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Abstract: Platelets are megakaryocyte-derived fragments lacking nuclei and prepped to maintain
primary hemostasis by initiating blood clots on injured vascular endothelia. Pathologically, platelets
undergo the same physiological processes of activation, secretion, and aggregation yet with such
pronouncedness that they orchestrate and make headway the progression of atherothrombotic diseases
not only through clot formation but also via forcing a pro-inflammatory state. Indeed, nuclear factor-κB
(NF-κB) is largely implicated in atherosclerosis and its pathological complication in atherothrombotic
diseases due to its transcriptional role in maintaining pro-survival and pro-inflammatory states in
vascular and blood cells. On the other hand, we know little on the functions of platelet NF-κB,
which seems to function in other non-genomic ways to modulate atherothrombosis. Therein,
this review will resemble a rich portfolio for NF-κB in platelets, specifically showing its implications
at the levels of platelet survival and function. We will also share the knowledge thus far on the
effects of active ingredients on NF-κB in general, as an extrapolative method to highlight the potential
therapeutic targeting of NF-κB in coronary diseases. Finally, we will unzip a new horizon on a
possible extra-platelet role of platelet NF-κB, which will better expand our knowledge on the etiology
and pathophysiology of atherothrombosis.
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1. Introduction

Cardiovascular disease is the largest cause of death globally. According to the report from the
World Health Organization (WHO), the death rate caused by cardiovascular diseases worldwide
is estimated at 17.3 million people in 2008, accounting for 30% of deaths globally. In addition, it
is estimated that this number may increase to 23.6 million people [1]. Cardiovascular disease is
often caused by thrombotic events such as coronary heart disease. Platelets are major players in the
occurrence of cardiovascular diseases since they are involved in various thrombo-inflammatory diseases,
particularly atherosclerosis and its progression to atherothrombosis in acute coronary syndrome (ACS)
patients [2–5]. Indeed, platelets mediate primary hemostasis and formation of thrombosis, however,
thrombosis can become pathological when it occurs, mainly, after the rupture of an atherosclerotic
plaque. Thus, following an atherosclerotic vascular lesion, exposed sub-endothelial collagen, alongside
thrombin and adenine diphosphate (ADP) production, triggers platelet activation by interacting with
several receptors expressed on platelets such GPIb-IX-V, GPVI-FcRγ, protease activated receptors
(PARs), P2Ys, and integrins (α2β1, α5β1, α6β1, αvβ3 etαIIbβ3). Consequently, the “inside-out” signaling
of the αIIbβ3 integrin, in response to platelet activation, leads to platelet aggregation thanks to the
binding of αIIbβ3 to fibrinogen promoting the formation of a thrombus [6,7]. Such a process could
induce a partial or complete occlusion of the blood vessel, which leads to a decrease or blockage of the
blood flow and thus becomes a cause of occurrence of ischemia or infarction of an irrigated organ such
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as the heart. Furthermore, the release of a plethora of inflammatory mediators by activated platelets
such as soluble P-selectin, soluble CD40 ligand (sCD40L, also known as CD154) and interleukin-1 beta
(IL-1β), which interact with cells that mediate inflammation such as circulating leukocytes, endothelial
cells, and progenitor cells, and thereby aggravate inflammatory responses [8,9]. At the molecular level,
several pathways promoting the initiation and progression of inflammatory diseases [10] are regulated
by NF-κB, a prominent transcription factor extensively described in innate and adaptive immune cells
as a governor of essential physiological processes including cell survival, proliferation, and activation.
In terms of atherosclerosis, vascular fatty plaques host a pro-inflammatory milieu partly kindled by
platelets in which NF-κB appears as an important regulator of inflammatory and thrombotic responses,
albeit to a less clear extent in terms of mechanics and functions, compared to NF-κB expressed in
various cells [11]. Indeed, the activation of NF-κB in endothelial cells in response to an inflammatory
environment triggers the expression of adhesion molecules, which increases binding and transmigration
of leukocytes and platelets, while unleashing their thrombogenic potential. The activation of NF-κB in
monocytes is required for their differentiation to macrophages and contributes to the expression of
tissue factor and release of inflammatory cytokines. In neutrophils, NF-κB activation extends their
survival and induce the expulsion of neutrophil extracellular traps (NETs), which exert antibacterial
functions and triggers a strong coagulatory response and may induce the formation of microthrombi.
NF-κB plays a crucial role in lymphocyte proliferation and cytokines production, which promotes
enhanced inflammatory and thrombotic response by recruiting platelets [11]. In this review, since
NF-κB is a central hub in thrombo-inflammatory reactions, we aim to enhance our knowledge on
the less-characterized role of NF-κB in platelets. Moreover, we will harness this novel non-genomic
role of NF-κB at in pinpointing its implications in cardiovascular diseases like atherosclerosis and
atherothrombosis in ACS. Furthermore, we will highlight the effects of several active compounds on
NF-κB, thereby bridging to its potential therapeutic utility particularly at the level of platelets. Finally,
we will widen our compass to include a potential extra-platelet role of platelet NF-κB, which might
oblige us to modify our understanding not only of the role of platelets but also of the progression of
atherothrombotic diseases.

2. The Genomic Role of NF-κB

NF-κB proteins exist in the cytoplasm as inactive dimers associated with the inhibitor IκB subunits
(IκBα and IκBβ) which prevent their activation. Of the two subunits, IκBα is the most represented.
In most cells, those dimers are formed by five Rel/NF-κB DNA-binding subunits: p50 NFκB1, p65/REL
A, cRel, NFκB2/p52, and Rel B. NF-κB is regulated by the multi-subunit IκB kinase (IKK) [12],
which catalyzes the phosphorylation of IκB causing its proteasome-mediated degradation. Among
IKK subunits, IKKβ is the most active. Indeed, IKKβ deficiency in embryonic mice fiercely prevents
NF-κB activation [13]. Once IκB is degraded, active NF-κB is liberated, after which it translocates to the
nucleus to transcribe pro-inflammatory and pro-survival genes in two distinctive pathways, canonical
and non-canonical, implicating p50/RelA and p52/RelB, respectively [14] (Figure 1). In such cellular
settings, the role of NF-κB is genomic and well-documented since its discovery in immune cells over
30 years ago [15–23].
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Figure 1. NF-κB Activation: Canonical and non-canonical pathways. The activation of the canonical 
pathway is triggered by various receptors such as the tumor necrosis factor receptor (TNFR) and Toll-
like receptors (TLRs) or the B-cell receptor (BCR). This pathway involves activation of the IκB kinase 
(IKK) complex (IKKα, IKKβ, and IKKγ) by TAK1 and IKK-mediated IκBα phosphorylation. IκBα 
phosphorylation induces its ubiquitination and degradation by the proteasome leading to the nuclear 
translocation of p50/RelA dimers. The activation of the non-canonical pathway is activated by 
different receptors such as the lymphotoxin-β receptor (LTβR) and the B-cell activating factor receptor 
(BAFFR). This pathway relies on the activation of NF-κB-inducing kinase (NIK) an IKKα, which leads 
to the phosphorylation and ubiquitination of p100 and subsequently the processing of p100 by the 
proteasome to generate transcriptionally active p52/RelB dimers. 

3. NF-κB Expression in Platelets 

Acellular fragments are derived from megakaryocytes, platelets are devoid of nuclei, yet they 
express IKK, IκB, and NF-κB [24]. Likewise, NF-κB is expressed in other anucleated cells like mature 
erythrocytes [25]. Specifically, Liu et al. were the first to demonstrate the expression of NF-κB in 
platelets in 2002, revealing that thrombin-induced platelet activation triggers the degradation of IκBα 
following its serine 32 residue phosphorylation [26]. Afterwards, several other studies corroborated 
the same finding [24,27–29], suggesting that platelets have a much more complex nature than simply 
being the “remnants of megakaryocytes”. This is supported by the identification of several other 
transcription factors in platelets such as peroxisome proliferator–activated receptors (PPARs) [30–
33], retinoid X receptor (RXR) [34,35], glucocorticoid receptor (GR) [36,37], STAT3 [38], as well as 
spliceosomes, transcriptomes, messenger RNAs (mRNAs), microRNAs (miRNAs) [39–42], and other 
diverse components, which partake in translational execution in a signal-driven manner [43]. The 
exact role of platelet NF-κB, however, remains elusive. 

4. NF-κB Functions in Platelets 

As is the case in other cells, NF-κB signaling in platelets involves IKKβ phosphorylation, IκBα 
degradation, and p65 phosphorylation [24,44,45]. However, unlike other cells, the culminating events 
of NF-κB signaling in platelets remain partially understood. For this purpose, multiple studies were 

Figure 1. NF-κB Activation: Canonical and non-canonical pathways. The activation of the canonical
pathway is triggered by various receptors such as the tumor necrosis factor receptor (TNFR) and
Toll-like receptors (TLRs) or the B-cell receptor (BCR). This pathway involves activation of the IκB
kinase (IKK) complex (IKKα, IKKβ, and IKKγ) by TAK1 and IKK-mediated IκBα phosphorylation.
IκBα phosphorylation induces its ubiquitination and degradation by the proteasome leading to the
nuclear translocation of p50/RelA dimers. The activation of the non-canonical pathway is activated by
different receptors such as the lymphotoxin-β receptor (LTβR) and the B-cell activating factor receptor
(BAFFR). This pathway relies on the activation of NF-κB-inducing kinase (NIK) an IKKα, which leads
to the phosphorylation and ubiquitination of p100 and subsequently the processing of p100 by the
proteasome to generate transcriptionally active p52/RelB dimers.

3. NF-κB Expression in Platelets

Acellular fragments are derived from megakaryocytes, platelets are devoid of nuclei, yet they
express IKK, IκB, and NF-κB [24]. Likewise, NF-κB is expressed in other anucleated cells like mature
erythrocytes [25]. Specifically, Liu et al. were the first to demonstrate the expression of NF-κB
in platelets in 2002, revealing that thrombin-induced platelet activation triggers the degradation
of IκBα following its serine 32 residue phosphorylation [26]. Afterwards, several other studies
corroborated the same finding [24,27–29], suggesting that platelets have a much more complex nature
than simply being the “remnants of megakaryocytes”. This is supported by the identification of
several other transcription factors in platelets such as peroxisome proliferator–activated receptors
(PPARs) [30–33], retinoid X receptor (RXR) [34,35], glucocorticoid receptor (GR) [36,37], STAT3 [38],
as well as spliceosomes, transcriptomes, messenger RNAs (mRNAs), microRNAs (miRNAs) [39–42],
and other diverse components, which partake in translational execution in a signal-driven manner [43].
The exact role of platelet NF-κB, however, remains elusive.

4. NF-κB Functions in Platelets

As is the case in other cells, NF-κB signaling in platelets involves IKKβ phosphorylation, IκBα
degradation, and p65 phosphorylation [24,44,45]. However, unlike other cells, the culminating events
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of NF-κB signaling in platelets remain partially understood. For this purpose, multiple studies were
performed utilizing either pharmacological inhibitors of NF-κB such as BAY 11-7082 or knockout mice
to unravel the role of NF-κB in platelets, specifically in the context of their survival/apoptosis, priming,
activation, and aggregation.

4.1. Platelet Survival and Apoptosis

The least ventured in platelet NF-κB research is its function in survival and apoptosis, namely
because platelets are short-lived with a lifespan close to 5 days in mice and 10 days in humans [46].
A report by Dowling et al. reasons out this brief lifespan using a bio-mathematical model, demonstrating
that early platelet senescence is an internally controlled mechanism rather than being the result of
multiple deteriorating hits [47]. More specifically, it is proposed that early after shedding from
megakaryocytes, platelets encompass enough B-cell lymphoma-extra large (Bcl-xL), a protein of the
antiapoptotic Bcl-2 family, to overthrow the effects of Bax and Bak, pro-apoptotic molecules, which
disrupt mitochondrial membrane permeability and trigger caspase-driven apoptosis. Later in their
lifespan, however, and in the absence of external death signals, platelets are unable to synthesize
more Bcl-xL, and thus the more labile Bak and Bax regain their status, driving platelets to their
final demise-being washed away from the blood stream [48]. Although the proteasome might be a
major contributor [49], the players and exact mechanisms that control this putative internal timer
between life and death are still partially understood, especially given that caspase-independent
pathways are also recorded in platelets [49,50]. In multiple cell types, NF-κB confers a pro-survival
role by promoting G1-to-S phase cell cycle progression [51], inducing the transcription of several
above-mentioned cytokines and growth factors, and upregulating anti-apoptotic proteins (XIAP, Bcl-xL,
Bcl-2, A1/Bfl-1) [52,53]. In platelets, however, the role of NF-κB in the same context is still elusive.
A recent study showed that upon treatment of platelets with NF-κB inhibitors, a significant increase of
intracellular calcium was recorded in parallel with (i) decreased sarco/endoplasmic reticulum (ER)
Ca2+-ATPase (SERCA) activity, (ii) increased ER stress, (iii) pronounced mitochondrial membrane
depolarization and mitochondrial permeability transition pore (MPTP) formation, (iv) downregulated
Bcl-2 levels, and (v) increased caspase activity and apoptosis. Upon pharmacologically preventing
ER stress, however, MPTP formation and apoptosis were reversed. This string of events suggests
that NF-κB might moderate calcium hemostasis in platelets, possibly by regulating the function of
ER membrane-implemented SERCA, thereby favoring survival and preventing ER stress-triggered
mitochondrial-driven platelet apoptosis [54]. Aside from the apoptosis pathway, inhibiting GPIbα
shedding in platelets was able to reduce platelet clearance [55–57]. Indeed, the shedding of GPIbα is a
physiological mechanism mediated by a disintegrin and metalloproteinase domain-containing protein
17 (ADAM17) that takes place constantly on the platelet surface [58]. However, GPIbα shedding is
linked to an increase in platelet clearance. Indeed, under physiological shear stress, the binding of Von
Willebrand Factor (VWF) with GPIbα induces unfolding of the mechanosensory domain (MSD) on
the platelet surface, thereby boosting shedding of GPIbα and triggering GPIb-IX signaling, leading to
rapid platelet clearance [59,60]. NF-κB could contribute to GPIbα shedding in platelets; for instance,
in response to thrombin stimulation, IKKβ-deficient platelets were unable to shed GPIbα. However,
in response to ADP or collagen stimulation, GPIbα shedding was unaffected; this might suggest that
IKKβ is uniquely implicated in thrombin-induced GPIbα shedding [61].

4.2. Platelet Activation and Priming

Following their stimulation with specific agonists such as thrombin or collagen, platelets undergo
activation in a series of processes including shape change, cytoskeleton rearrangement, and organelle
centralization. In parallel, the release of dense granules content including ADP occurs, triggering further
platelet recruitment and activation. More specifically, ADP activates platelets by binding its receptors,
P2Y1 and P2Y12, and inducing the expression of platelet P-selectin. Similarly, the release of thromboxane
A2 (TXA2) enhances platelet activation and recruitment and leads to platelet aggregation [62,63].
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NF-κB inhibitors prevent platelet activation following stimulation with several agonists, suggesting
that NF-κB in platelets functions rather non-genomically inducing platelet activity.

4.2.1. Thrombin-Activated Platelets

Thrombin is a key activator of human platelets by binding PAR-1 and PAR-4 receptors, promoting
the expression of several inflammatory mediators such as P-selectin, IL-1β, and CD40L [64]. Moreover,
thrombin triggers ADP release, TXA2 production, and IκBαphosphorylation [26]. Thrombin-stimulated
platelets pretreated with BAY 11-7082, an irreversible inhibitor of IKKβ phosphorylation, or Ro 106-9920,
a selective inhibitor of IκBα ubiquitination, exhibit drastically low expression of P-selectin, TXA2

production, and ADP release [27]. Interestingly, the phosphorylation of ERK, a mediator of granule
secretion, is inhibited, too [65]. Karim et al. further explain IKKβ implication in platelet secretion
through its ability to phosphorylate synaptosome-associated protein-23 (SNAP-23), a member of
membrane proteins complex called soluble N-ethylmaleimide-sensitive-factor attachment protein
receptors (SNAREs), which regulates granule secretion. Indeed, SNAREs play a major role in the
fusion of platelet granules with the platelet membrane. In fact, when platelets are activated in
response to thrombin stimulation, vSNAREs (vesicular SNAREs) such as VAMP-8 (vesicle-associated
membrane protein–8) that present on platelet granules surface bind to tSNAREs (target SNAREs)
such as Syntaxin 11 expressed on the platelet membrane. The binding is mediated mainly by
SNAP-23. Thus, SNAP-23 phosphorylation in thrombin-stimulated platelets facilitates the fusion
between granules and plasma membrane for cargo release [66]. In contrast, the use of selective
inhibitors of IKKβ (BMS-345541 [67], TPCA-1 [68], and BAY-11-7082) prevents thrombin-stimulated
SNAP-23 phosphorylation in a dose-dependent manner [66]. Additionally, the same group shows that
thrombin-stimulated platelets from IKKβ knockouts have a lower capacity to release alpha, dense,
and lysosomal granules content by an overall decrease of 30%. Wei et al. [61], who demonstrated
that platelet IKKβ deficiency exhibits decreased secretion and activation confirmed this observation.
Interestingly, a recent study showed that the inhibition of MALT1, an upstream regulator of IKK
complex and a member of the functional proteasome CARMA/MALT1/Bcl10 (CBM) complex, prevented
platelet activation and secretion by abrogating SNARE formation [69]. Such findings suggest that
NF-κB could contribute to platelet degranulation in platelet secretion.

It is suggested that PAR-4, a thrombin receptor, is the main activator of NF-κB in platelets through
a mechanism involving sphingomyelinase (nSMase), an enzyme which catalyzes the transformation
of sphingomyelin into ceramide and phosphorylcholine and which notably partakes in macrophage
NF-κB activation [70]. More specifically, the binding of thrombin to platelet PAR4 induces nSMase
activation, which increases C24:0-ceramide levels. This is followed by the activation of p38 MAPK,
which in turn initiates NF-κB and platelet activation [71].

4.2.2. Collagen-Activated Platelets

In addition to thrombin, collagen is another platelet agonist discovered to phosphorylate IκBα
and thus activate NF-κB [24]. Collagen interacts with platelet glycoprotein receptors, GP1b and
GPVI, triggering intracellular signaling, promoting integrin αIIbβ3 receptor activation, and inducing
the release of secondary mediators like ADP and TXA2. The use of BAY-11-7082 prior to platelet
stimulation with collagen elevates cyclic AMP and enhances vasodilator-stimulated phosphoprotein
(VASP) phosphorylation, therefore, suppressing TXA2 formation, ATP release, P-selectin expression,
and intracellular Ca2+ immobilization [29]. Of note, VASP, an actin-and prolifin-binding protein
and a substrate of cAMP-dependent protein kinase A (PKA) [72] is a major negative regulator of
platelet secretion and adhesion [73]. Oppositely, a study by Gambaryan et al. suggested that upon
IκBα degradation, PKA dissociates from NF-κB and phosphorylates VASP. In addition, following
platelet pre-treatment with an IKK inhibitor VII, a competitive reversible inhibitor of IKKβ, VASP
phosphorylation, and its platelet-inhibitory effect is lost after stimulation with both, collagen and
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thrombin [28]. However, this study might be demonstrating a peculiar negative feedback signaling to
avert excessive platelet activation. Nevertheless, the results require further explanation.

4.2.3. CD40L-Primed Platelets

As mentioned before, platelet agonists trigger the expression of several inflammatory mediators,
among which is CD40L, a member of the TNF family mainly expressed in T lymphocytes and activated
platelets. CD40L rapidly appears on the platelet surface following activation, upon which it is
subsequently cleaved generating a soluble fragment of 18-kDa, termed sCD40L [74]. Activated platelets
constitute the primary source of sCD40L, accounting for >95% of its plasmatic concentration [75,76].
Elevated levels of sCD40L are now considered reliable predictors of cardiovascular diseases [76–85].
The discovery of new CD40L receptors (αIIbβ3, α5β1, and αMβ2) [86–88], in addition to its
classical/high-affinity receptor CD40 [89], adds complexity to the diverse interplays to which CD40L
takes part in cells in general and platelets in particular.

The receptor CD40, constitutively expressed on platelets, lacks intrinsic signaling activity and
needs to recruit adaptor molecules, such as the (TNFR)-associated factors (TRAFs) that bind to the
cytoplasmic domain of CD40 and subsequently recruit kinases and other effector proteins responsible
for transducing signals [90]. CD40 can bind five of the seven TRAF family members (TRAF1, 2, 3,
5, and 6). The cytoplasmic domain of CD40 has a proximal TRAF6 binding site and a more distal
TRAF2/3/5 binding site. TRAF1 only binds to CD40 when CD40 signaling is already active and acts
as a regulator rather than an activator of CD40 signaling [91]. The binding of TRAF5 to CD40 is still
debated, and its role in CD40-mediated signaling remains controversial [92]. Overall, CD40-TRAF
signals stimulate kinase activation and gene expression and induce the production of antibodies
and a variety of cytokines, expression and upregulation of adhesion molecules, and protection or
promotion of apoptosis. These various pathways can culminate in either the induction or inhibition of
biological functions.

Conversely, platelets express the receptors αIIbβ3 and α5β1 in their inactive form, whereupon
platelet activation by ligands such as fibrinogen and fibronectin, undergo certain conformational
changes including the interaction through their cytoplasmic tails with intracellular signal transduction
proteins such as as FAK, Src, and talin rendering them active [93]. CD40L can bind both inactive and
active forms of αIIbβ3, yet can only bind the inactive form of α5β1 [94].

In platelet physiology, our laboratory showed that CD40L alone induced IκBα phosphorylation
and NF-κB activation exclusively through platelet CD40 receptor [95]. We also showed that sCD40L,
in the presence of sub-optimal doses of platelet agonists like collagen and thrombin, significantly
increased platelet activation and aggregation through an NF-κB-independent CD40/TRAF-2/Rac-1/p38
MAPK axis [9]. The first result explains the priming effects of CD40L, priming being a pre-activation
process that ultimately prepares platelets for aggregation through a series of molecular events including
P-selectin expression and lamellepodia formation, all of which we found concurrent with NF-κB
activation. The second result, however, might explain that NF-κB activity driven by sCD40L priming
capacity bridges to CD40/TRAF-2/Rac-1/p38 MAPK axis-induced platelet aggregation. This was
evident in first, following the use of IKK inhibitor VII, platelet priming, and potentiation of aggregation
were significantly diminished, and second, IκBα and p38 MAPK phosphorylation were found to be
independent upon platelet pre-treatment with either of their inhibitors followed by sCD40L stimulation.
Furthermore, our recent study dug deeper into the unique NF-κB signaling pathway, showcasing that
CD40L activated NF-κB through CD40 and TAK-1 and endorsing that TAK-1 is upstream of NF-κB in
CD40L signaling as its inhibition completely eliminated NF-κB activation [95]. Nevertheless, a study
by Kuijpers et al. [96] contradicted our results, demonstrating that CD40L enhanced collagen-induced
platelet-platelet interactions by supporting integrin αIIbβ3 activation, platelet secretion, and thrombus
growth via PI3Kβ but not CD40 and IKKα/NFκB. Still and all, the paper claimed that first, CD40
deficiency led to increased integrin αIIbβ3 expression, which contradicts the results of a third study by
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Inwald et al. [97] and second, P-selectin expression and phosphatidylserine exposure were not affected
by CD40L preincubation, thereby also contradicting several other studies [9,97–99].

In summary, Figure 2 resumes our previous findings that established the link between sCD40L,
enhanced platelet reactivity and thrombosis involving its main receptor CD40 binding to an adaptor
protein the (TNFR)-associated factor-2 (TRAF2) and downstream signaling via Rac1/p38-MAPK [9].
We have also revealed that sCD40L is a potent activator of NF-κB [100], which primes platelets through
CD40 signaling via the transforming growth factor-B (TGF-B)-activated Kinase (TAK1) [95].
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Figure 2. Proposed pathways of sCD40L/CD40 function in platelets. sCD40L enhancement of
platelet reactivity or priming involves its main receptor CD40 binding to an adaptor protein the
(TNFR)-associated factor-2 (TRAF2) and downstream signaling Rac1/p38-MAPK and TAK1/NF-κB. In
response to suboptimal doses of agonists, primed platelets potentiate platelets function, which can
promote thrombus formation.

4.2.4. TLR Ligand-Activated Platelets

Involved in immune and inflammatory responses, the family of toll-like receptors (TLRs)
is expressed on platelets [101,102]. Each TLR identifies different types of pathogen-associated
molecular patterns (PAMPs) or ligands present on viruses, bacteria, and fungi. Among TLRs,
TLR2, and TLR4 are the most involved in platelet activation, as translated by their increased
expression [103]. Following platelet TLR 1/2 stimulation with Pam3CSK4, a synthetic agonist of
TLR2/TLR1, αIIbβ3 activation, and P-selectin expression are increased, leading to hemostatic and
inflammatory responses. This coincides with an elevation in PI3K/Akt, ERK1/2, and p38 activity, P2 ×
1-mediated Ca2+ mobilization, TXA2 production, and ADP release. As for TL4, platelet activation
with lipopolysaccharide (LPS), a TLR4 agonist, triggers platelet secretion and potentiates platelet
aggregation via TLR4/MyD88 and cGMP-dependent protein kinase pathways [104]. It is also well
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documented that TLRs activate NF-κB in nucleated cells and drive the production of proinflammatory
cytokines like IL-1β and TNFα [105,106]. A study by Rivadeneyra et al. demonstrated that TLR2 and
4 agonists induced platelet activation responses through NF-κB. In parallel, IκBα degradation and
p65 phosphorylation were observed. In a relatable manner, platelet treatment with BAY 11-7082 or Ro
106-9920 impaired TLR-mediated platelet activation [44]. Other studies on chicken thrombocytes, the
hematological equivalents to mammalian platelets, highlighted the role of NF-κB in TLR signaling,
showing that inhibition of IKK with BMS345541 results in a significant reduction in thrombocytes’
secretory profile [107,108].

4.2.5. AGE-Activated Platelets

The binding of advanced glycation end-products (AGEs) to their receptor, RAGE, is believed
to play an important role in the pathophysiology of several cardiovascular diseases such as heart
failure and coronary disease, as well as peripheral artery diseases observed in diabetes [109]. RAGE
is expressed on a plethora of cells such as macrophages, monocytes, endothelial cells, neutrophils,
lymphocytes, and platelets [110–113]. In platelets, RAGE activation increases P-selectin expression on
the platelet membrane, hence promoting platelet activation [111]. Knowing that RAGE induces NF-κB
activation leading to the secretion of pro-inflammatory cytokines in monocytes [114] and that platelets
possess all elements of NF-κB signaling cascade downstream RAGE, including ERK and p38 MAP
kinase [115], it is possible that RAGE might induce NF-κB activation in platelets, however, further
investigations are required to confirm this theory.

4.2.6. Epinephrine-Primed Platelets

Secreted by the adrenal gland, epinephrine is a hormone with alpha- and beta-adrenergic
sympathomimetic activities [116,117]. Alone, epinephrine does not induce platelet activation through
platelet alpha 2-adrenergic receptors. However, when present with other platelet agonists, it can
potentiate their activation and aggregation responses, hence being a platelet “primer” like CD40L
mentioned above [118]. This priming action is primarily mediated by IKK activation, which culminates
in inducing p38 and PKA signaling as well as activating αIIbβ3 integrin receptor [11]. In platelet
rich plasma pre-treated with BAY 11-7082 and Ro 106-9920, the potentiating action of epinephrine is
impaired in the initial stages of aggregation inclusively, further evidencing the involvement of NF-κB
in moderating the early stages of platelet activation [27].

4.2.7. ADP-Activated Platelets

ADP is the earliest identified platelet agonist which exerts its effects through three purinergic
receptors, two of which are G protein-coupled: (i) Gαq coupled-P2Y1, (ii) Gαi-coupled P2Y12, and
Ca2+ channel P2 × 1 [119]. Some of the actions mediated by ADP on platelets include adhesion, shape
change, granule secretion, Ca2+ influx and intracellular mobilization, adenylyl cyclase inhibition,
TXA2 production, and aggregation induction [120,121]. The role of NF-κB in regulating the initial
stages of ADP-induced platelet activation is demonstrated upon pre-incubation of platelet rich plasma
with BAY 11-7082 and Ro 106-9920 followed by ADP treatment. Resulting is a significant impairment
of early platelet aggregation [27].

4.3. Platelet Aggregation

Platelet aggregation is the ultimate process in primary hemostasis, wherein platelets clump together
creating a stable hemostatic plug following their endothelial damage. The cross-linking of essentially
activated αIIbβ3 integrin receptors on adjacent platelets by soluble fibrinogen mediates this process. In
fact, platelets express an inactive form of αIIbβ3 integrin, which upon platelet activation by thrombin,
collagen, and ADP, intracellular signals are triggered, leading to conformational changes in αIIbβ3 that
transit the receptor from an inactive low affinity state to an active high affinity state. This “inside-out”
signaling mechanism allows the full exposure of fibrinogen binding sites in αIIbβ3 integrin.



Int. J. Mol. Sci. 2019, 20, 4185 9 of 21

The use of inhibitors of IKKβ phosphorylation highlighted the influence of NF-κB activation on
platelet aggregation. Therein, treating platelets with BAY 11-7082 or Ro 106-9920 decreases fibrinogen
binding following thrombin and collagen stimulation, which inhibits αIIbβ3 inside-out signaling,
platelet aggregation, and clot retraction [27,29,71]. Andrographolide, an active ingredient found in
the leaves of a medicinal herb, is another less-utilized potent NF-κB inhibitor, which prevents p65
phosphorylation in collagen-stimulated platelets NF-κB and interferes with their function. Although
andrographolide is shown to inhibit platelet aggregation via eNOS activation and inhibition of
both, PLCγ2–PKC and PI3kinase/Akt-MAPKs pathways, it is unknown yet if this is the result of
its NF-κB inhibitory functions [45,122]. As aforementioned, NF-κB signaling has a significant role
in platelet activation. Therefore, it is not surprising that the cytoskeletal rearrangements leading
to the conformational changes of αIIbβ3 integrin, which grants platelets their activity, do not occur
since IKKβ phosphorylation inhibitors dampen platelet activation. Our laboratory showed that
the use of IKK inhibitor VII and BAY 11-7082 prevented aggregation of platelets pretreated with
sCD40L and stimulated thereafter with a priming dose of collagen [100]. Surprisingly, the study
by Gambaryan et al. demonstrated the opposite role of IKKβ inhibitors, which they potentiated
platelet aggregation. Nevertheless, the maximum amplitude of aggregation was similar between
IKK inhibitor VII-treated platelets and controls following their stimulation with optimal doses of
thrombin and collagen. Therefore, a more plausible result would necessitate the stimulation of IKK
inhibitor VII-pretreated platelets with a priming/sub-optimal dose of those agonists, in order to better
observe the potentiating effect of the inhibitor. In this context, our recent study demonstrated that
the aggregation of platelets pretreated with BAY 11-7082 or TAK-1 inhibitors, 5Z-7-Oxozeaenol and
Takinib, primed with sCD40L, and then stimulated with sub-optimal doses of thrombin was abrogated
completely [95]. Our results also pinpointed the emerging importance of TAK-1 in NF-κB activation in
platelets as another attractive therapeutic target in thrombotic diseases.

Similarly, an in vivo study by Karim et al. reported that the inhibition of IKKβ in mice slowed
down thrombus formation and increased bleeding time. Moreover, IKKβ knockout mice also showed
increased bleeding times, consistent with the effects of pharmacological inhibition [66]. Of note,
Wei et al. demonstrated that IKKβ deficiency promoted leukocyte-platelet interaction by delaying
ADAM17-mediated GPIbα shedding, therefore, enhancing platelet aggregation [61].

The pro-coagulant activity of NF-κB was also evident in thrombo-inflammatory conditions like
sepsis, in which tissue factor was upregulated in parallel with a downregulation of anticoagulation
molecules like anti-thrombin and tissue factor pathway inhibitor. Eventually, the pronounced
production of thrombi in this condition induces platelet depletion and subsequent bleeding
vulnerabilities, which reflects an extreme role of NF-κB in hematological diseases [123,124].

In the context of diabetes, a recent study on diabetic rats and humans demonstrated that the
enhanced expression of platelet P2Y12, a pro-thrombotic ADP receptor, correlates with increased IκBα
phosphorylation and degradation in platelets and megakaryocytes as well as increased p65 expression
and binding to P2Y12 promoter in megakaryocytes. The study hence suggested that hyperglycemic
conditions render NF-κB the mediator of the increased expression of P2Y12 in platelets of patients with
type 2 diabetes mellitus [125], evidencing further the pro-thrombotic role of platelet NF-κB in platelets.

Alongside NF-κB, other transcription factors regulate platelet aggregation. For instance, PPARγ
agonists decrease CD40L and TXA2 release as well as platelet aggregation by modulating early GPVI
receptor signaling and thus inhibiting collagen-mediated activation [126]. Moreover, RXR ligands
inhibit TXA2 and ADP production and platelet aggregation by binding the GTP-binding protein Gq
thus preventing its subsequent activation of Rac and aggregation-driving signaling pathways [34].

5. Natural/Pharmacological Compounds and NF-κB

Several studies on pharmacological and natural active compounds, even those specifically targeting
platelets, recount off-target effects on cellular rather than platelet NF-κB.
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Firstly, aspirin or acetylsalicylic acid (ASA) is a non-steroidal anti-inflammatory and anti-platelet
drug. Requiring the lowest dose and used in the prevention of thrombosis, the anti-platelet indication
is established through inhibiting the action of cyclooxygenase-1 (COX-1) responsible for TXA2

secretion [127]. Because of its dual function, ASA is the most studied medicament in terms of its effects
on NF-κB. Kopp and Ghosh were the first to demonstrate that sodium salicylate, an ASA derivative,
targets the NF-κB pathway by inhibiting IκB degradation and subsequent NF-κB nuclear translocation
in activated T cell lines [128]. Later, it was shown in vitro as well that ASA and salicylate mediated
the latter effects through IKKβ inhibition [129]. In vivo, in a rat model of acute pulmonary embolism,
ASA reduced the expression of NF-κB in lung tissues dose-dependently [130]. In peripheral blood
mononucleated cells (PBMC) of diabetic patients, the daily dosing of ASA significantly decreased
NF-κB binding activity to DNA [131]. However, in atherosclerotic patients, NF-κB expression in
carotid artery plaques, precisely that of foam and endothelial cells origins, was unaffected by ASA
treatment [132], suggesting that ASA effects on NF-κB are cell- and/or pathophysiology-dependent.

Platelet P2Y12 receptor antagonists such as ticagrelor and clopidogrel are another family of
anti-platelet agents indicated for patients with acute coronary syndrome at risk of ischemic events [133].
In rats with gastric ulcer, ticagrelor impairs NF-κB p65 phosphorylation [134]. In porcine models
undergoing coronary interventions, the long-term administration of clopidogrel shows significant
reductions in NF-κB activity [135].

Another anti-aggregation agent, cilostazol is a phosphodiesterase (PDE) 3 inhibitor indicated for
treating intermittent claudication in the lower periphery. By increasing cyclic adenosine monophosphate
(cAMP) levels, it exhibits vasodilator as well as anti-platelet effects [136]. Cilostazol interferes with the
transcriptional activity of NF-κB in macrophages after their treatment with TLR ligands, therefore,
reducing the generation of TLR-mediated pro-inflammatory cytokines [137]. In platelets, a recent study
on hypercholesterolemia rats treated with cilostazol reported enhanced IκBα expression coinciding
with NF-κB inhibition, an effect linked to AMP kinase (AMPK) activation. The study went further
by attributing to AMPK activation and subsequent NF-κB inhibition a major role in preserving
endothelial function by reducing platelet P-selectin and CD40L expression while increasing endothelial
nitric oxide synthase activity responsible for anti-platelet nitric oxide production [138]. Another
non-selective PDE inhibitor with anti-inflammatory as well as anti-platelet functions, dipyridamole,
exhibits inhibitory actions against IKKβ, IκB phosphorylation and degradation, and p65 nuclear
translocation in macrophage cell lines [139] and human PBM [140].

Vorapaxar, a PAR-1 antagonist, recently indicated for the prevention of atherothrombotic events
in patients with myocardial infarction and peripheral arterial disease [141], also shows off-label
NF-κB effects. In endothelial cells stimulated with cholesterol, vorapaxar significantly increased NF-κB
expression levels, suggesting that the molecule performs a protective role in atherosclerotic settings [142].
However, and although of a different clinical context pertaining to hypoxic effects on ventricular
remodeling, another study showed the exact opposite, as endothelial cells from hypoxic mice treated
with a PAR-1 antagonist demonstrates downregulated NF-κB levels. The same study showed similar
results with rivaroxaban, an anticoagulant drug which functions by directly targeting the clotting factor
Xa [143]. In another study, rivaroxaban was demonstrated to attenuate deep venous thrombosis in a
rat model by targeting NF-κB signaling pathway in endothelial cells, more specifically downregulating
IκB levels as well as NF-κB levels and activity and thereby performing anti-inflammatory and
pro-fibrinolytic functions [144]. In cardiac fibroblasts stimulated with Angiotensin II to induce
structural and functional remodeling mimicking that of heart failure, rivaroxaban diminished NF-κB
activity by 82% [145].

Other non-antiplatelet and non-anticoagulant compounds also exhibit modulatory actions against
NF-κB. For instance, a recent study demonstrated that nifedipine, a calcium channel blocker, triggers
PPARβ/γ activity. Interestingly, PPARβ/γ inhibits NF-κB activation, hence attenuating intracellular
Ca2+ mobilization, reducing inside-out αIIbβ3 signaling and fibrinogen binding, and preventing
platelet aggregation. It is suggested that the inhibitory effect of PPARβ/γ on NF-κB activation following
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nifedipine treatment is mediated by its regulation of NO/cGMP/PKG1 [146]. Other drug activators
of PPARs such as statins, fibrates [147], and thiazolidin [148,149] confer anti-aggregation properties
seemingly by acting in a similar way and inhibiting NF-κB. A high dose of simvastatin for example
significantly diminishes plasma low-density lipoprotein cholesterol (LDL) levels (including oxidized
LDL) in parallel to the binding activity of NF-κB in PBMC [150].

Lastly, a few studies on natural molecules offer additional data on NF-κB modulation. Sesamol
3,4-methylenedioxyphenol), a constituent of sesame oil with antiplatelet effects, inhibits NF-κB pathway
by inducing cAMP-PKA signaling cascade, which culminates in the inhibition of intracellular Ca2+

mobilization and ultimately platelet aggregation [151]. Vitamin C dose-dependently prevents IκB
degradation and NF-κB activation in vitro, thus aiding to reduce inflammation [152]. Vitamin E, another
antioxidant, shows similar effects in vitro and in vivo, although it is unclear whether the inhibition is
direct or automatically follows a reduction in oxidative stress [153]. Other natural molecules such as
β-carotene, N-acetylcysteine, selenium, and omega 3 fatty acids have also exhibited indirect inhibition
of the NF-κB pathway [11].

Evident above, there is a scarcity of data on drug pharmacodynamics at the level of platelet
NF-κB, as compared to NF-κB in other cells. However, this is fathomable, taking into consideration
the reasoning of this review article, that is expanding our limited knowledge on the role of NF-κB
in platelet functioning. Consequently, one can extrapolate from the studies performed thus far that
targeting platelet NF-κB, as demonstrated with cellular NF-κB, might confer a plethora of therapeutic
benefits first at the level of platelet survival, priming, activation, and aggregation and second in the
context of atherothrombotic coronary artery diseases. Still and all, further research is mandatory to
provide us with the facts.

6. The Interplay between mRNA, miRNA, and NF-κB in Platelets

As mentioned in Section 3, platelets harbor both mRNA and miRNA. In fact, RT-PCR and
microarray studies of highly purified human platelets corroborate that the platelet proteome is a copy
image of its transcriptome, having identified an average of 2500 platelet-expressed mRNA transcripts
(approximately 12,500-fold less than nucleated cells) [39,154,155]. Likewise, Landry et al. have shown
that human platelets encompass a wide array of miRNAs (miRs) [156], small (about 22 nucleotides)
non-coding RNAs derived from long RNA precursors, and Gregory et al. [157] evidenced further
a modulatory role of miRNA in controlling platelet activity [156]. Later genome wide profiling of
platelet RNA allowed the identification of about 284 platelet-expressed miRNA [158,159]. Other studies
provide further insight on the involvement of miRNA in platelet activation by showing a differential
up- and down-regulation of 6 miRNAs upon thrombin stimulation [160].

The NF-κB pathway is not only a direct target but also a modulator of several miRNAs.
For instance, miR-223, miR-199a, miR-155, and miR-124a inhibit the expression of different IKK subunits,
thus preventing NF-κB activity. On the other hand, NF-κB also regulates a few miRNAs such as miR-29b
which is implicated in tumor suppression [161]. It is well known that functional RNA, including miRNA,
can move intracellularly via exosomal shuttle-like microparticulate vesicles released by the cell [162].
In addition, activated platelets possess the ability to release microvesicles harboring functional miRNA
which can be passed to nucleated cells [163] to modulate their pathological states [164,165], which may
suggest the presence of an orchestrated interplay between miRNA and NF-κB mediated by platelet
microvesicles. This was recently manifested in a murine study on the protective mechanisms of action
of thrombin-activated platelet-derived exosomes in atherosclerosis. In the scope of our topic, however,
and considering that platelet NF-κB is found in platelet microparticles [164], one can postulate that in
addition to its non-genomic role in platelet survival and activation-aggregation, platelet NF-κB may
harbor an extra-platelet genomic role, which unfolds only following platelet microparticles uptake by
other nucleated cells.
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7. Conclusions

NF-κB has been shown to be implicated in the transcriptional regulation of over a hundred genes, a
large number of these genes exhibit pro-inflammatory properties [166]. In nuclei-devoid platelets which
play a major role in cardiovascular diseases, NF-κB is shown to have a different non-genomic function,
as summarized in Figure 3. Herein, our endeavors in recapitulating diverse data on platelet NF-κB
might help to characterize the exceptional function of this protein in platelets. Although emerging
studies corroborate that NF-κB has a primordial role in positively regulating platelet survival, priming,
activation, and aggregation, further investigations are warranted to fully elucidate the mechanics and
roles of NF-κB in those acellular fragments, especially that another perplexing and equally interesting
extra-platelet function for platelet NF-κB has recently been fading in and since few studies showcase
an opposite role for NF-κB in platelet function and may, therefore, act as a double-edged sword [28,61].
This, and given the fact that the targeting of NF-κB by several active compounds is elucidated to
ameliorate diverse pathophysiological conditions, more pre-clinical research might also bestow upon
platelet NF-κB a therapeutic potential in cardiovascular diseases. Thus, inhibiting platelet NF-κB may
have a high therapeutic potential to treat thrombotic disorders. Because platelet activation is linked to
hemostasis, and also has a key role in inflammation and thrombosis, our present review demonstrates
that inhibition of NF-κB interferes with platelet function by reducing its thrombogenic potential and
holds great promise when compounds that block NF-κB activation are considered for treating various
thrombo-inflammatory diseases.
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Figure 3. Schematic diagram portraying the role of NF-κB in platelets. Upon ligation of different
receptors by priming (sCD40L and epinephrine) and/or activating ligands (collagen; thrombin; ADP;
and TxA2), IKK activation triggers NF-κB pathway. Unlike nucleated cells-originating NF-κB, which
translocates into the nucleus and binds genomic DNA, platelet NF-κB confers functions of other
nature as shown by the utility of several pharmacological inhibitors of IKK such as BAY 11-7082 and
BMS-345541. Activated NF-κB plays a role in platelet survival and platelet priming. Platelet NF-κB
might also be involved in regulating miRNA, however, this requires further validation. Although it has
been shown that platelet NF-κB carried by platelet microparticles (PMP) is endocytosed by other cells
such as endothelial cells, its exact extra-platelet functions are still elusive.
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