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Abstract
Purpose Intrauterine claustrum and subplate neuron development have been suggested to overlap. As premature birth
typically impairs subplate neuron development, neonatal claustrum might indicate a specific prematurity impact; however,
claustrum identification usually relies on expert knowledge due to its intricate structure. We established automated claustrum
segmentation in newborns.
Methods We applied a deep learning-based algorithm for segmenting the claustrum in 558 T2-weighted neonatal brainMRI
of the developing Human Connectome Project (dHCP) with transfer learning from claustrum segmentation in T1-weighted
scans of adults. The model was trained and evaluated on 30 manual bilateral claustrum annotations in neonates.
Results With only 20 annotated scans, the model yielded median volumetric similarity, robust Hausdorff distance and Dice
score of 95.9%, 1.12mm and 80.0%, respectively, representing an excellent agreement between the automatic and manual
segmentations. In comparison with interrater reliability, the model achieved significantly superior volumetric similarity
(p= 0.047) and Dice score (p< 0.005) indicating stable high-quality performance. Furthermore, the effectiveness of the
transfer learning technique was demonstrated in comparison with nontransfer learning. The model can achieve satisfactory
segmentation with only 12 annotated scans. Finally, the model’s applicability was verified on 528 scans and revealed
reliable segmentations in 97.4%.
Conclusion The developed fast and accurate automated segmentation has great potential in large-scale study cohorts and to
facilitate MRI-based connectome research of the neonatal claustrum. The easy to use models and codes are made publicly
available.
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Abbreviations
AS Automated segmentation
CPU Central processing unit
DA Data augmentation
dHCP Developing Human Connectome Project
DSC Dice similarity coefficient
GA Gestational age
GPU Graphics processing unit
HD95 95th percentile of the Hausdorff distance
IQR Interquartile range
MRI Magnetic resonance imaging
non-TL Nontransfer learning
T2-w T2-weighted
TL Transfer learning
VS Volumetric similarity

Introduction

The claustrum is a thin and sheet-like gray matter struc-
ture of the mammalian forebrain between the striatum and
insular cortex, or more precisely, in humans between the ex-
ternal and extreme capsule [1, 2]. Examining the claustrum
is challenging due to its small size, ambiguous shape, and
deep brain location. The function of the claustrum remains
unclear, and most investigations are based on animal stud-
ies, which highlights the need for imaging-based studies in
humans. Preliminary findings suggest that the claustrum is
relevant for consciousness [3], task switching, salience net-
work organization, attention guiding, and top-down control
[4–8]. Human studies suggest a role of the claustrum in
selective attention and task switching [9]; however, these
investigations are usually limited to small sample sizes [10,
11]. In large cohorts, common manual claustrum segmen-
tation would be very laborious and time consuming.

Moreover, there is a lack of knowledge about claus-
trum development in humans. Most studies focus on an-
imals, while macrostructural and microstructural matura-
tion in humans remain unknown [1, 12, 13]. It has been
shown that there are significant differences between very
preterm and term-born young adults in patterns of BOLD
activity in clusters centered on the claustrum during a learn-
ing task [14]. A clear rationale to study claustrum de-
velopment, particularly in premature-born neonates, comes
from its shared ontogenetic trajectory with so-called sub-
plate neurons [15]. The subplate neurons are a predomi-
nantly transient cell population and are therefore vulnera-
ble to hypoxic-ischemic events and thus, play a key patho-
physiologic role for disturbed neurodevelopment after pre-
mature birth [16–21]. This is underlined by a previous
study showing altered claustrum microstructure in prema-
ture-born adults [22], which is a finding with potentially
significant implications. Examination of the claustrum and

altered claustrum structure in neurodevelopmental disorders
such as impaired development after premature birth may
lead to the establishment of imaging biomarkers for sub-
plate neuron pathology. This may also be extended to other
neurodevelopmental disorders with presumed subplate neu-
ron pathology, such as schizophrenia and autism spectrum
disorder [23]. Hence, close examination and characteriza-
tion of claustrum development in younger cohorts is of spe-
cial interest; however, data about the claustrum in a sizable
neonatal cohort are missing, mostly due to the lack of ade-
quate automated segmentation methods.

Recently, automated segmentation of the human claus-
trum in adults has been investigated by structural approx-
imation to the dorsal claustrum [24] and a two-dimen-
sional deep-learning approach [25]. Furthermore, a mul-
tiview deep learning-based model has been proposed [26]
to segment the human claustrum trained on a large anno-
tated dataset; however, no reliable automated segmentation
method for the claustrum in neonatal MRI exists.

To fill this gap, this study presents an efficient deep
learning-based segmentation framework using manual ex-
pert annotations of the claustrum in a sophisticated cohort
of neonatal MRI from the developing Human Connectome
Project (dHCP) [27] comprising ongoing brain develop-
ment. Transfer learning [28] enabled reuse of available ar-
tificial intelligence models despite different neuroanatomy,
scanner, image sequence, and image resolution shift, and
drastically shortened the training time to 90min. Segmen-
tation accuracy was evaluated based on three canonical
performance metrics, volumetric similarity (VS), 95th per-
centile of the Hausdorff distance (HD95), and Dice simi-
larity coefficient (DSC), and compared with intrarater and
interrater reliability of manual segmentation. The proposed
technique was also compared to a nontransfer learning ap-
proach. The study provides an insight into the training
process by quantifying the amount of manually annotated
images needed for good segmentation results. Lastly, the
deep learning model was applied to the whole, large-scale
dHCP dataset to see how its output holds out against rig-
orous visual quality control. An accuracy drop in young
neonates was analyzed and solved by an age-stratified train-
ing set. Training and testing code and models are released
on GitHub for other research groups. A detailed claus-
trum segmentation protocol is in the Online Supplement.
In parallel, the proposed transfer learning approach serves
as a template for similar segmentation tasks of intricate and
small structures in the developing brain.

Material andMethods

In the following parts, the single term “model” refers to
a 2D artificial neural network while “combined model” in-
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Fig. 1 A schematic view of the
image segmentation and eval-
uation pipeline of this study. It
includes three stages: 1) data
preparation, 2) model opti-
mization and 3) framework
evaluation

tegrates several 2D models (see Section Multiview Con-
volutional Neural Network). Whereas manually acquired
tracing of the claustrum is always described with the term
“manual segmentation”, the output of a model is described
as “automated segmentation” or “prediction” in an inter-
changeable way.

The general image processing diagram in this work in-
cludes three stages shown in Fig. 1. Data preparation deals
with the enrolment of 558 subjects, image preprocessing
and manual segmentation of neonate claustrum. Optimiza-
tion aims to perform transfer learning and train a deep-
learning model with the manual segmentations provided in
the first stage. Finally, the evaluation investigates the effec-
tiveness and the applicability of the established model on
unseen data including failure analysis and model improve-
ment. The following two sections describe the datasets and
evaluation metrics in this study.

Datasets

All 558 three-dimensional MRI scans of newborns from
the second data release of the developing Human Connec-
tome Project (dHCP)1 were included. The large-scale public
dataset contains 558 brain MRI of 505 neonates from 23 to
44 weeks postconceptional age with a mean (±standard de-
viation) scan age of 40 (±3) gestational weeks. In detail, the
study comprises 378 scans of term-born neonates and 180
scans of preterm-born neonates, including 82 scans of very
preterm-born neonates (birth age <32 gestational weeks).
Data involve previously known at risk groups for neurode-

1 http://www.developingconnectome.org/.

velopmental disorders and incidental findings in clinically
unsuspicious neonates [29, 30]. The explicit inclusion and
exclusion criteria are shown on the dHCP website2. Recruit-
ment and scanning took place at the Evelina Newborn Imag-
ing Centre, St Thomas’ Hospital in London, UK [29]. Writ-
ten consent by the parents was previously requested [27].
Due to immature structures with different tissue composi-
tion than in adults, the preferred structural image sequence
in neonatal brain MRI are T2-weighted (T2-w) scans. Thus,
the dHCP favored this sequence in data preprocessing steps
[29] and we focused on it for our study. Images were ac-
quired with a 3T Philips Achieva with a repetition time
TR= 12,000ms and echo time TE= 156ms, isotropic recon-
structed voxel size of 0.5mm and scanning in axial (SENSE
factor: 2.11) and sagittal (SENSE factor: 2.60) plane with
a neonatal 32 channel head coil [27]. The structural brain
images passed visual quality control, brain extraction, and
were preprocessed by retrospective motion and bias correc-
tion by the dHCP [29, 31].

Out of this dataset, 30 randomly chosen subjects passed
manual segmentation. Subsequently, these scans were split
in a training set of 20 subjects and a test set comprising
10 scans for evaluation. The remaining 528 scans served
as correction set and did not undergo manual segmentation.
Training, test, and correction sets are consistent throughout
the experiments (Table 1).

The manual segmentation was performed with ITK-
SNAP-v3.6.03 [32] on a Wacom Intuos M tablet (Wacom,

2 http://www.developingconnectome.org/study-inclusion-and-
exclusion-criteria/.
3 http://www.itksnap.org.
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Table 1 Characteristics of the dataset in this study. The dataset consists of 558 subjects from the developing Human Connectome Project. For
each dataset, the count of scans and the mean scan age (range) in gestational weeks are given

Scanner Field
strength

Voxel size
(mm3)

Training
set; scan age

Test set; scan age Correction
set; scan age

Philips Achieva (Philips,
Best, The Netherlands)

3T 0.5× 0.5× 0.5 20 scans
39.9 (36.1–42.6)

10 scans
40.4 (38.7–42.3)

528 scans
40.0 (29.3–45.1)

Kazo, Saitama, Japan). The first rater was under close
supervision of a board-certified neuroradiologist with 10
years of experience including imaging for a neonatal in-
tensive care unit and 5 years of experience pertaining to
imaging of premature-born individuals and related out-
comes. The detailed segmentation protocol, which assures
a constant structure for more objective and stable results, is
described in the Online Supplement. Despite this approach,
it remains challenging to define the exact boundaries of
the small claustrum due to the ambiguity. To quantify the
intrarater reliability of manual segmentation, the first rater
traced the right and left claustrum of the 10 subjects in the
test set at two time points. Furthermore, these 10 subjects
were manually segmented by a second rater with the same
protocol to assess interrater reliability.

Model Evaluation

Given a manual segmentation mask M and a predicted seg-
mentation mask P, three different evaluation metrics as-
sessed the model performance:

Volumetric Similarity (VS)

While VM and VP are the volumes of the claustrum in M
and P, respectively, the volumetric similarity (VS) between
them is defined as:

VSŒ%� = 1 −
jVM − VP j
jVM + VP j

95th Percentile of the Hausdorff Distance (HD95)

The Hausdorff distance (HD) is a common score to measure
the surface distance between two masks M and P [33]:

HD .M; P / = maxf sup
x2M

inf
y2Pd .x; y/ ; sup

y2P
inf
x2Md .x; y/g

d(x,y) denotes the Euclidean distance of x and y, sup terms
the supremum and inf the infimum. We used the 95th per-
centile instead of the maximum (100th percentile) distance
to discount single outliers.

Dice Similarity Coefficient (DSC)

DSC =
2 .M \ P /

jM j + jP j
The Dice similarity coefficient (DSC) quantifies the spa-

tial overlap between manual segmentationM and prediction
mask P.

Evaluation Protocol

K-fold Cross-validation The model’s overall performance
was evaluated with k-fold cross-validation with 20 sub-
jects in the training/validation set. While k was set to 5,
in each split 80% of the scans were pooled into the training
set and the remaining 20% were used for validation. After
five iterations, all subjects were evaluated in the validation
phase.

Evaluation on a Test Set The model was optimized on 20
subjects. The combined model was evaluated on a test set
with 10 subjects and compared with intrarater and interrater
reliability.

ApplicabilityAssessment The combined model was applied
to the correction set with 528 subjects. These predictions
were compared with their subsequently manually corrected
correlates.

Additional Preprocessing and Postprocessing

Image Preprocessing We performed additional steps on top
of the basic preprocessing steps carried out by dHCP proto-
col (Sect. Datasets). First, a z-score normalization standard-
ized the brain voxel intensities for each scan as proposed in
[26]. Second, every slice was cropped to a uniform size of
200× 200 pixels to exclude background information. Third,
the first and last 25% of the slices were removed based on
empirical decision to focus on central parts of the brain,
which include the claustrum, and to lower the computa-
tional time.

Segmentation Postprocessing After generating a segmen-
tation, two postprocessing steps were applied to it: 1) the
segmentation maps were padded with respect to the orig-
inal size, i.e., an inverse operation to the previous second
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Fig. 2 A schematic view of the
proposed segmentation method
using transfer learning and
multiview convolutional neu-
ral networks to segment the
newborn claustrum given lim-
ited data. The network for each
view (i.e., axial and coronal)
is a 2D convolutional network
architecture, and it takes the raw
images as the input and predicts
the claustrum segmentation

preprocessing step and 2) an according sequence to prepro-
cessing step three to remove some artifacts.

Data Augmentation

In contrast to expensive manual segmentation, data aug-
mentation (DA) is a method to enlarge the amount and
the diversity of training data. A stack of selective trans-
formations, including moderate shift, scaling, rotation, and
shearing to the image slices and the corresponding masks,
resulted in doubled training data (see Fig. S1 in the Online
Supplement for selection of DA methods). For comparison,
the same models were trained with and without DA and
their performance was assessed on the validation set. There
was no significant difference regarding the VS; however,
DA led to a significant improvement of automated segmen-
tation concerning HD95 and DSC (see Table S1). For the
stated reasons, data augmentation enriched the following
experiments.

Multiview Convolutional Neural Network

As automated neonatal claustrum segmentation is not feasi-
ble to conventional atlas-based methods, we adopted a su-
pervised deep-learning approach developed for adults [26].
While training, the model takes labeled slices of MR im-
ages as input data and adapts its parameters towards ac-
curate prediction by minimizing the loss function (Sect.
Parameter Setting and Computation Complexity). Finally,
the trained model can be applied to trace the claustrum in
unseen neonatal images. Based on the beneficial multiview

approach proposed in [26], we train coronal and axial deep
convolutional neural networks on 2D single-view slices af-
ter parsing 3D MRI volume into axial and coronal views. In
the test stage, the predictions are automatically combined
on a voxel-wise level.

The network architecture of the convolutional neural net-
work [26] adapted to the neonatal image format is shown
in Fig. S2. It has a U-shape [34] with a down-convolutional
part that extracts features of the T2-w input scans. The up-
convolutional part assigns the categories claustrum or non-
claustrum to each pixel conforming a segmentation of the
claustrum.

Transfer Learning

Transfer learning is typically performed using a designed
model and pretrained weights from one source task and fine-
tuning on the target task. In this work, the knowledge from
task A: human claustrum segmentation in T1-w adult im-
ages, was transferred to task B: claustrum segmentation in
high-resolution T2-w images of neonates scanned in a range
of 21 gestational weeks with ongoing brain development.
As shown in Fig. 2, we used the same model and directly
took its weights learned from task A. Then the multiview
networks were optimized with only 20 T2-w scans with
manual segmentations for task B. It took around 90min for
the whole training process and 6s for automated segmen-
tation using a common NVIDIA (Santa Clara, CA, USA)
graphics processing unit (GPU). The high efficiency of our
framework is explained in the following sections.
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Fig. 3 Segmentation results of
three sample cases. In the au-
tomated segmentation masks,
the green pixels represent true
positives, the blue ones repre-
sent false negatives, and orange
ones represent false positives.
Examples are sorted accord-
ing to accuracy as determined
by the Dice similarity coefficient
(DSC). VS volumetric similar-
ity, HD95 95th percentile of
Hausdorff distance

Parameter Setting and Computation Complexity

The hyperparameterswere chosen consistently for all exper-
iments and optimized efficiency and accuracy. Each model
was trained for 30 epochs to avoid overfitting and to keep
a low computational cost by monitoring VS and DSC on
a validation set. The batch size was empirically set to 60 as
a relatively large batch size tended to a more stable training
than a smaller batch size mainly due to the imbalanced na-
ture of the training set. The learning rate was set to 0.0002.
Non-TL models, which were prepared for comparison rea-
sons, were trained for 275 epochs (see Fig. S5). The other
hyperparameters were similar as for TL.

In the claustrum segmentation task, the distribution of
claustrum voxels and non-claustrum voxels are highly im-
balanced. To handle this issue, the Dice loss was used as

Table 2 Performance comparison between the accuracy of the automated segmentation achieved by the combined model and the intrarater
reliability or interrater reliability, respectively. # indicates that a smaller value represents better performance; bold p-values are significant
(p≤0.05)

Metric,
median (IQR)

Automated
segmentation
(AS)

Intrarater reliability Interrater reliability p-value
(AS vs. intrarater)

p-value
(AS vs. interrater)

VS, in % 95.9 (95.4, 97.2) 94.6 (93.2, 98.4) 89.6 (87.2, 94.1) 0.959 0.047

HD95, in mm# 1.12 (1.12, 1.34) 0.93 (0.71, 1.17) 1.96 (1.54, 2.69) 0.011 0.203

DSC, in % 80.0 (78.4, 81.2) 81.8 (80.4, 82.6) 70.5 (69.3, 71.8) <0.005 <0.005

VS volumetric similarity, HD95 95th percentile of Hausdorff distance, DSC Dice similarity coefficient, IQR interquartile range

a loss function to minimize the difference between manual
segmentation and prediction during training [26, 35, 36].

All experiments were performed on a Linux workstation
running Ubuntu 20.04 (Canonical Ltd., London, UK), with
64GB RAM. The number of trainable parameters in the sin-
gle-view architecture is 2,494,529. The model was trained
on one NVIDIA Titan-Xp GPU with 12GB of GDDR5X
memory. Training a single model for 30 epochs on a training
set containing 4200 images with a size of 200× 200 pixels
took only around 12min. For model robustness, three axial
view models and three coronal view models were trained
and aggregated at a voxel-wise level resulting in a com-
bined model. Predicting the segmentation of one scan with
192 slices by such a combined model took around 90s using
an Intel (Santa Clara, CA, USA) Xeon central processing
unit (CPU) (E3-1225v3) and only 6s when using a GPU.
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Fig. 4 Segmentation performance of the proposed method on the test set (automated seg.) and comparison to intrarater and interrater reliability
(reli.). In comparison with intrarater reliability, automated segmentation is significantly inferior concerning the 95th percentile of the Hausdorff dis-
tance (HD95) and Dice coefficient. In comparison with interrater reliability, automated segmentation is significantly superior regarding volumetric
similarity (VS) and Dice coefficient (in arbitrary unit, respectively)

Results

Segmentation Accuracy

Three examples of automated claustrum segmentation are
shown in Fig. 3.

To assess the accuracy of our combined model for auto-
mated claustrum segmentation, we calculated three perfor-
mance metrics, volumetric similarity (VS), 95th percentile
of the Hausdorff distance (HD95), and Dice similarity coef-
ficient (DSC), on the test set and compared its performance
with intrarater and interrater reliabilities on the same set
(for detailed results see Table 2 and Fig. 4). The proposed
method yielded median VS, HD95, and DSC of 95.9%,
1.12mm, and 80.0%, respectively. Repeated segmentation
by the same reader led to median VS, HD95, and DSC of
94.6%, 0.93mm, and 81.8%, respectively and is referred
to as intrarater reliability. Segmentation of the test set by
both readers 1 and 2 led to median VS, HD, and DSC of
89.6%, 1.96mm, and 70.5%, respectively and serves as in-
terrater reliability. Comparing the automated segmentation

Fig. 5 The left diagram shows volumetric similarity (VS) and Dice similarity coefficient (DSC), both in arbitrary unit, of the test set of models
trained with different amounts of training data (measured in scans). The right graph presents the 95th percentile of Hausdorff distance (HD95) in
mm of these models. The performance mainly increases till around 12 images in the training set and saturates afterward

with intrarater reliability with a Wilcoxon signed-rank test,
we found significantly lower HD95 (p= 0.011) and higher
DSC (p< 0.005) for repeated manual segmentation by the
same reader. Comparing the automated segmentation with
interrater reliability with the same statistical test, the auto-
mated segmentation algorithm achieved significantly higher
VS (p= 0.047) and higher DSC (p< 0.005). These results
show that the accuracy of our automated segmentation ap-
proach is comparable to intrarater reliability with minimally
inferior results at HD95 and DSC and that it is superior to
interrater reliability in two out of three performance met-
rics.

Efficiency of Transfer Learning in Comparison with
Nontransfer Learning

To evaluate the efficiency of the transfer learning technique
(TL), we compared it with the vanilla approach, i.e., train-
ing from scratch (non-TL). Internal fivefold cross-validation
on the training set was performed with both methods. VS,
HD95, DSC and training times were recorded and compared
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(for details, see Table S2 and Fig. S6 in the Online Sup-
plement). The TL method achieved a median VS, HD95,
and DSC of 95.3%, 1.06mm, and 78.9%, respectively, and
training took around 90min. The non-TL approach led to
a median VS, HD95, and DSC of 93.5%, 1.00mm, and
79.4%, respectively, and a training time of 17.5h. Com-
paring these results with a Wilcoxon signed-rank test, the
TL method showed a significantly superior VS (p= 0.050),
inferior HD95 (p= 0.016), and no significant difference re-
garding DSC (p= 0.452). Concerning the time needed for
training, TL was more than 11 times faster than training
from scratch. This finding suggests that TL and non-TL
achieve comparable performance but TL is far more time
efficient.

Data Range Needed for Transfer Learning

To determine how much training data are needed for trans-
fer learning, a model was trained with various training set
sizes, i.e., the first model was trained with two scans and
the training set was gradually increased with two scans for
the following models. The VS, HD95, and DSC were de-
termined on the test set. The model performance improved
with increasing training set up to 12 images (Fig. 5). Be-
yond this size, there only remained a minimal shift of DSC
up to 18 images. Surprisingly, even a training set of four
scans can reach relatively high scores. This result indicates
that transfer learning can deal effectively with a small train-
ing set of around 12 scans and their corresponding manual
segmentations. Additional results of how much data are
needed for non-transfer learning are shown in Fig. S6 in
the Online Supplement.

Applicability Assessment on a Large-scale Held-out
Correction Set

To test the applicability of the proposed deep-learning-
based approach, the model predicted the claustrum in the
held-out correction set of 528 scans. Subsequently, we cor-

Fig. 6 Volumetric similarity
(VS, in arbitrary unit), Dice
similarity coefficient (DSC, in
arbitrary unit) and 95th per-
centile of the Hausdorff distance
(HD95, in mm) of 528 auto-
mated segmentations of the
claustrum. Except for several
outliers with medium or low ac-
curacy, the majority shows high
performance in all three metrics
within a small range

Fig. 7 Dice similarity coefficient (DSC, in arbitrary unit) of 528 man-
ually corrected and initial automated segmentations of right and left
claustrum depending on the scan age. The head-down arrows indicate
the scan age of the training subjects. Subjects with relatively low seg-
mentation performance are younger than the training samples

rected the predictions manually where needed and com-
pared predicted and corrected segmentation by charging
VS, HD95, and DSC. The median VS, HD95, and DSC
were 98.5%, 0.00mm, and 97.7% (see Fig. 6), respectively.
In total, we found 14 scans of which the DSC of the claus-
trum segmentation was less than the mean intrarater re-
liability of 81.8%, corresponding to 2.7% of the whole
correction set. In three of these scans, the right claustrum
was not detected at all. These subjects, two female and
one male neonate, were born in a range of gestational age
26.1–28.7 weeks and scanned between 29.3 and 31 ges-
tational weeks, suggesting an unfavorable impact of very
young age on the accuracy of the prediction. A performance
comparison between the right and left claustrum is shown
in the Online Supplement in Fig. S8 and Table S3.

In a further analysis, we tried to explain the result of the
outliers with low performance (DSC <81.8%). As shown in
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Fig. 7, all predictions with low accuracy were obtained in
newborns before 35.0 gestational weeks. In subjects older
than 35.0 gestational weeks, the combined model reached
a high accuracy (DSC >81.8%) in 100% of the scans.
Notably, the training subjects were scanned in a range of
36.1–42.6 gestational weeks which presents a domain shift
compared to the correction set. Three exemplary young sub-
jects are presented in Fig. S9 in the Online Supplement.
This indicates an age-dependent artificial intelligence per-
formance which could be attributed to restricted training
samples. Thus, an adjustment of the training samples should
improve the performance in young subjects. To test this hy-
pothesis, we replaced two older neonates (scan age around
40 gestational weeks) by two very preterm-born subjects
(scan age around 29 gestational weeks) to obtain age strat-
ification in the training set. This led to significantly higher
performance in a group of the five young neonates (scan
age 29.3–32.7 gestational weeks) with the lowest DSC in
Fig. 7 (see Fig. S10) and, surprisingly, also in the original
test set (scan age 38.7–42.3 gestational weeks) (see Table
S4). To sum up, a scan age stratification of the training set
globally improved the model in this developing cohort.

Discussion

This study demonstrated that fully automated claustrum
segmentation in T2-weighted neonatal brain MRI is feasi-
ble by using deep learning. While the gray matter structure
is too small for atlas-based labeling and too intensive for
large-scale manual labeling, we successfully implemented
a transfer learning (TL) approach building on a previous
method for claustrum segmentation in adult brain MRI,
leading to segmentation accuracy comparable to intrarater
reliability and superior to interrater reliability. The released
models and codes will facilitate MRI-based research of the
newborn claustrum through automated segmentation. In ad-
dition, the presented approach can function as a template for
automated segmentation of other intricate structures in the
developing neonatal brain or transfer learning to different
datasets by published model training and testing code.

The proposed transfer-learning-based method offers
high segmentation accuracy. A transfer learning approach
fits to our segmentation problem in neonates because DL-
based segmentation approaches are more common in adults
but not in neonates e.g., amygdala nuclei or hypothala-
mus [37, 38]. In principle, evidence for the possibility to
transfer adult segmentation of specific subcortical regions
to neonates was demonstrated. The performance of our
segmentation approach was evaluated with three metrics,
volumetric similarity (VS), 95th percentile of the Hausdorff
distance (HD95) and the Dice similarity coefficient (DSC),
on a test set and compared with intrarater and interrater

reliability of the same test set. Automated segmentation
was partly inferior to intrarater reliability but significantly
superior to interrater reliability concerning two scores. In
comparison with the prior study of automated adult claus-
trum segmentation [26], all scores of the neonate claustrum
were improved. A possible explanation for this might be
the enhanced resolution of newborn MRI/adult MRI of
0.5/1.0mm isotropic voxel size suggesting that a higher
image resolution and a larger volume in voxels lead to
higher accuracy. The overall performance level is lower
than in comprehensive white or gray matter segmentation
reaching a Dice score of about 95% [39]; however, the
accuracy accords with observations in other ambiguous
and small structures like the hypothalamus and its sub-
nuclei with a Dice score of 51–84% [37]. Altogether, the
deep learning method deals with the delicate and variable
neonatal claustrum despite a short training set of 20 scans
segmented by one rater and outperforms the variability of
several human raters, which is especially relevant in large
datasets.

When matching TL with non-TL, both options had com-
parable performance but TL was more time efficient. The
methods were optimized individually regarding the num-
ber of epochs for training. A second analysis (shown in
the Online Supplement) compared the methods with differ-
ent sizes of the training set with a similar result for larger
training sets. With these approaches, a general superiority
of TL in terms of our metrics was not certifiable which is
consistent with other image segmentation tasks [33]. In the
training process, the loss was lower with TL than with non-
TL (see Fig. S4 in the Online Supplement) which could
be explained by the fact that the Dice loss is not simply
confined to the DSC but also represents the certainty of
the prediction. To conclude, TL is more time efficient and
energy saving than non-TL with stable performance.

We further found that 12 scans for training can be enough
to achieve a high model performance. A larger training set
hardly improved the accuracy determined with VS, HD95,
and DSC. Compared to our previous study, the needed data
are much smaller in this neonate project than for adult claus-
trum segmentation, even after correcting for different image
resolutions [26]. Surprisingly, overfitting did not prevent the
learning process with small training sets. This could be due
to the variability of the images as they come from different
layers of the brain. The effect of data augmentation was
excluded by testing how much data are needed for models
trained without DA. This approach requires more training
data for the same performance. We did not test non-DA-
non-TL models which would be the exact correlate to the
previous adult study. In a large cohort like the dHCP, au-
tomated segmentation by deep learning can reduce manual
segmentation for the most part as the training and test set
are only a small fraction of the whole dataset.
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On the question of model applicability, the combined
model, an ensemble of three axial and three coronal net-
works, detected the claustrum correctly in 97.4% of a large
held-out correction set. The automated segmentation was
compared with manually corrected versions of these predic-
tions and evaluated with VS, HD95, and DSC. The mostly
uniform Hausdorff distance of 0.0mm or 0.5mm could be
attributed to the 95th percentile of this score in conjunc-
tion with barely significant adaptations of the predictions.
All inadequate predictions with DSC lower than median in-
trarater reliability were obtained in newborns younger than
35.0 gestational weeks. This result could be explained by
the training set which exclusively covered older neonates.
Extremely immature neuroanatomy, such as less gyrifica-
tion or different contrast appearance in MRI than in older
neonates, might have distracted our model and resulted in
undersegmentation (i.e., false negatives). An age-stratified
training set improved the performance in these young sub-
jects and in older neonates. Overall, annotation correction
is far more time efficient than manual segmentation from
scratch. An automatic selection of subjects that should pass
visual control, e.g., due to young age or insufficient detected
claustrum volume, could speed up this process further as
segmentation in older subjects worked without big mis-
takes. Consequently, manual correction might be expend-
able in the latter group. The proposed TL method success-
fully segments the claustrum with little need for control and
correction and enables claustrum analyses in large neonatal
cohorts. This facilitates the investigation of the claustrum
development and its relation to premature birth. Further
investigations are needed to examine the association with
other neurodevelopmental disorders, such as schizophrenia
and autism spectrum disorders [7].

Despite efficient and accurate automated segmentation,
our study has some limitations. First, it is a challenge to pre-
cisely define the boundaries of the small and intricate claus-
trum. Although the dHCP provides a very high isotropic res-
olution of 0.5mm and a segmentation protocol structured
the process (Online Supplement), the manual segmentation
is not perfect because the boundary of specific regions is
often ambiguous and its segmentation partly remains sub-
jective, i.e., depends on the rater [37, 40]. This kind of
data uncertainty commonly exists in medical image seg-
mentation tasks. One potential solution is to quantify the
segmentation uncertainty (e.g., interrater reliability) when
building the segmentation model and take the uncertainty of
the outcome into account for the downstream analysis (Sect.
Segmentation Accuracy). Second, all training images were
segmented by one rater. This improves the uniformity of
segmentations but could also lead to a bias of the model.
Further analyses with two or more raters would be nec-
essary to appraise this impact. Third, the model training
was limited to a small dataset that did not cover the whole

age range of the dHCP or all neonatal stages of develop-
ment, which presumably dropped the accuracy, especially in
early premature newborns. The model still facilitates man-
ual work in the affected subjects but a strong visual control
is important.

In conclusion, this study presented a deep learning ap-
proach for automated claustrum segmentation in human
neonatal brain MRI. We evaluated the accuracy, compared
transfer and non-transfer learning, analyzed how much data
are needed for transfer learning and assessed the applica-
bility of the proposed method including a model enhance-
ment by age-stratified training. We conclude that 1) transfer
learning is a bit inferior to intrarater reliability but superior
to interrater reliability, 2) transfer learning shows similar
performance to non-transfer learning and is more time ef-
ficient, 3) the prediction accuracy stabilizes with a training
set above 12 scans and 4) the combined model applies to
a large cohort with predominantly accurate results. The im-
plementation codes are available on GitHub to the research
community.
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