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Mammalian cortical interneurons (CINs) could be classified into more than

two dozen cell types that possess diverse electrophysiological and molecular

characteristics, and participate in various essential biological processes in

the human neural system. However, the mechanism to generate diversity

in CINs remains controversial. This study aims to predict CIN diversity

in mouse embryo by using single-cell transcriptomics and the machine

learning methods. Data of 2,669 single-cell transcriptome sequencing results

are employed. The 2,669 cells are classified into three categories, caudal

ganglionic eminence (CGE) cells, dorsal medial ganglionic eminence (dMGE)

cells, and ventral medial ganglionic eminence (vMGE) cells, corresponding to

the three regions in the mouse subpallium where the cells are collected. Such

transcriptomic profiles were first analyzed by the minimum redundancy and

maximum relevance method. A feature list was obtained, which was further

fed into the incremental feature selection, incorporating two classification

algorithms (random forest and repeated incremental pruning to produce

error reduction), to extract key genes and construct powerful classifiers and

classification rules. The optimal classifier could achieve an MCC of 0.725,

and category-specified prediction accuracies of 0.958, 0.760, and 0.737
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for the CGE, dMGE, and vMGE cells, respectively. The related genes and

rules may provide helpful information for deepening the understanding of

CIN diversity.

KEYWORDS

cortical interneuron diversity, ganglionic eminences, machine learning, rule learning,
embryo

Introduction

Cortical interneurons (CIN) are a group of cells in the
human cerebral cortex, which participate in multiple essential
biological processes in the human neural system, such as
learning (Pi et al., 2013), vision (Pfeffer et al., 2013), and decision
making (Wang, 2002). The cerebral cortex of human beings has
more than dozen of CIN subgroups, such as multiple kinds of
GABAergic interneurons (Kelsom and Lu, 2013). However, for
a long time, the biological functions of how CINs are mediated
by abundant, diverse cell subgroups has not been well known.

To investigate the complexity of CIN subgroups, the
origins of CIN are clearly and reliably revealed, and how they
differentiate into different cell subgroups is a premise. Early
in 2002, researchers already revealed that most GABAergic
interneurons are generated from embryonic forebrain in the
cortical subventricular zone and further immigrate to other
regions of the brain (Gelman and Marín, 2010). In adult human
brains, the CINs originate from three regions, namely, caudal
ganglionic eminence (CGE), dorsal medial ganglionic eminence
(dMGE), and ventral medial ganglionic eminence (vMGE), with
specific cellular components and biological functions (Wonders
and Anderson, 2006; Kelsom and Lu, 2013). Although a rough
picture about the formation of diverse CINs is emerging, how
and when progenitors develop into multiple subgroups of CINs
remain controversial. Two major CIN models have been made
to interpret the timeline and biological procedures for the
generation of CIN diversity (Wonders and Anderson, 2006):

Model 1: The diversity of CIN is invoked in the original
region before they migrate.

Model 2: The diversity of CIN is regulated after the
migration and by the local environment of each region.

To test and validate these two hypotheses, one effective
approach could be to investigate the transcriptomic profiling at
single cell level during embryo development (Mi et al., 2018).
Recently, Mi et al. (2018) sequenced the transcriptome for
cells collected from the three regions of origin of CIN (CGE,
dMGE, and vMGE) in the mouse subpallium across two time
points (embryonic days 12.5 and 14.5) and then explored the
transcriptomic characteristics of the cells.

In this study, as inspired by Mi et al.’s (2018) work, a
more sophisticated bioinformatic analysis on the transcriptomic

profiling of CIN cells is conducted by using the same data.
Our hypothesis is that if cell types (CGE, dMGE, and
vMGE cells) in the regions of origin could be predicted by
their transcriptomic profiles, then “The diversity of CIN is
invoked in the original region” (Model 1); otherwise, “The
diversity of CIN is regulated after the migration” (Model
2). Our analysis consists of a series of machine learning
algorithms, including the minimum redundancy and maximum
relevance (mRMR) (Peng et al., 2005), the incremental
feature selection (IFS) approach (Liu and Setiono, 1998),
random forest (RF) (Breiman, 2001), and repeated incremental
pruning to produce error reduction (RIPPER) (Cohen, 1995).
After the analysis, several myoblast-associated genes (e.g.,
Lhx8, Calm1, Hmgb1, Meis2, Nr2f2, Basp1, BTAC, ZIC1,
NR2F1, and RPS29) were identified and well interpreted via
existing literature, and 23 quantitative rules were established
to quantify the distribution of identified genes within the
regions of origin.

Materials and methods

Study design

Our study consisted of five parts, namely, (1) data
collection, (2) feature representation, (3) feature ranking, (4)
IFS and model building, and (5) top feature interpretation,
as shown in Figure 1. More details are presented in the
following sections.

Dataset

The dataset consisted of 2,669 single cells downloaded
from Gene Expression Omnibus (GEO) under the accession
number of GSE109796 (Mi et al., 2018), which contained RNA
sequencing reports of 2,669 single cells acquired from tissues
dissected from the subpallium of mouse embryos. The 2,669
single cells were divided into three cell types according to their
regions of origin in the subpallium, namely, CGE cells, dMGE
cells, and vMGE cells, whose numbers were 856, 957, and
856, respectively.
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FIGURE 1

Overall workflow of the study.

Feature representation

In the downloaded data, RNA sequencing for each cell was
recorded by 37,310 reads per kilobase per million mapped reads
(RPKM) values. The RPKM values of 6,037 transcripts showed
zeros in all cells; thus, they were removed. Finally, each sample
(each cell) was represented as a numeric vector of 31,273 RPKM
values (37,310-6,037 = 31,273) and used as input in the following
computational analysis.

Feature ranking

As mentioned in section “Feature representation,” lots of
features were used to represent each cell sample. Clearly, not
all features were related to the classification of cell types.
A feature analysis procedure was necessary. In our study, the
mRMR method (Peng et al., 2005) was employed for completing
this task. mRMR is a filter-based feature analysis algorithm
that could retain feature relevance to classification labels while
reducing redundance among features, that is, maximizing the
correlation between features and labels while minimizing the
correlation between features themselves. However, such purpose
is difficult to achieve because the problem is NP-hard. Thus,
mRMR gives a heuristic scheme, which sorts feature in a list,
named mRMR feature list. At the beginning, this list is empty.
The mRMR method selects one feature, which has highest
relevance to classification labels and lowest redundance to
already-selected features, and appends such feature to the list in
each round. This procedure stops until all features are in the list.

Evidently, features with the top ranks in the list had the most
relevance to classification labels and less correlation to the rest
of the other features. Thus, they can comprise a compact feature
subspace to represent samples.

This study adopted the mRMR program reported in http:
//home.penglab.com/proj/mRMR/. It was performed with its
default parameters.

Feature selection and model building

As mRMR method only sorts features in the mRMR list.
Which features are important and can be picked up for
constructing classifiers is still a problem. In view of this, the
IFS method (Liu and Setiono, 1998) followed to analyze this list
in this study. It is a feature screening approach to determine
the optimal number of features. To perform IFS on the mRMR
feature list, a series of feature subsets with a step of 10 features
was first generated, that is, the i-th feature subset contained
the first 10 × i features from the mRMR list. For each subset,
a classifier was trained based on one classification algorithm
and samples consisting of the features from this feature subset.
This classifier was further evaluated by 10-fold cross-validation
(Kohavi, 1995; Chen et al., 2017; Zhou et al., 2020; Zhu et al.,
2021). Then, the classifier giving the optimal performance
can be obtained. This classifier was termed as the optimal
classifier, whereas the features used in this classifier were called
optimal features.

As mentioned above, a classification algorithm is necessary
for IFS method. Here, two widely used machine-learning
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classification algorithms were adopted for building classifiers
in this study, namely, the RF (Breiman, 2001) and RIPPER
(Cohen, 1995) algorithms. RF is a meta classifier that contains
many decision trees, and each tree is grown from a bootstrap
set with a randomly selected feature subset. For making a
prediction, its output label is determined by aggregating votes
from different decision trees. Several differences always exist
between different decision trees in the forest. RF usually
averages the prediction results of all decision trees to reduce
errors and avoid overfitting. Although this slightly increases
the bias and loses some interpretability, it improves prediction
performance. RF is always quite efficient to construct classifiers
and has wide applications in the fields of bioinformatics
(Pan et al., 2010; Jia et al., 2020; Liang et al., 2020;
Chen et al., 2021; Zhang et al., 2021c). In this study, we
directly employed the tool “RandomForest” in Weka (Frank
et al., 2004), which implements the RF. For convenience,
default parameters were used, where the number of decision
trees is set to 100.

Although the RF classifier can be efficient to classify CIN
cells, it cannot give useful clues to uncover differences of
CIN cells from different regions. In view of this, we further
employed another classification algorithm, RIPPER. In fact, it is
a rule-based algorithm that could generate classification rules to
predict cells into different region-based groups. In RIPPER, the
training set is first separated into the growing set and pruning
set. Then, the rule grows, and the prune phase is repeated until
no positive samples are left in the growing set. During the
process, one rule is generated by greedily adding conditions
to the rule. It predicts the classification of new data based
on the interpretable classification IF–ELSE rules. Although the
RIPPER classifier is generally weaker than RF classifier, it has
its own merits. For CIN cells investigated in this study, the
rules contained in the RIPPER classifier can clearly indicate
the patterns of cells in different regions, giving new insights
to study CIN cells. Thus, RIPPER has also been applied to
analyze some complicated biological or medical systems (Li
et al., 2020; Zhang et al., 2020, 2021a). Likewise, the tool “JRip”
in Weka (Frank et al., 2004) was directly used in this study,
which implements the above RIPPER. Also, it was executed
using default parameters.

Model interpretation

In our study, the interpretation of model consisted of two
parts, interpretation on (1) single-gene and (2) combined-
gene rules. Single-gene interpretation focused on the optimal
genes (i.e., the feature in the sample vector) selected by IFS
with RF, whereas interpretation on combined-gene rule focuses
on the optimal rules outputted by IFS with RIPPER. Our
interpretation was based on comprehensive literature reviewing
on previous works.

Performance measurement

Two quantitative metrics were used to indicate the
performance of different models, namely, prediction accuracy
(ACC) and Matthew correlation coefficients (MCC) (Matthews,
1975; Gorodkin, 2004; Zhao et al., 2018; Pan et al., 2021;
Zhang et al., 2021b). ACC could directly show the proportion
of correctly predicted samples among all samples. However,
this measurement is not very correct if the sizes of classes are
of great differences. In this case, MCC is more objective. To
calculate such measurement, two matrices, say X and Y, should
be constructed first, where X denotes the true class of each
sample and Y represented the predicted class of each sample.
Accordingly, MCC can be computed by

MCC =
cov(X, Y)

√
cov (X, X) cov(Y, Y)

, (1)

where cov(•) stands for the correlation coefficient of two
matrices. The return values of ACC and MCC are continuous
values with range of 0–1 and -1 to 1, respectively. The higher
the ACC and MCC values are, the better performance for
the classifiers.

In addition, we also employed the individual accuracy to
measure the performance of each classifier. For each class, the
individual accuracy of this class is defined as the proportion of
correctly predicted samples in this class among all samples in
this class. Evidently, high individual accuracy indicates the good
performance of one classifier on some class.

Results

In our study, 2,669 single-cell samples were collected, and
each cell was represented as a numeric vector with 31,273
features. Each feature in the sample vector corresponded to the
expression of one gene. The 2,669 samples were divided into
three categories, CGE cells (856, 32%), dMGE cells (957, 36%),
and vMGE cells (856, 32%). The entire analysis procedures are
illustrated in Figure 1.

Results of feature ranking

The dataset containing 31,273 features was first analyzed by
the mRMR method. The mRMR feature list was obtained, which
is provided in Supplementary Table 1. Features with high ranks
were essential for distinguishing CIN cells.

Prediction performance

Based on the mRMR feature list, RF and RIPPER were
employed to build the classifiers in the approach of IFS.
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FIGURE 2

The IFS curves of RIPPER and RF. RIPPER can reach the highest MCC of 0.577, whereas RF can reach the highest MCC of 0.725.

When RF was selected in the IFS method, we constructed
several RF classifiers on different feature subsets. The
performance of these classifiers is listed in Supplementary
Table 2. For an easy observation, an IFS curve was plotted,
as shown in Figure 2, where x-axis stands for the number of
features in the feature subset and y-axis stands for the MCC.
The highest MCC was 0.725 when top 240 features were used.
Accordingly, these 240 features were the optimal features for
RF and an optimal RF classifier was constructed with these
optimal features. The ACC of this classifier was 0.816, as listed
in Table 1. The individual accuracies on CIN cells in three
regions are shown in Figure 3. Most CGE cells were correctly
predicted with individual accuracy higher than 0.950, whereas
the other two individual accuracies were not very high. As a
whole, this classifier gave good performance. However, this RF
classifier used lots of features. It would not be efficient if lots
of samples were inputted. In view of this, we enlarged the IFS
curve between 10 and 500, as shown in Figure 4. It can be
observed that the curve followed a sharp increasing trend when
the number of features were small. After that, the curve became
stable. When top 120 features were adopted, the MCC reached
0.711, which was a little lower than that yielded by the optimal
RF classifier (0.725). As for ACC, it was 0.807 (Table 1), also
slightly lower than that produced by the optimal RF classifier
(0.816). The individual accuracies of this classifier are illustrated
in Figure 3. All were a little lower than those of the optimal RF
classifier. These results indicated that the RF classifier with top
120 features provided almost equal performance to the optimal
RF classifier. However, it involved much less features, indicating
higher efficiency. This RF classifier can be an efficient tool to
classify CIN cells. Furthermore, the top 120 features were much
more important than the following 120 features. It was valuable
to investigate their relationships to CIN cells. Furthermore,
to further assess such latent tool, it was tested by additional
10-fold cross-validation for ten times. A box plot, as shown
in Figure 5, was drawn for obtained ACC and MCC values.
Evidently, they were changed in a small range, indicating the
stability of the tool.

Although the above RF classifiers provided satisfied
performance, they provided less even no useful clues to uncover
differences of CIN cells in different regions because RF is a
black-box algorithm. Thus, we also adopted RIPPER in the IFS
method. The performance of RIPPER classifiers on all tested
feature subsets is provided in Supplementary Table 2. An IFS
curve was plotted in Figure 2 to show their performance. The
highest MCC was 0.577 when top 1,650 features were used.
Thus, these features were the optimal features for RIPPER and
the optimal RIPPER classifier was built based on them. The
ACC of this classifier was 0.718, as listed in Table 1. Evidently,
MCC and ACC were much lower than those of above RF
classifiers. As for the individual accuracies, they are illustrated in
Figure 3. They were also much lower than those of the above RF
classifiers. All these indicated that the optimal RIPPER classifier
was much inferior to above two RF classifiers. However, some
useful information can be extracted from this RIPPER classifier,
which would be listed in section “Top feature interpretation.”
This information was helpful to uncover the difference of CINs
cells in different regions.

Top feature interpretation

With the help of IFS and RF, we extracted 120 essential
features, which are the first 120 features listed in Supplementary
Table 2. These features were deemed to play essential roles to
distinguish CIN cells in different regions. Their corresponding
genes can be essential single-genes to classify CIN cells.

TABLE 1 Performance of some key classifiers.

Classification
algorithm

Number of features ACC MCC

RIPPER 1,650 0.718 0.577

RF 240 0.816 0.725

RF 120 0.807 0.711
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FIGURE 3

The Individual accuracies of some key classifier. Two RF classifiers provide almost equal performance and are superior to the RIPPER classifier.

FIGURE 4

The IFS curve of RF between 10 and 500. The RF classifier with top 120 features yielded a little lower MCC than the classifier with top 240
features, which is the optimal RF classifier.

FIGURE 5

Box plot to show the performance of RF classifier with top 120 features under 10-fold cross-validation for 10 times. ACC and MCC vary in a
small range, indicating the stability of the classifier.
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TABLE 2 The 22 classification rules generated by RIPPER for predicting cell types.

Index Rule Label

1 NKX2-1 ≤ 3.6524) and (MT-TM ≥ 1.4699) and (MEIS2 ≥ 0.7558) and (H3F3B ≥ 2019.223223) Caudal ganglionic eminence

2 (FOXP2 ≥ 0.0047) and (NKX2-1 ≤ 5.5415) and (TMSB10 ≤ 76.7268) and (NR2F1 ≥ 25.2511) Caudal ganglionic eminence

3 (NKX2-1 ≤ 12.9594) and (RPS20 ≤ 17.1104) and (SLC7A11 ≥ 0.0538) and (PID1 ≥ 0.4191) and (LHX8 ≤ 0.0839) Caudal ganglionic eminence

4 (NR2F2 ≥ 0.2374) and (LHX6 ≤ 0.3856) and (5730494M16RIK > = 14.4383) and (LHX8 ≤ 7.0592) Caudal ganglionic eminence

5 (FOXP2 ≥ 0.1294) and (EPHA5 ≥ 25.8453) and (RPS9 ≤ 159.5439) and (DCX ≥ 49.7284) Caudal ganglionic eminence

6 (NR2F2 ≥ 2.2717) and (EPHA5 ≥ 3.4019) and (LHX8 ≤ 0) and (MEIS2 ≥ 18.9392) and (NCAPH ≤ 2.4094) Caudal ganglionic eminence

7 (ENC1 ≤ 1.8862) and (NKX2-1 ≤ 12.0905) and (STX7 ≥ 0.3228) and (CALM1 ≤ 546.2493) and (SOX6 ≤ 2.8190) Caudal ganglionic eminence

8 (GM6180 ≥ 36.7994) and (FOXP2 ≥ 3.5745) and (GM13340 ≥ 34.469118) Caudal ganglionic eminence

9 (EPHA5 ≥ 0.1196) and (LHX8 ≤ 0.1496) and (GM15266 ≤ 19.2334) and (GM1821 ≤ 89.839694) and (CALM1 ≤ 744.1502) Caudal ganglionic eminence

10 (BIRC6 ≤ 0) and (NKX2-1 ≤ 10.7393) and (CRIP2 ≥ 400.8077) and (ZFP238 ≥ 6.1810) and (GM10039 ≥ 12.3788) Caudal ganglionic eminence

11 (ARRDC3 ≥ 368.6154) and (PTPRS ≤ 24.5126) and (ZFP238 ≤ 70.9705) Caudal ganglionic eminence

12 (ZFP503 ≥ 0.1111) and (MAP4K4 ≤ 7.0016) Caudal ganglionic eminence

13 (LHX8 ≥ 1.4487) and (ZIC1 ≥ 0.0111) Ventral medial ganglionic eminence

14 (LHX8 ≥ 0.3736) and (NR2F1 ≤ 9.4921) and (ZSWIM5 ≤ 0.0334) Ventral medial ganglionic eminence

15 (NR2F1 ≤ 15.6811) and (CD24A ≥ 2.7069) and (BASP1 ≤ 66.0865) and (PKIA ≤ 1.8492) Ventral medial ganglionic eminence

16 (PAK3 ≤ 0.7899) and (RPS18 ≥ 4.9001) and (PID1 ≥ 1.2578) Ventral medial ganglionic eminence

17 (YWHAZ ≥ 1.8915) and (SEPT11 ≤ 7.8189) and (GM13604 ≤ 0.2081) and (H2AFV ≥ 1305.9678) Ventral medial ganglionic eminence

18 (PAK3 ≤ 0.0474) and (CFL1 ≥ 31.1042) and (GTF2A1 ≤ 20.8911) and (LHX6 ≤ 5.6025) Ventral medial ganglionic eminence

19 (GM15266 ≤ 63.0475) and (MT-RNR2 ≥ 9387.3828) Ventral medial ganglionic eminence

20 (CITED2 ≤ 35.2427) and (GM10718 ≤ 1.0898) and (2610017I09RIK ≤ 2442.7505) and (GSK3B ≤ 1.5164) Ventral medial ganglionic eminence

21 (UBE2QL1 ≥ 1.5601) and (3110003A17RIK ≥ 20.2789) and (RTN1 ≤ 4.7837) Ventral medial ganglionic eminence

22 (GM3511 ≥ 22.9860) and (PTMA ≥ 2.2359) and (LHX6 ≤ 47.9178) Ventral medial ganglionic eminence

23 Others Dorsal medial ganglionic eminence

Furthermore, in our study, RIPPER was employed to
generate classification rules to reveal how features interacted
with one another, thus predicting cell types. The optimal
RIPPER classifier used top 1,650 features. Cell samples
represented by these features were learnt by RIPPER, resulting
in 23 rules, as listed in Table 2. 12 rules were for CGE
cells, 9 rules were for vMGE cells and the last rule was for
dMGE cells. CGE cell rules ranked higher than the two MGE
cell rules, which complied with the observation that CGE
cells are easier to be distinguished by their transcriptomic
characteristics.

Discussion

As mentioned above, 120 features for the RF classifier
for CIN cell types were filtered out. The transcriptomic
level profiling of candidate genes was associated with CIN
development. The literature was searched for the top 30 features,
and these features were supported by previous studies as
potential biomarkers. Considering length restriction, 10 features
were selected for detailed discussion, as listed in Table 3. A series
of quantitative rules was also identified for detailed prediction
on CGE, dMGE, and vMGE cells, laying a foundation for further
analyses in this field.

Genes associated with cortical
interneurons

Lhx8, the top predicted candidate, is a member of LIM-
class homeobox genes. According to recent publications, Lhx8
contributes to the regulation of neuronal Shh expression in
MGE. Such gene has also been identified to prevent Nkx2-1
expression in a subset of pallial interneurons (Flandin et al.,
2011), suggesting that Lhx8 plays an important role in regulating
the early born MGE neurons. In addition, Lhx8 has a special
function in the development of neurons. Lhx8 is a major source
of cholinergic neurons, and Zhao et al. (2003) proved that
Lhx8 is quite essential during cholinergic neurons’ development
in the forebrain. Integrating the literature supports mentioned
above, speculating that Lhx8 as one of our candidates has
differential profiling patterns in MGE neuron cells and other
cells, consistent with our prediction results, is quite reasonable.

Calm1, another identified CIN-associated gene encodes a
kind of calmodulin (CaM), an effective calcium ion sensor
and signal transductor. Neuronal migration is associated with
our predicted gene, which may further indicate the potential
contribution of our predicted genes on the development of the
nervous system. Kobayashi et al. (2014) reported that Calm1
acts as a specific regulator in the tangential and radial migration
of mouse neuron cells. Neuronal migration is a key process in
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TABLE 3 Details of essential genes.

Gene symbol Description Rank in the
feature list

Lhx8 LIM homeobox 8 2

Calm1 Calmodulin 1 4

Hmgb1 High mobility group box 1 9

Meis2 Meis homeobox 2 12

Nr2f2 Nuclear receptor subfamily 2
group F member 2

22

Basp1 Brain abundant membrane
attached signal protein 1

7

Actb Actin beta 23

Zic1 Zic family member 1 30

Nr2f1 Nuclear receptor subfamily 2
group F member 1

15

Rps29 Ribosomal protein S29 18

the developing and adult brain, and Khodosevich et al. (2009)
indicated that the knockdown of Calm1 affects neuroblast
migration to the OB, suggesting that Calm1 can be an important
gene in the regulation of neuron development. Integrating the
literature supports mentioned above, Calm1 is confirmed to be
a CIN-associated gene.

Another identified gene is Hmgb1, which is like histones
among the most important chromatin proteins. Hmgb1, a novel
cytokine-like mediator, is associated with microglial activation
(Kim et al., 2006). According to recent publications (Kim et al.,
2011), Hmgb1 participates in the regulation in danger signaling
and cell death control, acting as a ubiquitously expressed non-
histone DNA-binding protein. In addition, Hmgb1 plays various
roles in different stages of brain development (Ping et al.,
2012). During early brain development, fore brain development
including neurite outgrowth is also associated with Hmgb1.
During aging, it is associated with injury induced inflammation.
Integrating the literature supports mentioned above, Hmgb1 is
suggested to be an important feature to classify the different
types of CIN, including CGE, dMGE, vMGE. Overall, effective
gene Hmgb1 may also have the capacity to distinguish CGE,
dMGE, and vMGE cases.

Meis2, the next predicted gene, is associated with the
development of neural crest cells (Machon et al., 2015). In early
brain development processes, Meis2 participates in the positive
and negative regulation of feed-back and feed-forward loops
(Agoston et al., 2012). However, Meis can interact with various
trophic factor signaling pathways during neuron differentiation
(Bouilloux et al., 2015), suggesting that Meis can be an essential
factor in development of neuron cells. Therefore, our predicted
gene, Meis, may be identified as a special factor in classifying
CGE, dMGE, and vMGE cases.

Nr2f2 is the following predicted gene in our predicted
list. Nr2f2, also known as COUP transcription factor 2,
participates in development of CIN subtypes (MGE). Hu
et al. (2017) indicated that the expression level of Nr2f2 is
associated with time-dependent specification of layer STT and

the survival of neuroepithelium during brain development.
Fuentealba et al. (2010) also proved that as a transcription factor,
such gene contributes to the cell type specific development
and differentiation control, especially for neurons. Integrating
the literature supports mentioned above, speculating that
Nr2f2 as a predicted gene may be differentially expressed
in CGE, dMGE, and vMGE cases is quite reasonable,
validating our prediction.

Another screened out biomarker in our optimal candidates
is Basp1, also known as GAP-23, which is a well-known member
from the family of growth-associated proteins and associated
with the protein GAP-43 that is shown to regulate neural
cell adhesion molecule controlled outgrowth of neurite. In
addition to shared biological functions with GAP-43, Basp1
contributes to the regulation of cellular morphology for plasma
membrane (Korshunova et al., 2010). In addition, membrane-
binding Basp1 oligomers are associated with the physiological or
pathological in-ion channel activity (Ostroumova et al., 2011).
Integrating the literature supports mentioned above, Basp1 is
also associated with the development of neuron cells. Overall,
Basp1 as another predicted gene can also distinguish such three
regions in CINs.

Beta-actin (Actb) is the next gene related to classify the
neuron cells. Beta-actin is a conserved protein of six different
actin isoforms regulating cell motility, structure, and integrity.
Elongating growth is regulated by our predicted gene Actb
via axon branching and translation (Donnelly et al., 2013).
Beta-actin can affect the development of neuron cell via
essential biological processes for brain development. Beta-
actin is a kind of microtubule motor protein during dendritic
transport. Integrating the reports mentioned above, beta-actin
contributes to the development of neuron cells, suggesting that
our predicted gene, BTAC, may be identified as a special factor
in distinguishing different CIN regions.

Zic1 is a member of the zinc finger of the cerebellum
Zic protein family. It is classified as a Zic protein due to the
conservation of the five C2H2 zinc fingers, and the correct
function of this protein is critical for early development.
Dipietrantonio and Dymecki (2009) proved that Zic1 levels in
pontine gray neurons play an important in the development
of pontocerebellar circuit. Therefore, Zic1 can influence the
development of brain neurons by pontocerebellar circuity.
Zic1 can activate and regulate neural crest development and
differentiation at transcriptomic level (Milet et al., 2013; Bae
et al., 2014). ZIC1 may be identified as a special factor in
distinguishing CGE, dMGE, and vMGE cases.

The next two predicted genes, Nr2f1 and Rps29, are
associated with optic atrophy syndrome (Henning et al., 2016)
and neuronal gene orthopedic protein (Taylor et al., 2012).
Optic atrophy syndrome is a kind of neuronal disease, and
orthopedic protein is a protein related to the development
of neuron. Overall, these two genes participate in neuron
development. Therefore, they can be the factors in classifying
CGE, dMGE, and vMGE cases.

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.841145
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-841145 July 11, 2022 Time: 17:28 # 9

Li et al. 10.3389/fnins.2022.841145

Rules associated with cortical
interneurons

In addition to such feature analysis, 22 quantitative rules
for brain region clustering for CGE, dMGE, and vMGE cells
were identified. Some expression tendencies were confirmed
and validated by recent publications. For further validation on
such quantitative rules and parameters, the GEO database was
screened for accurate FPKM screening. The detailed discussion
of each quantitative rule is shown below.

The top 11 rules are associated with the identification
of CGE cells, involving Nkx2-1, Foxp2, Lhx8, and Epha5.
A relatively high expression level of FOXP2 (FPKM > 0)
and EPHA5 (FPKM > 3.4), and low expressions of NKX2-1
(FPKM < 3.65) and LHX8 (FPKM < 0) may indicate such CIN
case turns out to be a CGE case. According to the biological
functions of such genes, FOXP2 is associated with multiple
essential functions in human beings including speech and
language phenotypes (Rodenas-Cuadrado et al., 2018). Epha5 is
an effective kinase from the Eph family, which plays important
roles in neural development (Das et al., 2016). Therefore, high
expression of these genes can promote the neural development.
Our predicted transcription factor NKX2-1 plays a special role
in the specification of subsets of cortical, stratal, and pallidal
neurons (Magno et al., 2017). Therefore, detected expression
of these genes is regarded an effective quantitative filter for the
identification of CGE cells.

The following rules contribute to the identification of vMGE
cells. Parameters Lhx8 and Pak3 are abnormally expressed as
potential biomarkers of such group of cells. As reported, a
relatively higher expression level of Lhx8 (FPKM > 1.45) and
low expression level of PAK3 (FPKM < 0.79) may indicate such
CIN case turns out to be a vMGE cells.

According to the biological functions of such genes, a
feedback loop between Lhx8 and NGF is associated with the
cholinergic functions and may participate in learning and
memory (Tomioka et al., 2014). Moreover, PAK3 as a GTPase
regulated enzyme has alternative kinase activity with different
splicing variants (Combeau et al., 2012), indicating that PAK3
has a critical function in the development of neuron cells.
Therefore, detected expression of these genes is regarded a
potential parameter for the distinction of CINs.

For cells not following the expression patterns discussed
above, they were predicted as dMGE cells.

Comparison with previously reported
cortical interneuron associated
biomarkers

Previously, two studies about cortical interneuron
associated biomarkers have been presented (Mayer et al., 2018;

Mi et al., 2018). Various biomarkers identified in this study
have also been validated in such two studies. For instance,
in Mayer et al.’s (2018) study, four genes, including NKX2-
1, NR2F1, NR2F2, and CITED2, were also identified. The
specific biomarkers like NKX2-1 and NR2F2 have been
identified in both two previously studies. As discussed
above, both genes have been validated by recent publications
with solid experimental supports. The identification of
these biomarkers that have also been reported in similar
studies validated the utility of our method. However, other
biomarkers, like Calm1 and Epha5, have not been recognized by
previous studies, indicating that our study may discover
new biomarkers for different subgroups of CINs, and
therefore, provide a new perspective into the subgrouping
of cortical interneuron.

Limitations of this study

As discussed above, we identified a group of functional genes
and specific quantitative rules that contribute to the prediction
of CIN cell types. However, there remain certain limitations in
our analyses. Firstly, the result may be affected by the cell-type
specificity of each gene in the dataset we used. For instance,
YWHAZ is specifically expressed in projection neurons, but
ribosomal protein subunits may be identified in almost each
cell. Therefore, YWHAZ is more likely to be identified as
a biomarker in a dataset with a lot of projection neurons.
Secondly, the interpretation and discussion on the sub-division
groups and related biological functions just provided a probable
explanation for the machine learning based sub-classification
results according to previously reported publications, which
may not necessary be the actual biological mechanisms. Thirdly,
we only tried to identify CIN cell subgrouping biomarkers in
one dataset. Further validation of our results in matched mouse
model will be accomplished in the next step of our analyses.

Conclusion

In this study, machine learning algorithms were applied to
predict CIN cell types (CGE, dMGE, and vMGE cells) at the
regions of origin by using single-cell transcriptome sequence.
Our findings revealed that CIN cell types could be successfully
distinguished by their transcriptomic characteristics, especially
the CGE cell, suggesting that the diversity of CIN is invoked
in the original region before they migrate. Furthermore, a
group of genes as well as their combined rules that are
important for the prediction of CIN types at the regions
of origin were identified and interpreted. Our research
may not only provide novel biomarkers for CIN associated
myoblasts subtyping but also contribute to deepening the
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understanding of CIN associated biological processes and
related mechanisms.
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