8	0, 6, 10, 14, 21, 28	4,8	6	10	0.25, 0.5, 1, 2	1, 2, 4, 6, 7, 8, 10	15, 30, 60	30,60	28	28, 63	0.6 to 0.75	0.7	9	5	
Increased					-		-	Amines			-					
		Sphinganine, sphingosine			Sphinganine, sphingosine		Putrescine				Putrescine, N-acetylspermidine, spermidine, spermine					
					-	-	Amino acids, pept	ides, analogues, and deriva	atives		-				-	
		Leacine, methionine, phenythatanet, 2-aramotopie acdi, turtine, pranolprica cadi, acdi, turtine, pranolprica cadi, presirva turci acdi, tech X-seroyl-atomic acdi, physi-tyrenine, lancy physine, glycyl-tyrenine, lancy physine, physi-tyrenine, acdi lancyglutathorse, pyruvic acdi			Sertine, threenine, tryptopian, kynurenine, tryptorariae, indole, formylkynurenine, indole, indole seeralddryde, hydrosyndoleser (tr acid, hydrosyndoleser (tr acid, methylere oxindole, glut amyl-lysine		Arginine, citralline, histidine, kyrurenine, indole, ornithne	Alarine, aspartate, gluannate, reduced gluathione, cotdized gluathione, creatine, TMAO ² , betaine	Alanine, aspartate, creatine, betaine/ trimethylamine N- oxide, glutathione	Alarine, aspartate, gutamate, gutamine, isotucine, leucine, jysine, phenylalanine, tyrosine, creatine, betaine, taurine, betaine, taurine,	Arguine, aspartate, cirulline, crysteine, galartane, gyrcine, conthine, kynurenine, methylnitatione, codiaed gutathione, redaved gutathione, Slactoryglunthion, trans 4 hydroxyrouller, TMAO, decoryprater, Carlon erine, galacenyllytrioxylytine	leucine or isoleucine, valine	,			
							Carbohydrates	and carbohydrate conjuga	tes		· · · · · · · · · · · · · · · · · · ·					
	Fructose	D-mannose-1P, N- acetylneuraminic acid						Dihydroxyacetone		,	Glucose-6-phosphate, N- glycolylneuraminate	Glucose			Trehalose, - nannitol	
					-		Lipids ar	d li pid-like molecules			-					
	Palmitic acid, glyserol- 3-phosphate, PC (38-4), PC(38-5), PC(38-6), PE(38-5), PE(38-4), PE(40-6), PE(40-4), PE(40-6), PE(40-4), PE(40-6), PE(40-4), PE(40-6), PE(40-4), PE(40-6), PE(40-4), PE(40-6), PE(40-4), PE(40-6), PE(40-4), PE(40-6	PC331), PC324, PC324, PC (186), PC224, MC226, PC32, PC224, MC226, acquisation, acquisation, proprojacaritie, proprojacaritie, bydrocycheanoycaritie, octaoyfcarritie			PCs, PS phosphatdylglycerols, PEs	PGE2, LXA4 PGE2, LXA4 PGD2 (strain- dependent), dependent), 15-deoxy-PG12, FGE2, 6-keto- PGF1, 5-kHEPE (strain-dependent), dependent), 12-HEPE, PGE3		PC, GPC	Phosphocholine, GPC	PC, PE	Lindet act, paintidet act, PR. actionation projectionations, buryplamitine, hearnojleantine, hearnojleantine	,	Linoleic acid, cholesteryl sulfate	PC(34:1), PC(36:2), PC(36:3), PC(36:4), PI(38:4)	- BbC	
					-		Nucleosides,	nucleotides, and analogues			-					
		Guanosine, xanthine, thymidine, uridine, succinyladenosine, AMP, GMP, TMP, cAMP, dAMP, dCMP, ADP, UDP-N-accivglycosamine, GDP-1-fucose	,		Cytidine, cytosine, inosine, hypoxanthine, uridine					AMP, UDP- glucose, uridine, xanthine, uracil	Cyridine, uraeil, uridine CMP, GDP, CDP-ethanolamine, 5-methylthioadenosine		,			
								Organic acids								
	Lactic acid	Glutaconic acid	,					Lactic acid, acetic acid	Lactic acid, acetic acid	Lactic acid, succinic acid, itaconic acid	Lactic acid, malic acid, itaconic acid	Succinic acid			Acetic acid	
								Other								
							6-hydroxymelatonin			Acetaldehyde	Nicotinamide				Sthanol sis A A A de de de	spergillus derophore rricrocin (C), spergillus derophore ssferri-FC
															(Con	tinued)

Reference	[2]	9	1	[8]	[6]	[0]	Ξ	[12]	[13]	[14]	[15]	[][[1]	[18]	[61]	[20]
Decreased								Amines								
	Ethanolamine															
							Amino acids, pe,	ptides, analogues, and deriv	atives							
	Threonine valine, aminomalonic acid, hypotaurine		,		Asparagine, trimethylamine oxide, methylamialamide, pyrroline -5-carboxylate, heanpertyl liydroxyberzoic add, hydroxy-14ryptophan		Glycine, desaminotyrosine, xanthurenic acid, serotonin, 5-hydroxyindolaectic acid, aminoadipic acid, hydroxyphenyllactic acid	1			Serotomin	Glycine, glutathione				
							Carbohydrate	s and carbohydrate conjuga	tes							
	Mannitol, myo- inositol, glyceric acid				,	,	,	,		Glucose		,				
							Lipids.	and li pid-like molecules								
	PC(1660), PC(18.1), TG(18.1/18.1/18.1/18.1/18.1/18.1/18.1/18.1				PE, dodecamal	12.HETE (strain- 15.HETE (strain- 15.HETE (strain- dependent), dependent), (strain-dependent), 5.HETE (strain- dependent), 5.METE, 19.HETE, 19.HETE, 19.HETE, 19.HETE, 19.HETE, 10.HETE		PhosphatidyCabline				GPC		PG(34:1)		
							Nucleosides	i, nucleotides, and analogue:								
	Uracil	CMP, UDP			Adenine, AMP, allantoin			,		NAD+, NADP+	Adenosine, UMP					
								Organic acids								
	Urea	1				,				Oxaloacetic acid, fumaric acid	Pyruvic acid	,				
								Other								
					Amino propanol, trimethylaminoacetone, bis- (2-hydroxypropyl)amine	,		Choline	,			Ascorbate				
¹ Studi Abbre	ies only inve viations: Al	stigated the impac DP, adenosine dip	ct of obea shosphat	sity on th e; AMP,	ıe metabolome. adenosine monopl	hosphate (c.	AMP, cvclic AN	AP; dAMP, dec	xvAMP); (CE-MS, capi	llary electrophoresi	is-mass st	pectrome	etry; CM	IP, cytidi	ne
ouom	phosphate (1	dCMP, deoxyCM	P); DESI	-MS, des	sorption electrospr	ay ionizatio	n-mass spectro.	metry; GC-MS	, gas chror	natography-	mass spectrometry;	; GDP, gu	anosine	, diphospl	, hate; GN	ſP,
guano	sine monosl	phosphate; GPC, ¿	glyceropl	hosphoci	holine; HDoHE, H	ydroxydocc	osahexaenoic ac	id; HEPE, hyd	roxyeicosa	pentaenoic a	cid; HETE, Hydrox	xyeicosate	etraenoat	te; LC-M	S, liquid	
chrom	1atography-1	mass spectrometry	y; LX, lip	oxin; M.	ALDI-MSI, matrix	-assisted las	er desorption/i	onization-mas	s spectrom	etry imaging	; MG, monoglyceri	ide; NAD,	, Nicotin	iamide a	denine	
dinucl	leotide; NMì	R, nuclear magnet	tic reson	ance; PC	3, phosphocholines,	; PE, phospł	noethanolamin	es; PG, prostag	landin; PS,	phosphatid	ylserines; TG, trigly	rceride; Tl	MAO, Ti	rimethyl	amine N	l-oxide;
TMP,	thymidine n	nonophosphate; 1	TOF-SIM	IS, time-	of-flight-secondary	r ion mass s	pectrometry; U	DP, uridine di	phosphate.							

PLOS PATHOGENS

4/8

https://doi.org/10.1371/journal.ppat.1008662.t001

lung metabolic alterations are observed in a broad range of respiratory infections (Table 1), we expect severe coronavirus infections to cause significant changes in the lung metabolome. Indeed, serum metabolomic studies of COVID-19 patients have revealed major alterations in the plasma and serum metabolome and lipidome, with decreased circulating amino acids in particular [24, 25]. Although select amino acids were decreased in lung *P. aeruginosa* and influenza virus infection [16] [5], lung amino acids were predominantly increased by respiratory pathogens [6, 9, 11, 12, 13, 14, 15, 16]. In contrast, metabolite shifts common to COVID-19 patient blood and experimental lung infections include increases in some nucleotide metabolites (also observed in the works by Cui and colleagues and Chandler and colleagues [6, 9]) and decreases in allantoin and mannitol (also observed in Tisoncik-Go and colleagues and Chandler and colleagues [5, 9]) [25]. Whether these changes are also observed at the site of COVID-19 tissue damage remains to be determined.

Similarities in in situ metabolic shifts between different pathogens afford the possibility to develop broad-spectrum therapeutic interventions. Such similarities likely represent host tissue adaptations to the metabolic stress caused by pathogen proliferation and the metabolic needs of immune cells, as well as inflammatory signals. Examples of diseases which display similar changes in specific lung metabolites during infection include RSV in BALB/c mice [11] and influenza virus in C57BL/6 mice [9] (indole increased), M. tuberculosis [12,13] and Cryptococcus [19] (acetic acid increased), P. aeruginosa [16] and M. tuberculosis [14] (succinate increased), M. tuberculosis [14], P. aeruginosa [16] and influenza virus [6] (leucine increased), M. tuberculosis [14] and influenza virus [5, 6] (lactic acid, taurine, uridine, and phosphatidylethanolamine increased), and RSV [11] and P. aeruginosa [16] (glycine decreased) (Table 1). Kynurenine was increased by influenza virus [6, 9], RSV [11], and M. tuberculosis [15] infection, likely due to the fact that it is produced in response to inflammation. Indeed, increased kynurenine is also observed in the serum of severe COVID-19 patients [24]. Broad-spectrum metabolic modulators would be most useful in the context of emerging pathogens in which the rapid development of therapeutic interventions is required. However, this approach is complicated by discrepancies in the metabolomics literature even for a given pathogen. For example, AMP and threonine were each found to be increased in one influenza virus study yet decreased in another [5, 6, 9]. Likewise, comparison between ferret infection with 1918 and CA04 influenza virus strains shows opposite patterns for select phosphoethanolamines and phosphocholines—PE(36:1), PE(36:2), PE(34:2), PC(38:3) [5]. Comparison between mouse infections with influenza virus strains CA04 (H1N1) and Vietnam/1203/04 (H5N1) showed opposite patterns in pro- and anti-inflammatory lipids such as 10S, 17S-dihydroxydocosahexaenoic acid (PD1) [10]. Further follow-up studies must be performed to confirm the robustness of these results and to settle the record for these disease-specific metabolites. Metabolomics and lipidomics are strongly influenced by sample collection (including animal euthanasia methods [26]), sample storage conditions and duration, metabolite extraction, and data acquisition protocols [27]. These are regrettably not always fully described in publications. Likewise, variability in data analysis methods and lack of implementation of standardized metabolite nomenclature makes comparison between studies challenging, although new open tools are helping address this issue [28].

Conclusions, challenges, and future perspectives

Although there are many metabolomics studies in respiratory infection, the majority have focused on serum, plasma, and bronchoalveolar lavage fluid (BALF), with few studies directly on the affected lung tissue. This is likely driven by the ease of sample access, particularly from human populations; nevertheless, prior studies have detected significant differences in

infection-induced metabolic changes between the lung, serum, and BALF. For example, increases in amino sugar and nucleotide sugar metabolism were only observed in the lung during influenza A virus infection [6]. Likewise, lactate was increased in the M. tuberculosisinfected lung but decreased in the serum [13]. Thus, although biofluids are suitable for biomarker discovery, a complete understanding of the role of metabolism in respiratory infection pathogenesis requires lung tissue analysis. These studies generally involve terminal sample collection only feasible in animal models. However, the results of such animal model studies can be validated in humans using technologies such as positron emission tomography (PET; see Bassetti and colleagues [29] for a review). Clever studies using cystic fibrosis patient sputum samples cultured under in vitro conditions that mimic in vivo lung pH and oxygen gradient shifts are also helping to understand the metabolic shifts associated with human diseases, including differential production of *P. aeruginosa* secondary metabolites depending on pH and oxygen levels [30]. Direct studies of the sputum metabolome from cystic fibrosis patients have also revealed higher levels of metabolite diversity and higher peptide levels in patients with more severe disease states from *P. aeruginosa*, likely due to higher proteolytic activity in the lung [31].

Lung metabolomics studies have currently been performed only on a restricted list of pathogens (Table 1). It will be necessary to expand these methods to a broader range of diseases and disease models in the future, to identify common versus disease-specific metabolic alterations. In addition, most lung metabolomics studies do not specify which region of the lung was analyzed. Recent lung spatial metabolomics studies have demonstrated spatial variability in bacterial distribution and host and bacterial metabolism between lung regions (e.g., Garg and colleagues [32]). There is therefore a strong need for a spatial component to be added to metabolomic studies of lung infection. A few studies have detected pathogen-derived metabolites such as ergothioneine, trehalose, ferricrocin, and metabolites from bacterial quorum sensing pathways [32, 20, 19]. The remainder of reported metabolites are common to both host and pathogen metabolism; given the relative biomass of host versus microbe, these are likely predominantly reflective of host metabolic processes. Although this focus on host metabolism is understandable in the context of viral infection, a greater understanding of the integration between pathogen and host metabolism depending on the lung regions will be required, facilitated by MS imaging [20] and new spatial metabolomics approaches [32, 33]. Lastly, given the strong connection between metabolism, tissue damage, and immune responses, such studies have great potential to lead to new ways to manage respiratory infections.

References

- 1. Jacob M, Lopata AL, Dasouki M, Abdel Rahman AM. Metabolomics toward personalized medicine. Mass Spectrometry Reviews. 2019. pp. 221–238. https://doi.org/10.1002/mas.21548 PMID: 29073341
- Goodwin CM, Xu S, Munger J. Stealing the Keys to the Kitchen: Viral Manipulation of the Host Cell Metabolic Network. Trends Microbiol. 2015; 23: 789–798. https://doi.org/10.1016/j.tim.2015.08.007 PMID: 26439298
- du Preez I, Luies L, Loots DT. The application of metabolomics toward pulmonary tuberculosis research. Tuberculosis. 2019; 115: 126–139. <u>https://doi.org/10.1016/j.tube.2019.03.003</u> PMID: 30948167
- Rao M, Dodoo E, Zumla A, Maeurer M. Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Front Microbiol. 2019; 10: 962. <u>https://doi.org/10.3389/fmicb.2019.00962</u> PMID: 31134013
- Tisoncik-Go J, Gasper DJ, Kyle JE, Eisfeld AJ, Selinger C, Hatta M, et al. Integrated Omics Analysis of Pathogenic Host Responses during Pandemic H1N1 Influenza Virus Infection: The Crucial Role of Lipid Metabolism. Cell Host Microbe. 2016; 19: 254–266. https://doi.org/10.1016/j.chom.2016.01.002 PMID: 26867183

- Cui L, Zheng D, Lee YH, Chan TK, Kumar Y, Ho WE, et al. Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia. Scientific Reports. 2016. 6: 26076. https://doi.org/10.1038/srep26076 PMID: 27188343
- Milner JJ, Rebeles J, Dhungana S, Stewart DA, Sumner SCJ, Meyers MH, et al. Obesity Increases Mortality and Modulates the Lung Metabolome during Pandemic H1N1 Influenza Virus Infection in Mice. J Immunol. 2015; 194: 4846–4859. https://doi.org/10.4049/jimmunol.1402295 PMID: 25862817
- Milner JJ, Wang J, Sheridan PA, Ebbels T, Beck MA, Saric J. 1H NMR-based profiling reveals differential immune-metabolic networks during influenza virus infection in obese mice. PLoS ONE. 2014; 9: e97238. https://doi.org/10.1371/journal.pone.0097238 PMID: 24844920
- Chandler JD, Hu X, Ko E-J, Park S, Lee Y-T, Orr M, et al. Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Regul Integr Comp Physiol. 2016; 311: R906–R916. <u>https://doi.org/10.1152/ajpregu.00298.2016</u> PMID: 27558316
- Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, et al. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell. 2013; 153: 112–125. <u>https:// doi.org/10.1016/j.cell.2013.02.027</u> PMID: 23477864
- Sarkar I, Zardini Buzatto A, Garg R, Li L, van Drunen Littel-van den Hurk S. Metabolomic and Immunological Profiling of Respiratory Syncytial Virus Infection after Intranasal Immunization with a Subunit Vaccine Candidate. J Proteome Res. 2019; 18: 1145–1161. <u>https://doi.org/10.1021/acs.jproteome.</u> 8b00806 PMID: 30706717
- Somashekar BS, Amin AG, Rithner CD, Troudt J, Basaraba R, Izzo A, et al. Metabolic profiling of lung granuloma in Mycobacterium tuberculosis infected guinea pigs: ex vivo 1H magic angle spinning NMR studies. J Proteome Res. 2011; 10: 4186–4195. https://doi.org/10.1021/pr2003352 PMID: 21732701
- Somashekar BS, Amin AG, Tripathi P, MacKinnon N, Rithner CD, Shanley CA, et al. Metabolomic signatures in guinea pigs infected with epidemic-associated W-Beijing strains of Mycobacterium tuberculosis. J Proteome Res. 2012; 11: 4873–4884. https://doi.org/10.1021/pr300345x PMID: 22873951
- Shin J-H, Yang J-Y, Jeon B-Y, Yoon YJ, Cho S-N, Kang Y-H, et al. 1H NMR-based Metabolomic Profiling in Mice Infected with Mycobacterium tuberculosis. Journal of Proteome Research. 2011. pp. 2238– 2247. https://doi.org/10.1021/pr101054m PMID: 21452902
- Fernández-García M, Rey-Stolle F, Boccard J, Reddy VP, García A, Cumming BM, et al. Comprehensive Examination of the Mouse Lung Metabolome Following Mycobacterium tuberculosis Infection Using a Multiplatform Mass Spectrometry Approach. Journal of Proteome Research. 2020; 19 (5):2053–70. https://doi.org/10.1021/acs.jproteome.9b00868 PMID: 32285670
- LeGouëllec A, Moyne O, Meynet E, Toussaint B, Fauvelle F. High-Resolution Magic Angle Spinning NMR-Based Metabolomics Revealing Metabolic Changes in Lung of Mice Infected with P. aeruginosa Consistent with the Degree of Disease Severity. Journal of Proteome Research. 2018. pp. 3409–3417. https://doi.org/10.1021/acs.jproteome.8b00306 PMID: 30129763
- Desbenoit N, Saussereau E, Bich C, Bourderioux M, Fritsch J, Edelman A, et al. Localized lipidomics in cystic fibrosis: TOF-SIMS imaging of lungs from Pseudomonas aeruginosa-infected mice. Int J Biochem Cell Biol. 2014; 52: 77–82. https://doi.org/10.1016/j.biocel.2014.01.026 PMID: 24513532
- Basile F, Sibray T, Belisle JT, Bowen RA. Analysis of lipids from crude lung tissue extracts by desorption electrospray ionization mass spectrometry and pattern recognition. Anal Biochem. 2011; 408: 289–296. https://doi.org/10.1016/j.ab.2010.09.017 PMID: 20868645
- Himmelreich U, Allen C, Dowd S, Malik R, Shehan BP, Mountford C, et al. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect. 2003; 5: 285–290. https://doi.org/10.1016/s1286-4579(03)00028-5 PMID: 12706441
- Luptáková D, Pluháček T, Petřík M, Novák J, Palyzová A, Sokolová L, et al. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Scientific Reports. 2017. 7: 16523. https://doi.org/10.1038/s41598-017-16648-z PMID: 29184111
- Grimolizzi F, Arranz L. Multiple faces of succinate beyond metabolism in blood. Haematologica. 2018; 103: 1586–1592. https://doi.org/10.3324/haematol.2018.196097 PMID: 29954939
- Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O'Leary SM, O'Sullivan MP, et al. Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication. J Immunol. 2016; 196: 2444–2449. https://doi. org/10.4049/jimmunol.1501612 PMID: 26873991
- Zhang W, Wang G, Xu Z-G, Tu H, Hu F, Dai J, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS. Cell. 2019. pp. 176–189.e15. https://doi.org/10.1016/j.cell.2019.05.003 PMID: 31155231

- Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020: S0092-8674(20)30627–9. <u>https://doi.org/10.1016/j.cell.2020.05.</u> 032 PMID: 32492406.
- Wu D, Shu T, Yang X, Song J-X, Zhang M, Yao C, et al. Plasma Metabolomic and Lipidomic Alterations Associated with COVID-19. Natl Sci Rev. 2020:nwaa086. <u>https://doi.org/10.1093/nsr/nwaa086</u> PubMed PMID: PMC7197563.
- Overmyer KA, Thonusin C, Qi NR, Burant CF, Evans CR. Impact of Anesthesia and Euthanasia on Metabolomics of Mammalian Tissues: Studies in a C57BL/6J Mouse Model. PLOS ONE. 2015. p. e0117232. https://doi.org/10.1371/journal.pone.0117232 PMID: 25658945
- Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis. Metabolomics. 2007. pp. 211–221. https://doi.org/10.1007/s11306-007-0082-2 PMID: 24039616
- Jarmusch AK, Wang M, Aceves CM, Advani RS, Aguire S, Aksenov AA, et al. Repository-scale Co- and Re-analysis of Tandem Mass Spectrometry Data. bioRxiv. 2019:750471. <u>https://doi.org/10.1101/ 750471</u>
- Bassetti M, Carnelutti A, Muser D, Righi E, Petrosillo N, Di Gregorio F, et al. 18F-Fluorodeoxyglucose positron emission tomography and infectious diseases. Current Opinion in Infectious Diseases. 2017. pp. 192–200. https://doi.org/10.1097/QCO.00000000000354 PMID: 28079630
- Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv. 2018; 4: eaau1908. https://doi.org/10.1126/ sciadv.aau1908 PMID: 30263961
- Quinn RA, Adem S, Mills RH, Comstock W, DeRight Goldasich L, Humphrey G, et al. Neutrophilic proteolysis in the cystic fibrosis lung correlates with a pathogenic microbiome. Microbiome. 2019; 7: 23. https://doi.org/10.1186/s40168-019-0636-3 PMID: 30760325
- Garg N, Wang M, Hyde E, da Silva RR, Melnik AV, Protsyuk I, et al. Three-Dimensional Microbiome and Metabolome Cartography of a Diseased Human Lung. Cell Host Microbe. 2017; 22: 705–716.e4. https://doi.org/10.1016/j.chom.2017.10.001 PMID: 29056429
- Melnik AV, Vázquez-Baeza Y, Aksenov AA, Hyde E, McAvoy AC, Wang M, et al. Molecular and Microbial Microenvironments in Chronically Diseased Lungs Associated with Cystic Fibrosis. mSystems. 2019; 4. https://doi.org/10.1128/mSystems.00375-19 PMID: 31551401