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SUMMARY
Induced pluripotent stem cells (iPSCs) generated from somatic cells by ectopic expression of reprogramming factors, e.g., POU5F1

(OCT4), KLF4, and SOX2, have great potential for regenerativemedicine. However, before they can be used in a clinical setting, themech-

anism of reprogramming needs to be better understood. Here, by engineering reprogramming factors to a destabilizing protein domain,

we achieved inducible generation of mouse and pig iPSCs. Stability of the fusion protein was precisely regulated by the addition of the

cell-permeable small molecule trimethoprim (TMP) in a dose-dependent manner. With these tools, we found that during the early and

middle stages of reprogramming, exogenous OCT4 or KLF4 could be omitted, whereas exogenous SOX2 expression at early and middle

stages was required for successful reprogramming. Our TMP reprogramming system is useful for defining the stoichiometry and temporal

requirements of transcription factors for reprogramming.
INTRODUCTION

Mouse and human somatic cells can be reprogrammed to

embryonic stem cell (ESC)-like cells, known as induced

pluripotent stem cells (iPSCs), classically by ectopic expres-

sion of transcription factors, Oct4, Klf4, Sox2, and c-Myc

(Okita et al., 2007; Takahashi and Yamanaka, 2006), or by

other combinations (Nakagawa et al., 2008; Wernig et al.,

2008b). The Cre/loxP and the Doxycycline (Dox)-inducible

systems have proven useful for studying reprogramming

mechanisms (Hanna et al., 2009; Soldner et al., 2009;

Yamanaka, 2009). For instance, the Dox system has been

used to demonstrate that reprogramming somatic cells to

iPSCs occurs in a sequential and stochastic manner (Hanna

et al., 2009; Yamanaka, 2009). However, limitations of the

Dox system, such as the need for a transactivating protein

as well as limited control of gene expression levels (Gossen

et al., 1995), clearly demonstrate the need for a more flex-

ible system with fine-tuning capabilities to further dissect

the molecular mechanisms of reprogramming. By deter-

mining the optimal levels of reprogramming factors neces-

sary, we may be able to improve the efficiency and quality

of reprogramming in multiple species in which reprogram-

ming remains elusive.

Recently, an inducible system to regulate protein stability

by a commercially available small molecule, trimethoprim

(TMP), was reported (Iwamoto et al., 2010; Sando et al.,

2013). In this system, protein instability is conferred by en-

gineering a fusion protein with the destabilizing domain

(dd) derived from Escherichia coli dihydrofolate reductase,
Ste
which targets the fusion protein to the proteasome for

degradation (Iwamoto et al., 2010). The addition of TMP

stabilizes the fusion protein in a rapid, reversible, and

dose-dependentmanner, thereby altering the protein-turn-

over rate to transform a short-lived or nondetectable pro-

tein into a protein that functions for a precisely controlled

period of time (Iwamoto et al., 2010).

Wehave incorporated the TMP-regulated dd into piggyBac

transposon-based reprogramming vectors to allow induc-

ible generation of mouse and pig iPSCs. We are able to

fine-tune the level and duration of reprogramming protein

stability and analyze the stoichiometry and temporal re-

quirements in detail. A recent report that used single-cell

expression analyses revealed the essential role of SOX2 dur-

ing the late phase of reprogramming (Buganim et al., 2012).

By using the TMP system, we further found that Sox2 is also

essential during early andmiddle phases of reprogramming.
RESULTS

Reprogramming of Mouse Fibroblasts with the

TMP-Inducible System

To create the TMP-inducible reprogramming system, we

constructed two piggyBac transposon overexpression vec-

tors, OddKS and OKS (Figure 1A; Table S1 available online),

both of which encode the human OCT4, KLF4, and SOX2

(hOCT4, hKLF4, and hSOX2) cDNA sequences as a single

open reading frame linked by the F2A and T2A sequences,

respectively (Okita et al., 2008; Szymczak et al., 2004). The
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Figure 1. Generation of Mouse iPSCs by a TMP-Inducible piggyBac Vector
(A) Schematic representation of the piggyBac transposon reprogramming vectors. Three factors, hOCT4, hKLF4, and hSOX2, linked by 2A
peptides, were coexpressed and driven by the constitutively active EF1a promoter. The destabilizing domain (dd) was fused to the 50 end of
the hOCT4 gene in the OddKS vector. The OKS vector with unfused hOCT4 was used as the control. SV40E pA, the SV40 early polyadenylation
signal; PB30 and PB50, terminals of the piggyBac transposon.

(legend continued on next page)
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destabilizingdomain (dd)wasencoded in frameat the50 end
of the OCT4 cDNA in the OddKS construct and represented

the only difference between the two constructs. These con-

structswere individually introducedby electroporation into

Oct4-GFPmouse embryonic fibroblasts (MEFs) that carried a

transgene composed of the 18 kb Oct4 promoter sequence

upstream of the GFP coding sequence. OddKS -transfected

fibroblasts were grown in the absence of TMP or in 1 mM

TMP. By day 6 posttransfection, colonies with an ESC-like

morphology started to appear among the MEFs transfected

withOKS andOddKS + 1 mMTMP, but not among theOddKS

MEFs without TMP. By day 8, the ESC-like colonies showed

distinct edges, a hallmark of ESC colonies, and were clearly

GFP positive under fluorescence microscope. At day 14,

all of the ESC-like colonies uniformly expressed GFP (Fig-

ure 1B). About 287 ± 23 GFP-positive colonies arose from

7.2 3 104 cells that were transfected with the OddKS vector

and treated with 1 mM TMP, representing a reprogramming

efficiency of�0.40%, similar to the efficiency of cells trans-

fected with the OKS control vector, �0.38% (279 ± 26 GFP-

positive colonies per 7.23 104 cells transfected) (Figure 1C;

Table S2). No GFP-positive colonies were detected in the

absence of TMP at day 14 or day 20, when cells became

too confluent to be cultured further. Taken together, these

data demonstrated that our TMP-inducible reprogramming

system is fully TMP dependent, with a clear all-or-none

effect. GFP-positive clones were picked at day 15 and

expanded,which showed similar behavior duringpassaging

as other iPSC lines obtained frommore conventional proto-

cols. These iPSCs have been continuously maintained for

more than 35 passages by standard trypsinization. They

homogenously expressed the stem cell markers OCT4,

NANOG, and SSEA1 (Figure S1). Transplantation of these

cells into nude mice resulted in teratomas that consisted of

tissues derived from all three germ layers, indicating that

these cells are pluripotent (Figure S2).

To follow the dynamics of TMP-regulated OCT4 protein

expression, we monitored exogenous dd-hOCT4 and

endogenous mOCT4 protein levels in transfected MEFs at

six time points covering the three phases of reprogram-

ming: early stage (day 1, 2), middle stage (day 5, 8), and

late stage (day 11, 14). The anti-OCT4 antibody used can
(B) Micrographs of iPSCs in the absence or presence of 1 mM TMP 14
regulated stability of OCT4 led to reprogrammed GFP-positive iPS co
treatment; bottom: OKS vector, no TMP treatment. Scale bar, 500 mm
(C) The number of GFP-positive colonies obtained by transposon-bas
electrotransfection. Experiments were performed at least three times
(D) Micrographs of iPSCs in the presence of 1 mM TMP with the OddKS
500 mm.
(E) Western blots of OddKS- and OKS-transfected MEFs monitoring the p
expression at multiple time points in the presence or absence of TM
expression, and G4-56 ES cells were used as the positive control (C+)

Ste
detect OCT4 of both mouse and human origin. Mouse

OCT4 has a predicted molecular weight of approximately

43 kDa, whereas hOCT4 has a higher molecular weight

(�63.6 kDa) because of the dd addition (�20 kDa) to the

N terminus of OCT4 and residual 2A peptide (�0.6 kDa)

linked to the C terminus of OCT4.Multiple replicate exper-

iments showed similar protein expression dynamics for

hOCT4 andmOCT4, whichwas consistent with the timing

of colony formation and morphological changes (Figures

1D and 1E). In the TMP induction group or OKS group,

no GFP-positive colonies were observed until day 8

(Figure 1D), which coincided with initial endogenous

mOCT4 detection (Figure 1E). The group without TMP

treatment did not form iPS colonies and showed no detect-

able mOCT4 expression at any time point (Figure 1E). The

RNA levels of hOCT4 and mOct4 at these time points are

shown in Figure S3. Intriguingly, we found that during

reprogramming mRNA levels of hOCT4 did not correlate

with the protein levels. Similarly, in the group of OKS in-

duction, peak hOCT4 RNA levels were seen at day 8 (Fig-

ure S3), whereas the time of peak of protein levels appeared

at day 5 (Figure 1E). These results suggest thatOCT4 expres-

sion is also regulated at the protein level during reprogram-

ming, independent of TMP induction.

In order to compare reprogramming efficiency by

limiting the availability of stable KLF4 or SOX2, we con-

structed three additional vectors, OKddS and OKSdd, which

have the dd fused to the 50 end of hKLF4 or hSOX2, respec-

tively (Figure 2A), and dd-3, where all three genes have

a fused dd domain (Figure 2A). After electroporation into

Oct4-GFP MEFs and treatment with TMP, all three vectors

were competent to give rise to iPSCs, which exhibited

strong alkaline phosphatase activity (Figure 2B). Whereas

OddKS or OKSdd had a reprogramming efficiency compara-

ble to OKS (�0.38%), OKddS had a 30% increased efficiency

(�0.56%, 402 ± 21 GFP-positive colonies per 7.2 3 104

transfected cells). In contrast, we only obtained 62 ± 3

GFP-positive colonies from 7.2 3 104 cells transfected

with the dd-3 vector, a much lower reprogramming effi-

ciency of �0.08% (Figure 2C). These data demonstrated

that all vectors with a single factor fused to the dd domain

have a similar reprogramming efficiency.
days after electroporation with the OddKS or OKS constructs. TMP-
lonies. Top: OddKS, no TMP treatment; middle: OddKS + 1 mM TMP
.
ed reprogramming per 7.2 3 104 cells were scored at day 14 post-
per condition. Error bars, SD.
or OKS constructs at different days after electroporation. Scale bar,

resence of exogenous OCT4 (hOCT4) and endogenous OCT4 (mOCT4)
P. Oct4-GFP MEFs were used as a negative control (C�) for OCT4
.
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Figure 2. Comparison of Mouse iPSC Generation by Different TMP-Inducible Vectors
(A) Schematic representation of alternate piggyBac transposon reprogramming vectors. The destabilizing domain (dd) was fused to the 50

end of the KLF4, SOX2, or all three factors (OKddS, OKSdd, and dd-3, respectively).
(B) Micrographs of Oct4-GFP MEFs 14 days after stable transfection, with OddKS, OKddS, OKSdd, and dd-3, treated with 1 mM TMP, or OKS
untreated cells. Scale bar, 500 mm.
(C) The number of GFP-positive colonies obtained following transfection of the various vectors in 7.2 3 104 cells were scored at day 14
after transfection and 1 mM TMP treatment. Experiments were performed at least three times per condition. Error bars, SD.
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Effect of TMP Dose and Duration on OCT4 Expression

To characterize in detail the dose dependence of OCT4 pro-

tein stability on the concentration of TMP, we transfected

Oct4-GFP MEFs with the OddKS or control OKS vector and

treated with various concentrations of TMP for 5 days. As

determined by qRT-PCR, RNA levels of dd-hOCT4 from

each group were very similar (Figure 3A), whereas protein
724 Stem Cell Reports j Vol. 2 j 721–733 j May 6, 2014 j ª2014 The Authors
levels increased in a dose-dependent manner as measured

bywestern blot (Figures 3B and 3C). Treatmentwith as little

as 10 nM TMP was able to confer significant protein stabil-

ity, and the entire pool of dd-hOCT4 could be stabilized by

1 mM TMP (Figures 3B and 3C).

To determine if the dd-hOCT4 stability is dependent

on the continued presence of TMP, we analyzed stabilized
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Figure 3. Characterization of TMP-
Dependent Protein Stability
(A) OddKS-transfected Oct4-GFP MEFs were
treated with varying concentrations of TMP
for 5 days and analyzed by quantitative PCR
(qPCR) for hOCT4 RNA levels. For compari-
son, the RNA level of hOCT4 with 10 mM TMP
treatment was arbitrarily set to one. Oct4-
GFP MEFs were used as a negative control,
and OKS was used as the positive control.
(B) Western blot analysis of dd-hOCT4
protein 5 days after TMP exposure. Mouse
GAPDH acted as a loading control. Oct4-
GFP MEFs were used as the negative con-
trol (C�).
(C) The protein levels of dd-hOCT4 at day 5
were quantified using Gelpro32 software,
and the indicated ratios normalized against
the dd-hOCT4 protein levels seen when cells
were treated with 10 mM TMP treatment
cells are graphed.
(D) OddKS-transfected Oct4-GFP MEFs were
exposed to 1 mM TMP for 5 days and then
TMP was withdrawn from a subset of plates.
Western blot analysis for dd-hOCT4 protein
was performed at the indicated time points
under continued TMP exposure or following
withdrawal. Oct4-GFP MEFs were used as the
negative control (C�).
(E) The levels of dd-hOCT4 protein from (D)
were quantified using Gelpro32 software,
and the indicated ratios were graphed.
Data in (A), (C), and (E) indicate the
means ± SD of three independent experi-
ments.
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protein levels after TMP removal. Because OddKS-trans-

fected Oct4-GFP MEFs showed that dd-hOCT4 stability

was maximized at day 5 after 1 mM TMP treatment (Fig-

ure 1E), we repeated this experiment and analyzed protein

levels following TMP removal. As little as 4 hr after TMP

was removed from the medium, dd-hOCT4 protein level

decreased by more than 95% (Figures 3D and 3E). In

summary, TMP-mediated dd-hOCT4 stability strongly

correlated with TMP dosage and dd-hOCT4 was rapidly

degraded following TMP withdrawal.

Stoichiometry and Temporal Requirement of

Reprogramming Factors

Because dd-hOCT4 stability was dependent on TMP

dosage, we set out to determine if its reprogramming

function is also under the same dosage constraints. There-

fore, we treated OddKS-transfected Oct4-GFP MEFs with

different concentrations of TMP (1 nM, 10 nM, 100 nM,
Ste
1 mM, and 10 mM) and scored GFP-positive colonies at

day 14. TMP concentration of 1 or 10 nM was not suffi-

cient to reach the same reprogramming efficiency as the

OKS construct lacking the destabilizing domain, and

only a few iPS clones were induced (Figure 4A). As TMP

concentration increased, both protein levels and the

number of GFP-expressing colonies increased (Figures

4A–4C). The lowest concentration of TMP capable of

reaching the maximum reprogramming efficiency of

�0.40%, was 100 nM (�0.38%; 45 ± 6 GFP-positive col-

onies per 1.2 3 104 transfected cells). Furthermore, total

OCT4 protein expression level in these reprogrammed

colonies was not significantly different from blastocyst-

derived mouse G4 ES cells (Figures 4A–4C). Although

TMP does not regulate dd-hOCT4 at the mRNA level,

the dd-hOCT4 mRNA expression appeared to increase

along with the increase of TMP concentration (Fig-

ure 4D). Because higher TMP produces more iPS colonies,
m Cell Reports j Vol. 2 j 721–733 j May 6, 2014 j ª2014 The Authors 725
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Figure 4. Stoichiometry and Temporal
Requirement of Protein Expression of
Classic Reprogramming Factors
(A) OddKS-transfected Oct4-GFP MEFs were
treated with varying concentrations of TMP
for 14 days. The number of GFP-positive
colonies obtained by transposon-based re-
programming per 1.2 3 104 cells were
scored at day 14 posttransfection. Experi-
ments were performed three times for each
condition. Error bars, SD.
(B) Western blot analysis of dd-hOCT4 and
mOCT4 protein at day 14. Mouse GAPDH was
used as a loading control. Oct4-GFP MEFs
were used as a negative control (C�). G4
mouse ES cells were used as a positive
control (C+).
(C) The levels of total OCT4 protein at day 14
were quantified using Gelpro32 software,
and the indicated ratios normalized against
the OCT4 protein expression levels of G4-56
mouse ES cells are plotted. Data indicate
the means ± SD of three independent
experiments.
(D) qPCR analysis of dd-hOCT4 RNA at
day 14. The RNA level of dd-hOCT4 in the
transfected cells with 0 nM TMP treatment
was set to one. Oct4-GFP MEFs were used as
a negative control. Data indicate the means
± SD of three independent experiments.
(E) OddKS-, OKddS-, or OKSdd-transfected
Oct4-GFP MEFs were treated with 1 mM TMP
during the varying time periods indicated.
The number of GFP-positive colonies ob-
tained by transposon-based reprogramming
per 1.2 3 104 cells were scored at day 14
and day 20 postelectrotransfection. Exper-
iments were performed at least three times
per condition. Error bars, SD.
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Figure 5. Regulation of DNA Demethylation-Related Factors
during Reprogramming
(A) Schematic representation of piggyBac transposon reprogram-
ming vectors. Each factor was fused with dd, and expression was
driven by the constitutively active EF1a promoter.
(B) The Oct4-GFP MEFs were transfected with the varying TMP-
inducible vectors indicated to generate mouse iPSCs. The number of
GFP-positive colonies obtained per 7.2 3 104 cells were scored at
day 14 posttransfection. Experiments were performed at least three
times per condition. Error bars, SD.
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dd-hOCT4 mRNA would make up a greater proportion of

the total RNA.

Previously it was reported that continuous ectopic

expression of OCT4 and KLF4 is required for at least

12 days with the Dox system. Ectopic SOX2 expression

for only 5 days was enough to give rise to AP-positive col-

onies, and prolonged ectopic SOX2 expression greatly

increased the number of AP-positive colonies (Sridharan

et al., 2009). However, the Dox system is not versatile

enough to allow for more detailed dissection of temporal

requirements of the four factors. Taking advantage of our

TMP system, we sought to investigate the temporal require-

ment for each of these ectopic factors during reprogram-

ming. Fibroblasts were transfected with OddKS, OKddS, or

OKSdd, and 1 mMTMP treatment was restricted to a specific

phase, or phases, of reprogramming (Figure 4E). Fibroblasts

induced to express dd-hOCT4 for 6 days gave rise to GFP-

positive colonies, and the efficiency of iPSC generation

increased to �0.36% (43 ± 2 colonies per 1.2 3 104 cells

transfected) after treating with TMP for an additional

5 days. No further increase in the number of iPS colonies

was observed, even when dd-hOCT4 was maintained for

longer periods. Interestingly, TMP induction of dd-

hOCT4 for only 3 days during the early stage (days 1–4)

did not generate any iPS colonies, suggesting that at least

6 days of ectopic OCT4 expression was required for iPSC
Ste
generation. In contrast, only 2 days of TMP addition during

the later phases (days 7–8) was able to give rise to iPSCs,

suggesting that these cells had been in a partially reprog-

rammed state. When culture was maintained for 20 days,

we found that TMP induction of dd-hOCT4 at the late stage

could generate iPSCs at frequencies comparable to TMP in-

duction at the early stage (Figure 4E).

Similar to dd-hOCT4, dd-hKLF4 induction, for any

period tested, was able to effectively reprogram MEFs,

and comparable efficiency could be reached with similar

TMP treatment regimens. In contrast to the result obtained

with dd-hOCT4, ectopic KLF4 expression for only 3 days

during the early stage (days 1–4) was able to generate

GFP-positive iPSCs (Figure 4E). When OKSdd was

examined, surprisingly, we found that exogenous SOX2

expression from day 4 to day 8 was most important for

iPSC induction. dd-hSOX2 induction from day 1 to day 3

failed to generate GFP positive colonies, as did induction

on or after day 9. These results indicated that hSOX2

mainly acted at the early stage (day 1–4) and middle stage

(days 5–8) of reprogramming, whereas exogenous SOX2

expression during the late stage only (days 9–14) was inef-

fective in iPSC generation. Taken together, these data

demonstrated a different temporal requirement for each

ectopic factor. Treatment with exogenous OCT4 and exog-

enous KLF4 during any reprogramming phase had the

potential to generate iPSCs (Figure 4E), which is consistent

with experiments reported by others (Hanna et al., 2009).

However, exogenous SOX2 expression was required at the

early stage (days 1–4) and middle stage (days 5–8) of

reprogramming.

Regulation of Other Factors during Reprogramming

We next asked whether our TMP system could be extended

to test other factors during reprogramming. Previous

research suggested that reprogramming of somatic cells is

accompanied by global epigenetic remodeling, including

DNA demethylation (Cowan et al., 2005; Maherali et al.,

2007; Tada et al., 2001). However, the effect of ectopic

expression of DNA demethylation factors during iPSC

generation was not well documented. We constructed

four vectors in which dd was fused to the 50 end of the

genes involved in DNA demethylation, including human

growth arrest and DNA-damage-inducible protein 45 alpha

(hGADD45a) (Barreto et al., 2007), human methyl-CpG-

binding domain (hMBD4) (Bhattacharya et al., 1999), hu-

man thymine DNA glycosylase (hTDG) (Maiti and Drohat,

2011), and human activation induced cytidine deaminase

(hAID) (Morgan et al., 2004; Rai et al., 2008), to investigate

the temporal requirements for the four demethylation fac-

tors on reprogramming efficiency (Figure 5A). Oct4-GFP

MEFs were cotransfected with OKS and dd-Factor mixed

with PBase. TMP treatment was applied at different time
m Cell Reports j Vol. 2 j 721–733 j May 6, 2014 j ª2014 The Authors 727



Figure 6. Generation of Pig iPSCs by TMP-
Inducible Vector OddKSM
(A) Schematic representation of the
piggyBac transposon reprogramming vec-
tors. Four coexpressed factors, hOCT4,
hKLF4, hSOX2, and hc-MYC, were linked by
2A peptides and driven by the constitu-
tively active EF1a promoter. The destabi-
lizing domain (dd) was fused to the 50 end
of the OCT4 gene, and this plasmid is
designated OddKSM.
(B) A representative primary colony formed
at day 9 of pig iPSC induction using the
TMP-inducible vector.
(C) Pig iPSCs in 2i medium showed stably
compacted colony with continuously added
TMP.
(D) Pig iPSCs in 2i medium without TMP for
3 days lost compacted colony morphology
and differentiated.
(E) Pig iPSCs in 2i medium with TMP main-
tained compacted colony morphology in
further culture. Scale bar, 500 mm.
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points and for various time periods. Interestingly, our

results indicated that addition of these four factors did

not improve reprogramming efficiency, no matter when

these factors were added by TMP induction (Figure 5B).

This result is opposite to the expectation that demethyla-

tion factors might enhance reprogramming. However, it

complements a recent report that knockdown of another

demethylation factor MBD3 increases reprogramming effi-

ciency (Brumbaugh and Hochedlinger, 2013).

Application of TMP Reprogramming System in Other

Species

To test whether the TMP reprogramming system could be

used in species other than the mouse, we reprogrammed

pig embryonic fibroblasts with TMP-inducible vector

OddKSM, where hOCT4 could be regulated by TMP. The

four reprogramming genes on the vector (dd-hOCT4,

hKLF4, hSOX2, and hc-MYC) were connected by F2A,

T2A, and F2A (Figure 6A). TMP was added to the culture

medium throughout the entire reprogramming process.

Six days after transfection, primary iPS colonies appeared,

with morphology similar to mouse ESC colonies (Fig-

ure 6B). At day 14, we picked individual colonies and

transferred them to dual inhibition (PD0325901 plus

CHIR99021) (2i) medium (Ying et al., 2008) supplemented

with TMP (Figure 6C), and they could be passaged by stan-

dard trypsinization >30 times without any sign of deterio-

ration. To test the dependence of established iPSC lines on
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exogenous dd-hOCT4 stabilization, TMP was removed

from the culture media. Upon TMP removal, pig iPSCs

lost their domed colony morphology and differentiated

(Figure 6D), in contrast to the same iPSC lines cultured in

2i medium with TMP (Figure 6E). Although RNA expres-

sion levels of pig iPSCs cultured with and without TMP

were similar, protein levels were markedly altered. Further-

more, pig iPSC lines cultured with TMP were AP+ and

OCT4+, but in the absence of TMP they lost most of the

AP staining and were OCT4� (Figures 7A–7D). This was

consistent with previous observations that maintenance

of pig iPSCs is dependent on exogenous OCT4 (Ezashi

et al., 2009; Fan et al., 2013; Esteban et al., 2009; Wu

et al., 2009).
DISCUSSION

In this study, we used a TMP-inducible reprogramming sys-

tem to regulate gene expression at the protein level. This

was a convenient and effective system for controlling the

temporal expression and stoichiometry of reprogramming

factors.

Among different methods, the Dox-inducible system has

been widely used to dissect reprogramming mechanisms

(Hanna et al., 2009; Maherali et al., 2008; Wernig et al.,

2008a). However, Dox-inducible systems have limitations,

such as leaky expression and requirement of additional
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components (tTA or rtTA). The TMP-inducible system is de-

signed to directly regulate protein stability, instead of regu-

lating expression at the RNA level (Iwamoto et al., 2010).

By adding a small molecule drug TMP, proteins fused to

the dd domain are shielded from degradation. As a bacte-

riostatic antibiotic, TMP is mainly used in the prophylaxis

and treatment of urinary tract infections and can pass the

blood-brain barrier (Barling and Selkon, 1978) and the

placental barrier (Schulz, 1972). No adverse effects have

been observed, even when doses twice the concentration

used to regulate transgenes (0.4 mg/ml; 3 mM) are given

for 6 weeks in vivo (Iwamoto et al., 2010). Furthermore,

compared with a Dox-inducible system, the TMP-inducible

system has several additional advantages. First, the TMP

system is more convenient and does not require additional
Ste
molecular control components, allowing for direct applica-

tion in various species and cell lines. Second, the levels of

dd fusion proteins increase in a strict dose-dependent

manner (Figures 3B and 3C). Third, the TMP system is high-

ly sensitive; a dose as low as 10 nM TMP is able to induce

protein expression, whereas 1 mMof TMP can fully stabilize

dd fused proteins (Figures 3B and 3C). Four hours after TMP

removal, protein levels quickly fall to undetectable levels

(Figures 3D and 3E).

To date, the derivation and maintenance of high-quality

pig iPSCs that have reproducible chimera formation ability

or germline competency have not been achieved. Pig iPSCs

generated with retroviruses/lentiviruses maintain expres-

sion of exogenous genes and depend on the expression

of exogenous factors to maintain pluripotency, suggesting
m Cell Reports j Vol. 2 j 721–733 j May 6, 2014 j ª2014 The Authors 729



Stem Cell Reports
TMP-Inducible Reprogramming System
that reprogramming is incomplete. Therefore, these pig

iPSCs are more like epiblast-derived stem cells. This has

been confirmed by several groups including ourselves (Eza-

shi et al., 2009; Fan et al., 2013; Esteban et al., 2009; Wu

et al., 2009). Byuse ofTMP to temporally control exogenous

OCT4 stability, we found that, consistent with previous

reports, pig iPSCs derived by our piggyBac vectors contain-

ing OSKM factors were also incompletely reprogrammed

and needed exo-OCT4 to sustain an undifferentiated

morphology in 2i medium. When expression of exo-

OCT4 was terminated by removing TMP, these pig iPSCs

could no longer maintain pluripotency. By regulation of

exogenous protein stability, the TMP-inducible system

may provide a useful method for the design of screening

strategies to identify factors, chemicals, or small hairpin

RNA inhibitors that could rescue the iPSCs when TMP is

not present. We hope that this may help solve the problem

of incomplete reprogramming of pig iPSCs in the future.

Recent studies show that changes in mRNA levels do

not always correlate with the amount of protein produced

in ESCs (Lu et al., 2009; Thomson et al., 2011). Similarly, we

observed that OCT4 protein levels during reprogramming

do not always correlate with mRNA levels (Figure 1E and

S3). These results emphasize the importance of under-

standing the regulation of genes at the protein level during

reprogramming. At the same time, there is increasing evi-

dence that core transcription factors in ESCs, OCT4 (Liao

and Jin, 2010), SOX2 (Van Hoof et al., 2009), NANOG

(Ramakrishna et al., 2011), KLF4 (Kim et al., 2012), and

c-MYC (Gregory and Hann, 2000) undergo posttransla-

tional modifications, including phosphorylation (Kim

et al., 2012; Van Hoof et al., 2009), sumoylation (Wei

et al., 2007), and ubiquitination (Gregory and Hann,

2000; Liao and Jin, 2010). Recent studies have identified

that ligases and deubiquitinases of UPSmembers are essen-

tial for both ESC self-renewal and differentiation (Buckley

et al., 2012). We speculate that, similar to the situation in

ESCs, posttranslational regulation of core factors may also

play a role in iPSC induction. The TMP system has offered

a unique tool to study this phenomenon in detail.

Previous reports have shown that the stoichiometry and

temporal requirements of reprogramming factors play a

crucial role in determining the epigenetic and pluripotent

state of iPSCs, as well as in determining reprogramming

efficiency (Carey et al., 2011; Nagamatsu et al., 2012; Tie-

mann et al., 2011; Xu et al., 2008). However, the results

from different groups often vary. The cause for this discrep-

ancymay be due to two limitations of viral systems: hetero-

geneous expression (Wernig et al., 2008a) and autoimmune

regulation (Lee et al., 2012). Perhaps these systems used

do not reflect the true status of factor gene expression (Lu

et al., 2009). Here, we report the direct correlation of

OCT4 protein levels and efficiency of iPSC generation,
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and provide an inducible system to investigate the dy-

namicmolecularmechanism of reprogramming.We found

that exogenous SOX2 expression in the early stage (day

1–4) and middle stage (day 5–8) was essential for reprog-

ramming. The absence of exogenous SOX2 expression

during the early and middle stages cannot be rescued by

exogenous SOX2 expression at the late stage (day 9–14).

Whereas a recent report emphases the upstream role of

endogenous SOX2 in the gene expression hierarchy in

the late phase (Buganim et al., 2012), our functional data

further reveal the essential role of SOX2 during the initial

stages of reprogramming. We propose that reprogramming

is a deterministic process, although in the early stages it ap-

pears to be stochastic. The TMP system is a useful platform

for interrogating reprogramming mechanisms and deter-

mining how individual factors contribute to the reprog-

ramming process. The versatility of the TMP system allows

testing multiple factors simultaneously. This should open

up more uses of the TMP system to study detailed mecha-

nismof factor interactions. In the current study, we focused

on characterizing the temporal requirement of individual

OSK factors. For future studies, detailed interactions should

be further characterized.

In summary, we have shown that the TMP-inducible sys-

tem could be used for efficient iPSC generation. This system

regulates ectopic protein stabilization in a convenient,

highly sensitive, and dose-dependent manner. It provides

a simple and practical tool for research into reprogramming

mechanisms and a potential way to generate safer iPSCs.

This system may be combined with the Dox-inducible sys-

tem to allow for tighter and more precise control at both

mRNA and protein levels.
EXPERIMENTAL PROCEDURES

Plasmid Construction
Wefirst synthesized a human codon-optimized gene that codes for

the destabilizing domain (dd) derived from Escherichia coli dihy-

drofolate reductase, with the R12Yand Y100I mutations (Iwamoto

et al., 2010). Fusion PCR was used to construct all of the dd-con-

taining plasmids onto a piggyBac transposon vector backbone

that contains the PB 50 and 30 terminals from the ZGs vector (Wu

et al., 2007). The destabilizing domain (dd) was fused to the N-ter-

minal of the genes used in the study. The EF1a promoter was

placed upstream of the single open reading frame. The OKS genes

with or without related dd sequences were linked with the 2A

sequences by PCR. The CAG promoter-driven PBase was from

the CAG-PBase vector.

Cell Culture
MEFs were isolated from 13.5 days postcoitum. F1 embryos (50%

C57BL/6 and 50% 129sv) from homozygous Oct4-GFP mice

(JaxMice strain name: B6;CBA-Tg(Pou5f1-EGFP)2Mnn/J; stock

number 004654) crossed to 129sv and cultured in Dulbecco’s
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modified Eagle’s medium (DMEM) (Invitrogen) containing 15%

FBS (Invitrogen), 0.5 mM GlutaMAX, 1 3 nonessential amino

acid, and 1 mM Sodium Pyruvate. A germline-competent mouse

ESC line, G4, was cultured in DMEM (Invitrogen) containing

20% FBS (Invitrogen, catalog no. 16141, lot. 821754), 0.5 mM

GlutaMAX, 1 3 nonessential amino acid, 1 mM Sodium Pyruvate,

0.1 mM 2-mercaptoethanol, and 500 U/ml LIF (Millipore). Mouse

iPSC lines were cultured on b2 feeder layers that were 40 Gy 60Co

g-ray treated. Pig iPSC lines were cultured on b2 feeder layers in

the 2i medium as described previously (Ying et al., 2008).

Reprogramming of MEFs Using piggyBac Vectors
On the first day (day 0), MEFs were transfected with various

piggyBac vector combinations, using the Amaxa Basic Nucleofec-

tor Kit for primary mammalian fibroblasts (Lonza), in accordance

with the manufacturer’s instructions. The piggyBac vectors

(pEF1a-OddKS, pEF1a-OKddS, pEF1a-OKSdd, pEF1a-OddKddSdd,

named OddKS, OKddS, OKSdd, and dd-3, respectively) were com-

bined with CAG-PBase plasmid in a 3:1 ratio, 1.5 mg piggyBac vec-

tors, 0.5 mg PBase, per 106 cells. Posttransfected cells were seeded

onto feeder layers. After 24 hr, MEF medium was replaced by ES

mediumwith 350 mg/ml G418 for 5 days. Different concentrations

of TMP were added to test groups from the first day. The medium

was refreshed every day. On day 6, medium was changed to ESC

medium without G418. On day 14, colonies were either counted

by GFP-positive numbers and stained by alkaline phosphatase or

picked and further expanded.

AP Staining
iPSCs were fixed in 4% PFA for 30 min and then washed with PBS

three times, followed by the addition of BM purple (Roche).

Assay for Teratoma Formation
For teratoma formation, three mouse iPSC lines (derived with

OddKS, OKddS, and OKSdd separately, passage 10) were cultured

with ES medium on b2 feeder layers for 2 days (�60% to 70%

confluent). Approximately 1 3 106 iPSCs were resuspended in

PBS and injected subcutaneously into nude mice. All three iPSc

lines injected formed tumors within 4 weeks after initial transduc-

tion, and paraffin sections were stained with hematoxylin and

eosin for all histological determinations. Control mice injected

with 1 3 106 b2 feeder cells failed to form teratomas.

Western Blot Analysis
Transfected cells were washed with PBS, and each well was har-

vested and suspended in cell lysis buffer for western blot analysis

at the different indicated times. The concentrations of total cell

protein were measured. Ten micrograms of each lysate sample

was boiled at 95�C–100�C for 5 min in sample buffer, and proteins

were separated by10% SDS-PAGE and transferred onto polyvinyli-

dene fluoride membrane (GE Healthcare). Nonspecific reactivity

was blocked in 5% nonfat dry milk in Tris-buffered saline and

Tween 20 (1 mM Tris-HCl [pH = 7.5], 150 mM NaCl, and 0.05%

Tween-20) for 1 hr at room temperature. The specific proteins

were analyzed using anti-OCT4 (1:1,000, rabbit monoclonal,

ab109187, abcam), anti-OCT4 (1:3,000, rabbit polyclonal,

ab19857, abcam), or anti-mGAPDH (1:2,000, rabbit monoclonal,
Ste
#2118, CST). The membranes were washed five times and incu-

bated with goat anti-rabbit IgG HRP (1:20,000) for 1 hr at room

temperature. The membranes were washed again as before and

incubated with substrates that were prepared in accordance with

the manufacturer’s instructions. Each membrane was exposed to

X-ray film for 30 s to �5 min.

qRT-PCR Analysis
Total mRNA was extracted using Trizol reagent (Invitrogen). Total

RNA (2 mg) was reverse transcribed to cDNA using a QuantiTect

Reverse Transcription Kit (205213, QIAGEN), in accordance

with the manufacturer’s protocol. qRT-PCR was performed using

TaqMan Gene Expression Master Mix (Applied Biosystems) on

the ABI7900HT sequence detector (Applied Biosystems). Primer

and probe sequences used in qRT-PCR are as follows:

hOCT4-Forward primer: 50-AGTCGGGGTGGAGAGCAAC-30;
hOCT4-Reverse primer: 50-GGCAAATTGCTCGAGTTCTTTC-30

hOCT4-BHQ-probe: 50-CCCTGCACCGTCACCCCTGG-30

mOct4-Forward primer: 50-AGGCAGGAGCACGAGTGG-30

mOct4-Reverse primer: 50-GGACTCCTCGGGAGTTGGTT-30

mOct4-BHQ-probe: 50-CTGTGCCGACCGCCCCAATG-30

Total-Oct4-Forward primer: 50-CCTGGGGSCAGAGGAAAG-30 S = G/C

Total-Oct4-Reverse primer: 50-AGCTTGGGCTMGAGAAGGAT-30 M=A/C

Total-Oct4-BHQ-probe: 50-TGCCCTTCTGGCGCCGGTTAC-30

mGAPDH-Forward primer: 50-GCACAGTCAAGGCCGAGAA-30

mGAPDH-Reverse primer: 50-CCTCACCCCATTTGATGTTAGTG-30

mGAPDH-BHQ-probe: 50-CATCACCATCTTCCAGGAGCGAGACC-30

pGAPDH-Forward primer: 50-GTCAAGCTCATTTCCTGGTACGA-30

pGAPDH-Reverse primer: 50-GGCCTCTCTCCTCCTCGC-30

pGAPDH-BHQ-probe: 50-CCTCATGGTCCACATGGCCTCCA-30.
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